
Enea Di Dio

CERN Theory Group Retreat 2022



Enea Di Dio

2005-2010

CERN Theory Group Retreat 2022



Enea Di Dio

2010-2014

CERN Theory Group Retreat 2022



Enea Di Dio

2014-2017

CERN Theory Group Retreat 2022



Enea Di Dio

2017-2019

CERN Theory Group Retreat 2022



Enea Di Dio

2019-2020

CERN Theory Group Retreat 2022



Enea Di Dio

CERN Theory Group Retreat 2022

from 2020



My research interests

Large Scale 
Structures

CMB

Lensing

Planck - ESA



My research interests

Large Scale 
Structures

CMB

Lensing

Planck - ESA



Upcoming Galaxy Surveys

Small scalesLarge scales

��-� ����� ����� �����

����

����

�×���
�×���

�×���

� [�/���]

�(
�)
[(
�
��
/�
)�
]

BOSS Collaboration

H
or

iz
on



Upcoming Galaxy Surveys

Small scalesLarge scales

��-� ����� ����� �����

����

����

�×���
�×���

�×���

� [�/���]

�(
�)
[(
�
��
/�
)�
]

BOSS Collaboration

H
or

iz
on



Upcoming Galaxy Surveys

Small scalesLarge scales

��-� ����� ����� �����

����

����

�×���
�×���

�×���

� [�/���]

�(
�)
[(
�
��
/�
)�
]

BOSS Collaboration

2 orders of magnitude

H
or

iz
on



Theory

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)

Galaxy Surveys

Observation



Theory

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)
= b1δM

Galaxy Surveys

Observation



Theory

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)
= b1δM +ℋ−1∂rv∥

Galaxy Surveys

Redshift perturbation z = z̄ + δz ≃ z̄ − (1 + z̄) n ⋅ v

Real space

n Redshift space

Observation



Theory

Deflection angle
n = n̄ + δn

n
δn

n̄

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)
= b1δM +ℋ−1∂rv∥ −2κ

Galaxy Surveys

Redshift perturbation z = z̄ + δz ≃ z̄ − (1 + z̄) n ⋅ v

Real space

n Redshift space

Observation



Theory

Deflection angle
n = n̄ + δn

n
δn

n̄

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)
= b1δM +ℋ−1∂rv∥ −2κ +𝒪(v∥) +𝒪 (Φ)

Galaxy Surveys

Redshift perturbation z = z̄ + δz ≃ z̄ − (1 + z̄) n ⋅ v

Real space

n Redshift space

Observation



Theory

Deflection angle
n = n̄ + δn

n
δn

n̄

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)
= b1δM +ℋ−1∂rv∥ −2κ +𝒪(v∥) +𝒪 (Φ)

Galaxy Surveys

Redshift perturbation z = z̄ + δz ≃ z̄ − (1 + z̄) n ⋅ v

Real space

n Redshift space

Observation

Newtonian



Theory

Deflection angle
n = n̄ + δn

n
δn

n̄

Δ (n, z) =
N (n, z) − ⟨N⟩(z)

⟨N⟩(z)
= b1δM +ℋ−1∂rv∥ −2κ +𝒪(v∥) +𝒪 (Φ)

Galaxy Surveys

Redshift perturbation z = z̄ + δz ≃ z̄ − (1 + z̄) n ⋅ v

Real space

n Redshift space

Observation

Newtonian Relativistic



Galaxy Surveys

where h..i denotes the angular average at fixed observed redshift. Being � (n, z) an
observable quantities we can express it in any gauge. We adopt therefore Newtonian
gauge

ds
2 = a

2(t)
�
� (1 + 2 ) dt2 + (1� 2�)dx2

�
(3.2)

where t denotes the conformal time and the metric perturbation  and � are the Bardeen
potentials.

The full relativistic number counts to linear order in perturbation theory [1–4, 30],
including the observer terms [20, 31], reads as5
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where we have assumed only the Euler equation and V denotes the velocity potential
and v|| = n · v, where n is pointing from the observer to the source and v the peculiar
velocity in Newtonian gauge. The gauge-invariant density contrast Dm coincides with
the density fluctuation in comoving gauge. To relation between dark matter and galaxies
is parametrized by a galaxy bias b, a magnification bias sb and a evolution bias fevo. We
group the di↵erent relativistic e↵ects in terms of standard density plus RSD, lensing,
Doppler, local gravitational potential, non-local gravitational potential as follows
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5In Refs. [20, 31] the Authors implicitly assume that the surveys are limited in volume. However
considering that current and upcoming surveys will be limited in flux we need to introduce also the
magnification bias sb, defined as the slope of the luminosity function at the luminosity threshold, following
the same convention of Refs. [3, 11, 22]. Therefore by Taylor expanding around the threshold luminosity
and considering that the fractional fluctuation of the luminosity is twice the fractional fluctuation of the
luminosity distance (�L/L̄ = 2�DL/D̄L), we need to replace

� (n, z) ! � (n, z)� 5sb (z)
�DL

D̄L
.

To obtain eq. (3.3), where we have used the luminosity distance of Ref. [31] to properly include also the
terms evaluated at the observer position.
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From the galaxy number counts � (n, z) we can compute the correlation function

h�A (n1, z1)�
B (n2, z2)i = ⇠

AB (s1, s2, ŝ1 · ŝ1) = ⇠
AB (s, s1, µ) . (3.5)

The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). We
have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
combination of the functions

I
n
` (s) =

Z
dq

2⇡2
q
2
P (q)

j` (qs)

(qs)n
. (3.6)

Indeed the correlation function can be written as

⇠
AB (s1, s2, ŝ1 · ŝ2) =

Z
d
3
q

(2⇡)3
P (q)DA (q)DB (q) eiq·s

=

Z
dq

2⇡2
q
2
P (q)DA (q)DB (q) j0 (qs) (3.7)

where DA (k) is the di↵erential operator associated to the perturbation A. These dif-
ferential operators, acting on j0 (qs) will lead to the functions I

n
` . For the di↵erent

perturbations we have indeed

Dm (s1) ! D� = T� (s1) ,

v|| (s1) ! Dv|| =
TV (s1)

q2 @s1 , v||o ! Dv||o
= TV (0)

q2 @s1 |s1=0
,

V (s1) ! DV = TV (s1)
q2 , Vo ! DVo =

TV (0)

q2 ,

� (s1) ! D� = T�(s1)
q2 ,

 (s1) ! D = T (s1)
q2 ,  o ! D o =

T (0)
q2 ,

 ̇ (s1) ! D
�̇
=

T
 ̇
(s1)

q2 ,

�̇ (s1) ! D
�̇
=

T
�̇
(s1)

q2 .

(3.8)

Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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Ḣ
H2

� fevo

!

✓
H0Vo + � o + v|| � v||o +

Z to

t

⇣
 ̇+ �̇

⌘
dt

0
◆

+(5sb � 2)�+ + �̇H�1 + (fevo � 3)HV�2� 5sb
r

vo � (2� 5sb) v||o

+
2� 5sb

r

Z to

t

( + �) dt0 (3.3)

where we have assumed only the Euler equation and V denotes the velocity potential
and v|| = n · v, where n is pointing from the observer to the source and v the peculiar
velocity in Newtonian gauge. The gauge-invariant density contrast Dm coincides with
the density fluctuation in comoving gauge. To relation between dark matter and galaxies
is parametrized by a galaxy bias b, a magnification bias sb and a evolution bias fevo. We
group the di↵erent relativistic e↵ects in terms of standard density plus RSD, lensing,
Doppler, local gravitational potential, non-local gravitational potential as follows

� (n, z) = bDm +H�1
@rv||

+
5sb � 2

2

Z r

0

dr
0 r � r

0

rr0
�⌦ ( + �)

+R
�
v|| � v||o

�
� (2� 5sb) v||o

+

⇢✓
R�2� 5sb

H0r

◆
H0Vo + (R+ 1) �R o + (5sb � 2)�+ �̇H�1

+(fevo � 3)HV

�

5In Refs. [20, 31] the Authors implicitly assume that the surveys are limited in volume. However
considering that current and upcoming surveys will be limited in flux we need to introduce also the
magnification bias sb, defined as the slope of the luminosity function at the luminosity threshold, following
the same convention of Refs. [3, 11, 22]. Therefore by Taylor expanding around the threshold luminosity
and considering that the fractional fluctuation of the luminosity is twice the fractional fluctuation of the
luminosity distance (�L/L̄ = 2�DL/D̄L), we need to replace

� (n, z) ! � (n, z)� 5sb (z)
�DL

D̄L
.

To obtain eq. (3.3), where we have used the luminosity distance of Ref. [31] to properly include also the
terms evaluated at the observer position.

– 10 –

+
2� 5sb

r

Z to

t

( + �) dt0 +R
Z to

t

⇣
 ̇+ �̇

⌘
dt

0
. (3.4)

From the galaxy number counts � (n, z) we can compute the correlation function

h�A (n1, z1)�
B (n2, z2)i = ⇠

AB (s1, s2, ŝ1 · ŝ1) = ⇠
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have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
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Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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terms evaluated at the observer position.
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in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
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Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
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we need to remind that the density contrast Dm is defined in comoving gauge, while the
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this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)
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AB (s, s1, µ) . (3.5)

The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). We
have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
combination of the functions

I
n
` (s) =

Z
dq

2⇡2
q
2
P (q)

j` (qs)

(qs)n
. (3.6)

Indeed the correlation function can be written as

⇠
AB (s1, s2, ŝ1 · ŝ2) =

Z
d
3
q

(2⇡)3
P (q)DA (q)DB (q) eiq·s

=

Z
dq

2⇡2
q
2
P (q)DA (q)DB (q) j0 (qs) (3.7)

where DA (k) is the di↵erential operator associated to the perturbation A. These dif-
ferential operators, acting on j0 (qs) will lead to the functions I

n
` . For the di↵erent

perturbations we have indeed

Dm (s1) ! D� = T� (s1) ,

v|| (s1) ! Dv|| =
TV (s1)

q2 @s1 , v||o ! Dv||o
= TV (0)

q2 @s1 |s1=0
,

V (s1) ! DV = TV (s1)
q2 , Vo ! DVo =

TV (0)

q2 ,

� (s1) ! D� = T�(s1)
q2 ,

 (s1) ! D = T (s1)
q2 ,  o ! D o =

T (0)
q2 ,

 ̇ (s1) ! D
�̇
=

T
 ̇
(s1)

q2 ,

�̇ (s1) ! D
�̇
=

T
�̇
(s1)

q2 .

(3.8)

Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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where h..i denotes the angular average at fixed observed redshift. Being � (n, z) an
observable quantities we can express it in any gauge. We adopt therefore Newtonian
gauge

ds
2 = a

2(t)
�
� (1 + 2 ) dt2 + (1� 2�)dx2

�
(3.2)

where t denotes the conformal time and the metric perturbation  and � are the Bardeen
potentials.

The full relativistic number counts to linear order in perturbation theory [1–4, 30],
including the observer terms [20, 31], reads as5

� (n, z) = bDm +H�1
@rv|| +

5sb � 2

2

Z r
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dr
0 r � r

0

rr0
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+
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Ḣ
H2

� fevo

!

✓
H0Vo + � o + v|| � v||o +

Z to

t

⇣
 ̇+ �̇

⌘
dt

0
◆

+(5sb � 2)�+ + �̇H�1 + (fevo � 3)HV�2� 5sb
r

vo � (2� 5sb) v||o

+
2� 5sb

r

Z to

t

( + �) dt0 (3.3)

where we have assumed only the Euler equation and V denotes the velocity potential
and v|| = n · v, where n is pointing from the observer to the source and v the peculiar
velocity in Newtonian gauge. The gauge-invariant density contrast Dm coincides with
the density fluctuation in comoving gauge. To relation between dark matter and galaxies
is parametrized by a galaxy bias b, a magnification bias sb and a evolution bias fevo. We
group the di↵erent relativistic e↵ects in terms of standard density plus RSD, lensing,
Doppler, local gravitational potential, non-local gravitational potential as follows

� (n, z) = bDm +H�1
@rv||

+
5sb � 2

2

Z r

0

dr
0 r � r

0

rr0
�⌦ ( + �)

+R
�
v|| � v||o

�
� (2� 5sb) v||o

+

⇢✓
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H0r

◆
H0Vo + (R+ 1) �R o + (5sb � 2)�+ �̇H�1

+(fevo � 3)HV

�

5In Refs. [20, 31] the Authors implicitly assume that the surveys are limited in volume. However
considering that current and upcoming surveys will be limited in flux we need to introduce also the
magnification bias sb, defined as the slope of the luminosity function at the luminosity threshold, following
the same convention of Refs. [3, 11, 22]. Therefore by Taylor expanding around the threshold luminosity
and considering that the fractional fluctuation of the luminosity is twice the fractional fluctuation of the
luminosity distance (�L/L̄ = 2�DL/D̄L), we need to replace

� (n, z) ! � (n, z)� 5sb (z)
�DL

D̄L
.

To obtain eq. (3.3), where we have used the luminosity distance of Ref. [31] to properly include also the
terms evaluated at the observer position.
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⌘
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. (3.4)

From the galaxy number counts � (n, z) we can compute the correlation function

h�A (n1, z1)�
B (n2, z2)i = ⇠

AB (s1, s2, ŝ1 · ŝ1) = ⇠
AB (s, s1, µ) . (3.5)

The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). We
have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
combination of the functions

I
n
` (s) =

Z
dq

2⇡2
q
2
P (q)

j` (qs)

(qs)n
. (3.6)

Indeed the correlation function can be written as

⇠
AB (s1, s2, ŝ1 · ŝ2) =

Z
d
3
q

(2⇡)3
P (q)DA (q)DB (q) eiq·s

=

Z
dq

2⇡2
q
2
P (q)DA (q)DB (q) j0 (qs) (3.7)

where DA (k) is the di↵erential operator associated to the perturbation A. These dif-
ferential operators, acting on j0 (qs) will lead to the functions I

n
` . For the di↵erent

perturbations we have indeed

Dm (s1) ! D� = T� (s1) ,

v|| (s1) ! Dv|| =
TV (s1)

q2 @s1 , v||o ! Dv||o
= TV (0)

q2 @s1 |s1=0
,

V (s1) ! DV = TV (s1)
q2 , Vo ! DVo =

TV (0)

q2 ,

� (s1) ! D� = T�(s1)
q2 ,

 (s1) ! D = T (s1)
q2 ,  o ! D o =

T (0)
q2 ,

 ̇ (s1) ! D
�̇
=

T
 ̇
(s1)

q2 ,

�̇ (s1) ! D
�̇
=

T
�̇
(s1)

q2 .

(3.8)

Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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where h..i denotes the angular average at fixed observed redshift. Being � (n, z) an
observable quantities we can express it in any gauge. We adopt therefore Newtonian
gauge

ds
2 = a

2(t)
�
� (1 + 2 ) dt2 + (1� 2�)dx2

�
(3.2)

where t denotes the conformal time and the metric perturbation  and � are the Bardeen
potentials.

The full relativistic number counts to linear order in perturbation theory [1–4, 30],
including the observer terms [20, 31], reads as5

� (n, z) = bDm +H�1
@rv|| +

5sb � 2

2

Z r

0

dr
0 r � r

0

rr0
�⌦ ( + �)
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r
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+
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r

Z to

t

( + �) dt0 (3.3)

where we have assumed only the Euler equation and V denotes the velocity potential
and v|| = n · v, where n is pointing from the observer to the source and v the peculiar
velocity in Newtonian gauge. The gauge-invariant density contrast Dm coincides with
the density fluctuation in comoving gauge. To relation between dark matter and galaxies
is parametrized by a galaxy bias b, a magnification bias sb and a evolution bias fevo. We
group the di↵erent relativistic e↵ects in terms of standard density plus RSD, lensing,
Doppler, local gravitational potential, non-local gravitational potential as follows

� (n, z) = bDm +H�1
@rv||

+
5sb � 2

2

Z r
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dr
0 r � r

0
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�

5In Refs. [20, 31] the Authors implicitly assume that the surveys are limited in volume. However
considering that current and upcoming surveys will be limited in flux we need to introduce also the
magnification bias sb, defined as the slope of the luminosity function at the luminosity threshold, following
the same convention of Refs. [3, 11, 22]. Therefore by Taylor expanding around the threshold luminosity
and considering that the fractional fluctuation of the luminosity is twice the fractional fluctuation of the
luminosity distance (�L/L̄ = 2�DL/D̄L), we need to replace

� (n, z) ! � (n, z)� 5sb (z)
�DL

D̄L
.

To obtain eq. (3.3), where we have used the luminosity distance of Ref. [31] to properly include also the
terms evaluated at the observer position.
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From the galaxy number counts � (n, z) we can compute the correlation function

h�A (n1, z1)�
B (n2, z2)i = ⇠

AB (s1, s2, ŝ1 · ŝ1) = ⇠
AB (s, s1, µ) . (3.5)

The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). We
have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
combination of the functions

I
n
` (s) =

Z
dq

2⇡2
q
2
P (q)

j` (qs)

(qs)n
. (3.6)

Indeed the correlation function can be written as

⇠
AB (s1, s2, ŝ1 · ŝ2) =

Z
d
3
q

(2⇡)3
P (q)DA (q)DB (q) eiq·s

=

Z
dq

2⇡2
q
2
P (q)DA (q)DB (q) j0 (qs) (3.7)

where DA (k) is the di↵erential operator associated to the perturbation A. These dif-
ferential operators, acting on j0 (qs) will lead to the functions I

n
` . For the di↵erent

perturbations we have indeed

Dm (s1) ! D� = T� (s1) ,

v|| (s1) ! Dv|| =
TV (s1)

q2 @s1 , v||o ! Dv||o
= TV (0)

q2 @s1 |s1=0
,

V (s1) ! DV = TV (s1)
q2 , Vo ! DVo =

TV (0)

q2 ,

� (s1) ! D� = T�(s1)
q2 ,

 (s1) ! D = T (s1)
q2 ,  o ! D o =

T (0)
q2 ,

 ̇ (s1) ! D
�̇
=

T
 ̇
(s1)

q2 ,

�̇ (s1) ! D
�̇
=

T
�̇
(s1)

q2 .

(3.8)

Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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The IR behaviour

where h..i denotes the angular average at fixed observed redshift. Being � (n, z) an
observable quantities we can express it in any gauge. We adopt therefore Newtonian
gauge

ds
2 = a

2(t)
�
� (1 + 2 ) dt2 + (1� 2�)dx2

�
(3.2)

where t denotes the conformal time and the metric perturbation  and � are the Bardeen
potentials.

The full relativistic number counts to linear order in perturbation theory [1–4, 30],
including the observer terms [20, 31], reads as5

� (n, z) = bDm +H�1
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where we have assumed only the Euler equation and V denotes the velocity potential
and v|| = n · v, where n is pointing from the observer to the source and v the peculiar
velocity in Newtonian gauge. The gauge-invariant density contrast Dm coincides with
the density fluctuation in comoving gauge. To relation between dark matter and galaxies
is parametrized by a galaxy bias b, a magnification bias sb and a evolution bias fevo. We
group the di↵erent relativistic e↵ects in terms of standard density plus RSD, lensing,
Doppler, local gravitational potential, non-local gravitational potential as follows
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5In Refs. [20, 31] the Authors implicitly assume that the surveys are limited in volume. However
considering that current and upcoming surveys will be limited in flux we need to introduce also the
magnification bias sb, defined as the slope of the luminosity function at the luminosity threshold, following
the same convention of Refs. [3, 11, 22]. Therefore by Taylor expanding around the threshold luminosity
and considering that the fractional fluctuation of the luminosity is twice the fractional fluctuation of the
luminosity distance (�L/L̄ = 2�DL/D̄L), we need to replace

� (n, z) ! � (n, z)� 5sb (z)
�DL

D̄L
.

To obtain eq. (3.3), where we have used the luminosity distance of Ref. [31] to properly include also the
terms evaluated at the observer position.
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From the galaxy number counts � (n, z) we can compute the correlation function

h�A (n1, z1)�
B (n2, z2)i = ⇠

AB (s1, s2, ŝ1 · ŝ1) = ⇠
AB (s, s1, µ) . (3.5)

The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). We
have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
combination of the functions

I
n
` (s) =

Z
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2⇡2
q
2
P (q)

j` (qs)

(qs)n
. (3.6)

Indeed the correlation function can be written as

⇠
AB (s1, s2, ŝ1 · ŝ2) =

Z
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3
q

(2⇡)3
P (q)DA (q)DB (q) eiq·s

=

Z
dq

2⇡2
q
2
P (q)DA (q)DB (q) j0 (qs) (3.7)

where DA (k) is the di↵erential operator associated to the perturbation A. These dif-
ferential operators, acting on j0 (qs) will lead to the functions I

n
` . For the di↵erent

perturbations we have indeed

Dm (s1) ! D� = T� (s1) ,

v|| (s1) ! Dv|| =
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(3.8)

Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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The theoretical predictions are independent from the gravitational potential in the IR limit

The IR behaviour

where h..i denotes the angular average at fixed observed redshift. Being � (n, z) an
observable quantities we can express it in any gauge. We adopt therefore Newtonian
gauge

ds
2 = a

2(t)
�
� (1 + 2 ) dt2 + (1� 2�)dx2

�
(3.2)

where t denotes the conformal time and the metric perturbation  and � are the Bardeen
potentials.

The full relativistic number counts to linear order in perturbation theory [1–4, 30],
including the observer terms [20, 31], reads as5
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where we have assumed only the Euler equation and V denotes the velocity potential
and v|| = n · v, where n is pointing from the observer to the source and v the peculiar
velocity in Newtonian gauge. The gauge-invariant density contrast Dm coincides with
the density fluctuation in comoving gauge. To relation between dark matter and galaxies
is parametrized by a galaxy bias b, a magnification bias sb and a evolution bias fevo. We
group the di↵erent relativistic e↵ects in terms of standard density plus RSD, lensing,
Doppler, local gravitational potential, non-local gravitational potential as follows
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5In Refs. [20, 31] the Authors implicitly assume that the surveys are limited in volume. However
considering that current and upcoming surveys will be limited in flux we need to introduce also the
magnification bias sb, defined as the slope of the luminosity function at the luminosity threshold, following
the same convention of Refs. [3, 11, 22]. Therefore by Taylor expanding around the threshold luminosity
and considering that the fractional fluctuation of the luminosity is twice the fractional fluctuation of the
luminosity distance (�L/L̄ = 2�DL/D̄L), we need to replace

� (n, z) ! � (n, z)� 5sb (z)
�DL

D̄L
.

To obtain eq. (3.3), where we have used the luminosity distance of Ref. [31] to properly include also the
terms evaluated at the observer position.
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From the galaxy number counts � (n, z) we can compute the correlation function

h�A (n1, z1)�
B (n2, z2)i = ⇠

AB (s1, s2, ŝ1 · ŝ1) = ⇠
AB (s, s1, µ) . (3.5)

The correlation function can be computed directly as a function of (s, s1, µ), or rotated
into this basis from another parametrization, for instance in terms of (s1, s2, ŝ1 · ŝ2). We
have checked that both methods give identical results, and we will use them interchange-
ably according to our convenience. For comparison with previous we will more often work
in the (s1, s2, ŝ1 · ŝ2) basis. The latter has the advantage of retaining a simple form even
upon dropping the e↵ective redshift approximation.

So far we have not assume any theory of gravity and therefore this approach can be
applied to any metric theory of gravity. Now, for the rest of the manuscript we will adopt
General Relativity. Therefore, by using Einstein equations to relate metric and velocity
perturbation to the density fluctuation we can write the correlation function as a linear
combination of the functions

I
n
` (s) =

Z
dq

2⇡2
q
2
P (q)

j` (qs)

(qs)n
. (3.6)

Indeed the correlation function can be written as

⇠
AB (s1, s2, ŝ1 · ŝ2) =

Z
d
3
q

(2⇡)3
P (q)DA (q)DB (q) eiq·s

=

Z
dq

2⇡2
q
2
P (q)DA (q)DB (q) j0 (qs) (3.7)

where DA (k) is the di↵erential operator associated to the perturbation A. These dif-
ferential operators, acting on j0 (qs) will lead to the functions I

n
` . For the di↵erent

perturbations we have indeed

Dm (s1) ! D� = T� (s1) ,

v|| (s1) ! Dv|| =
TV (s1)

q2 @s1 , v||o ! Dv||o
= TV (0)

q2 @s1 |s1=0
,

V (s1) ! DV = TV (s1)
q2 , Vo ! DVo =

TV (0)

q2 ,

� (s1) ! D� = T�(s1)
q2 ,

 (s1) ! D = T (s1)
q2 ,  o ! D o =

T (0)
q2 ,

 ̇ (s1) ! D
�̇
=

T
 ̇
(s1)

q2 ,

�̇ (s1) ! D
�̇
=

T
�̇
(s1)

q2 .

(3.8)

Einstein gravity will constrain these transfer function and, in particular in the absence
of anisotropic stress, we have a single scalar degree of freedom. In this case the transfer
functions are given by [ED: the relation between T� and TV may look Newtonian. However
we need to remind that the density contrast Dm is defined in comoving gauge, while the
velocity in Newtonian gauge. If you think these equations may look confusing I can add
this to the text. They agree with eqs. (2.16-2.18) of Ref. [32]]

T� = b1D1 , (3.9)

TV = �HfD1 , (3.10)
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Figure 8: Here we are plotting the differences between cross-power spectrum dipole measure-
ments in the RayGalGroup simulation between different redshift definitions (see eqs. 4.1 - 4.6,
dashed lines with markers). The measurement in the simulations is compared to the PT-based
model we discussed in section 3 (solid lines). The colors correspond to different combinations
of the halo mass-selected sub-samples. The plot on the top left shows the potential term,
obtained by taking the differences between the cross-power spectrum dipoles measured using
the redshift and angle definitions (z1,�) and (z0,�), respectively. The plot on the top right
shows the Doppler term, which carries by far the largest signal in these simulations. The
middle left plot shows the transverse Doppler term and the plot on the middle right shows
the ISW contribution. The bottom row shows the lensing term using (z0, ✓)� (z0,�) on the
left and the residual obtained through (z5, ✓)� (z4, ✓) on the right.
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ED & Seljak, ED & Beutler

Beutler & ED

DESI Forecast

Figure 10: The cumulative signal-to-noise for the cross-correlation of two DESI-BGS sub-
samples. The solid yellow line shows the reference model with a density 1/10 of the nominal
BGS density and �b1 = 1 (see other assumptions listed in section 7.2). The plots also include
a case with only linear contributions to the signal and variance (dashed yellow line), a case
with 2 times higher density for both sub-samples (solid red line), a case with �b1 = 2 (solid
green line), a case where the EFT parameter is set to �2

0 = 0 (solid magenta line) and a case
where the BGS sample only covers 9000 deg2 (solid brown line). Left: The cumulative signal-
to-noise as a function of kmax. Right: The same signal-to-noise calculation as a function of
redshift, assuming kmax = 0.1hMpc�1.

The EFT parameter �2
0 contributes to the signal-to-noise at high k. Setting it to �2

0 = 0
rather than the default �2

0 given by eq. (3.74), increases the signal-to-noise from 4.4� to 5.8�
at kmax = 0.1hMpc�1. For higher k, a larger EFT parameter leads to a larger signal-to-noise
as shown by the solid magenta line in figure 10. We note, however, that our forecasts include
the even multipole contributions to the covariance only at linear order, therefore we might
underestimate the covariance at small scales when linear even multipoles do not agree with
simulations (see figure 7).

While we consider our reference forecasts outlined in the 9 points above as conservative,
we also want to investigate two cases, which we consider our worst-case scenarios. First, we
consider a smaller sky coverage of the BGS sample. The sky coverage of the BGS depends
on the redshift efficiency of the DESI instrument during gray time 9, which is still uncertain.
Reducing the nominal BGS sky coverage from 14 000 deg2 to 9000 deg2 leads to a reduction of
the signal-to-noise from 4.4� to 3.5� (solid brown line in figure 10). A second case considers
the largest scales included in the analysis. The Doppler signal is located on very small k
with a peak around k = 0.01hMpc�1. The default kmin = 0.001hMpc�1 might be difficult
to achieve due to the small volume of the sample. However, using kmin = 0.01hMpc�1

instead only reduces the signal-to-noise from 4.4� to 4.2�, since sample variance limits the
large scale contributions to the total signal-to-noise. The fact that our analysis does not
rely on extremely large scales, does make it less sensitive to observational systematics. It
also implies that assumption 9 listed above (independent redshift bins) should have a small
impact. Indeed, repeating the analysis with �z = 0.1 only reduces the signal-to-noise from
4.4� to 4.2� 10.

9
The BGS sample will take the twilight observing timeslots.

10
Here we expect the redshift correlation as well as the signal evolution within the redshift bin to contribute

to the reduction of the signal-to-noise.
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 GaPSE 
(Galaxy Power Spectrum Estimator)

soon publicly available

all these effects are 
relevant at the largest 

scales

Fast and accurate numerical code to compute  for 
galaxy number counts and luminosity distance including:

✓all relativistic effects

✓window function

✓wide-angle effects

✓primordial local non-gaussianity (scale-dependent bias)
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[in preparation]
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