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CERN TH Astroparticle/Cosmology

Strong scientific interactions with BSM group

Staff Welcome! Fellow Staff Welcome!

CAPUTO, DI DIO, DOMCKE, ESCUDERO ABENZA,

CAPRINI,
Chiara Andrea Enea Valerie Miguel
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Azadeh Mauro Fabrizio Marko



CERN TH Astroparticle/Cosmology

Strong scientific interactions with BSM group

Long term visitor Long term visitor Long term visitor

BRAX, LEE, PRADLER,

Philippe Sung Mook Josef

BSM group presentations

BRDAR, CHOI, KOPP, GEHRLEIN,

Vedran Gongjun Joachim Julia



CERN TH Astroparticle/Cosmology

Group meetings

Mondays at 16:00: cosmo ice cream, ~15 minute black board talk by a
group member, in the TH common room

Tuesdays at 11:30: BSM/cosmo journal club, new! Organised by Miguel
and Julia, TH common room

Wednesdays at 11:30: cosmo coffee, weekly seminar by external speakers,
TH common room

Every second Tuesday of each month at 15:00: GW CERN UniGE meeting,
zoom

- Dec 14th, special day at CERN: cosmo coffee by John Ellis on GW
searches with atom interferometry; TH Colloquium by Michele
Maggiore on the Einstein Telescope; afternoon discussion

TH Institute: “New physics from galaxy clustering”, 21-25 Nov, Marko
Simonovic

Cosmo skype group
All welcome to join!



CERN TH Astroparticle/Cosmology

Using astrophysical and cosmological observations

Primordial universe

* test of high energy
phenomena and
particle physics

e initial conditions

e unification of forces,
Planck scale

to probe fundamental physics

Recombination and CMB
e confirmation of Big Bang theory, birth of modern cosmology

HISTORY OF THE UNIVERSE

Accelerators

Inflation
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Recent universe

e test of gravity at
large scales

e lJate time
acceleration

e dark matter

e high energy
emissions



CERN TH Astroparticle/Cosmology

e Astrophysical and cosmological observations provide evidence of physics
beyond standard theories - standard model, general relativity

- Late time acceleration: cosmological constant, dark energy, modified
gravity - Enea, Marko...

- Existence and nature of dark matter: mass? interactions? cosmic
structure? - Andrea, Fabrizio, Miguel...

- Neutrino masses and properties - Miguel...
- Baryon asymmetry (BSM physics, lepton sector...) - Miguel, Valerie...

- Inflation (Single field? Interactions? Potential? Observational signatures?
Smoking gun?) - Azadeh, Marko, Mauro, Valerie...



CERN TH Astroparticle/Cosmology

e Astrophysical and cosmological observations provide evidence of physics
beyond standard theories - standard model, general relativity

 The evidence is compelling but “indirect”: inferring theories from
observations is sometimes challenging
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CERN TH Astroparticle/Cosmology

e Astrophysical and cosmological observations provide evidence of physics
beyond standard theories - standard model, general relativity

 The evidence is compelling but “indirect”: inferring theories from
observations is sometimes challenging

 Good news: the messengers have doubled relatively recently: traditionally
electromagnetic waves, cosmic rays; added high energy neutrinos,
gravitational waves

Andrea, Azadeh, CC, Fabrizio, Mauro, Valerie...
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GW emission from the inspiral of a binary system
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GW emission from the inspiral of a binary system

M.=25M, 7=02sec — f=37Hz
M.=12My 7=30sec — f =38Hz
M.,=25My 7=10year — f=0.01Hz
M,=10°My 7=1lhor — f=1mHz
M,=10"My, 7=10°year — f=7-10""Hgz
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The Gravitational Wave Spectrum

- Stochastic background from the early universe
>
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Stochastic gravitational wave background

the superposition of sources that cannot be resolved individually
 binaries too numerous and with too low SNR to be individually identified

e signals from the primordial universe with too small correlation scale
(typically horizon at the time of production) with respect to the detector

resolution
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Potential of GW detectors to probe the primordial universe
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Which energy scales in the universe can one potentially access
with GWs compared to usual cosmological observables?

TH COSMO

reheating, baryogenesis, phase group!

transitions, dark matter...

High- Earth-
freq based LIISA PTA
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The far-reaching scientific potential of GW observations

GW direct detection from Earth is a great theoretical and experimental achievement,
providing observational access to many new physical phenomena

Astrophysics:
- Discovery of unexpected astrophysical objects (black hole binaries...)
- Provide information on their population and characteristics
- Enlighten astrophysical phenomena (fast gamma-ray bursts, Active Galactic Nuclei,
supernovae explosions...)
- Probe the galaxy and galactic centres environment

Fundamental physics:
- Test General Relativity in the strong field regime (Post Newtonian terms, tests of the
horizon, GW polarisations, space-time around black holes...)
- Test of General Relativity at cosmological scales (GW propagation, GW lensing...)
- High energy and beyond the standard model physics (phase transitions: Electroweak
scale, QCD scale, cosmic strings; Inflation...)
- Matter in extreme conditions (neutron stars equation of state, elements synthesis...)

Cosmology:
- Expansion of the universe, dark energy
- Nature of Dark Matter (Primordial Black Holes, black holes accretion...)
- Cosmological structure formation, galaxy mergers
- Early universe before recombination in general

Data Analysis (Matched filtering, noise and foreground subtraction, machine learning...)
Detectors (stabilisation, cryogeny, quantum limits, free fall, atom interferometry...)



University of Oxford (Ph.D.) -> University of Geneva (postdoc) ->
CNRS researcher at CEA Saclay and APC Paris -> shared
position CERN/UniGE, on leave from CNRS

Cosmology with Gravitational Waves,
in particular with LISA
the future space-based interferometer T AU (150 millon k) )
Sun

e Coordinator of the Science Investigation Working Group within the LISA
Consortium

 Founder of the LISA Cosmology Working Group

* Counselling activity for European Space Agency: Astronomy Working
Group, Mission selections (member for M5, coordinator for M/F)

e Co-organiser of TH Colloquium together with Samuel and Sasha

e Co-organiser of GW CERN-UniGE meetings together with Valerie



The potential of space-based GW detection: LISA
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The potential of space-based GW detection: LISA

1071 e
: ~ Galactic Background

I SHBs at z =3

lon Binaries |-

onth
10" ¢

E 10Nics
LIGO-typeN@IDBs
0PMe | — GW150914
- Gal. Bin. (

18|
107 .

- ' ‘
-1 ; N L B A RN r y

) — ' B = 04 . AT 2
o % ML " - ‘,' 1 WATAA W
= e U ol 1 AT R~ el ™ g2 ol .

o DN - RO BN SL % AR al T "
o A ) i { 0 - w'h B8 e <

P, b AL, TR

9 L% ) » ; n

Characteristic Strain

10-20 ?

102"}

10

LISA collabors



Example of my contribution: EM counterparts to MBHB in LISA

EM counterparts are few and cluster at redshift 2 <z < 5
their number depends heavily on the astrophysical generation model
and on the possible EM detection channel

Pop3 Q3d Q3nd
. Total I~ 21 MMcand-min
1~ 1 -~ EI 1iINl\I/I{ > (110 | Exci-mflx 3
1] LI cand-max Ccp-min
E 10" - E 10" E
3 3 3
£ £ £
2 100 2 10° 2
O O O - I o
P o & Fam (] !
'63 33 B 1= 1t __r| I -‘—I
< 10-! < 10! Zi1f ] “':j; |
[N I 1
0O 2 4 6 8 10 12 14 12 14 0O 2 4 6 8 10 12 14
Z Z Z
Rubin SKA+ELT Athena+ELT
: Catalogue Eddington
o L G o6 A e
AQ = 10 deg? AQ = 0.4deg® | AQ =2deg? |AQ = 0.4deg? | AQ = 2deg?
0.84 6.4 1.51]0.04 0.49 0.27 1.02 0.84 Pop3
No-obsc.| 3.07 14.8 2.71(0.04 2.67 1.38 3.87 2:13 Q3d
0.53 20.3 3.2 (0.04 0.58 0.31 4.4 3.24 Q3nd
0.13 6.4 1.51]0.04 0.04 0.04 0.13 0.17 Pop3
Obsc. | 0.75 14.8 2.71(0.04 0.22 0.13 0.18 0.09 Q3d
0.35 20.3 3.2 10.04 0.18 0.04 0.27 0.31 Q3nd
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The potential of space-based GW detection: LISA
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The potential of space-based GW detection: LISA

Example of my contribution:
GWs from (magneto)hydrodynamic turbulence simulations
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How to define vorticity in the relativistic regime?

P. Auclair, D. Cutting, M. Hindmarsh, A. Roper Pol, K. Rummukainen, D. Steer, D. Weir



The potential of space-based GW detection: LISA

One example of GW signal from the EW phase transition: “Higgs portal” scenario
Can be probed both at LISA and at the High Luminosity LHC

Attention! Old plot!
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Maybe a new discovery: Pulsar Timing Arrays

e There is a strong statistical support for the presence of a common red noise
 There is no evidence yet for a quadrupolar signal, stay tuned...
 Probable explanation: background signal from SMBHBs

Z. Arzoumanian et al, arXvi: 2009.04496,
B. Goncharov et al, arXiv:2107.12112, S.
Chen et al, arXiv:2110.13184
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Maybe a new discovery: Pulsar Timing Arrays

PTA (nHz) are sensitive to energy scales around the QCD scale, so they can probe
physical processes connected to the QCDPT

It is compatible with the GW generated by
fully developed MHD turbulence at the QCD scale
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Thank you for your attention



