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Broad interest: [ Fundamental Physics ]

In particular, in open problems in Cosmology:

Dark Matter Baryogenesis Neutrino Cosmology

B B

But also: Flavour physics, dark energy, global symmetry breaking

| enjoy working at the interface between particle physics and cosmology

Theoretical perspective but at the boundary with laboratory and cosmological data

Colliders DM Experiments BBN CMB
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Shown that the mechanism is fully testable at current collider experiments
Alonso-Alvarez, Elor & M.E. 21’

The signals we proposed are currently being searched for with old data from Belle and BaBar (see Belle :
PRD 105 (2022) L051101). Belle-ll and LHCb are considering performing analogous searches! & 5


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.L051101
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.L051101
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—Studied the phenomenology and cosmology of an array of dark matter models: Sterile Neutrinos
Axions

Currently studying the cosmological consequences of Axion Stars
Blas, Du, M.E., Fairbairn, Marsh & Pooni 22’ (to appear soon)

Numerical simulations show

that at the center of each The mass of this ax_ion
axion-like dark matter halo star is correlated with
there should be a very dense O the mass of the halo!
axionic soliton: Schive et al. 2014

An Axion Star

These axion stars would be the densest axion environments in the a
Universe. This can stimulate processes that do not occur in vacuum! . _.....

Such as axion decay into photons.

Such decays will happen during the dark ages at z > 20 and could reionize the Universe.
Something which Planck data constraints for m, ~ 107 *eV — 10712eV
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Why?

© Neutrino masses are the only laboratory evidence of physics
beyond the Standard Model

Use neutrinos to understand open problems in cosmology

@ Neutrinos are ubiquitous in Cosmology

Neutrinos

Photons

Use cosmological data to understand their properties
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For example, for a majoron with My ~ eV Planck data constraints the

scale of SSB to be f > 1 TeV in the singlet majoron model
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Primordial lepton asymmetries
M.E., Ibarra & Maura 22’
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Revisited the process of neutrino decoupling in the early Universe.
New method to calculate V. in the Standard Model and beyond:

M.E. 20’ currently working on neutrino decoupling in
M.E. 21’ [ Nesflfv[ — 3-044(1)] the presence of large lepton asymmetries with
T Valerie Domcke and Mario Fernandez Navarro
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They are a bit exotic, but if a neutrino mass were to be detected in the
laboratory then we will need to drastically change our cosmological model!
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— Either we set the absolute neutrino mass scale or we need to
drastically change our cosmological model. Both are exciting to me!

— Use incoming cosmological data to test neutrino properties
— How can we directly detect the Cosmic Neutrino Background?

Beyond:

| love discussing physics and | will be happy to start new projects in other
fronts!! Including other aspects of early Universe cosmology, GWs, theory,
flavor physics ...

In this context: BSM/Cosmo JC Tuesdays at 11:30 in the TH common room
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