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Where do we stand in our understanding of jet-QGP interactions?
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First measurements by the ALICE Collaboration
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Goal: describe this data through pQCD techniques
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A precise vacuum benchmark is fundamental 
for any interpretation of Pb+Pb data
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Jet substructure and resummation in heavy-ions: SoftDrop
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Jet substructure calculations in the medium are still in their infancy

First measurements by the ALICE Collaboration
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Goal: describe this data through pQCD techniques

0 0.2 0.4 0.6 0.8 1

gθ

1

2

3

4

5

6

g
θdσd  

je
t, 

in
c

σ
1

ALICE Preliminary
 = 5.02 TeVspp 

TkCharged jets   anti-
| < 0.5

jet
η = 0.4   | R

c < 80 GeV/
T, ch jet

p60 < 
 = 0.1aDynamical Grooming: 
 = 1.0aDynamical Grooming: 
 = 2.0aDynamical Grooming: 

Sys. uncertainty
PYTHIA8 Monash 2013

0 0.1 0.2 0.3 gR

0 0.2 0.4 0.6 0.8 1

gθ

0
0.5

1
1.5

PY
TH

IA
D

at
a

ALI-PREL-352108

0 0.1 0.2 0.3 0.4 0.5

gz

2

4

6

8

10

gzdσd  
je

t, 
in

c
σ

1

ALICE Preliminary
 = 5.02 TeVspp 

TkCharged jets   anti-
| < 0.5

jet
η = 0.4   | R

c < 80 GeV/
T, ch jet

p60 < 
 = 0.1aDynamical Grooming: 
 = 1.0aDynamical Grooming: 
 = 2.0aDynamical Grooming: 

Sys. uncertainty
PYTHIA8 Monash 2013

0 0.1 0.2 0.3 0.4 0.5
gz

0
0.5

1
1.5

PY
TH

IA
D

at
a

ALI-PREL-352113

10°2

10°1

100

1/
N

je
ts

dN
/d

k T
(G

eV
/c

)°
1 ALICE Preliminary

pp
p

s = 5.02 TeV
Anti-kT charged jets
R = 0.4, |¥jet| < 0.5

60 < pch
T,ch jet < 80 GeV/c

kTDrop

timeDrop

Leading kT

Leading kT z > 0.2

0 1 2 3 4 5 6 7 8
kT (GeV/c)

0.6
0.8
1.0
1.2
1.4

D
at

a
Le

ad
in

g
k T

z

1−z
kt ∼ zpTθθ

[2009.07172, 2009.12247]



Where do we stand in our understanding of jet-QGP interactions?
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vacuum splittings

Q, T, λQCD, μD, ̂q…

z

1 − z
θ tvac

f ≈ (zθ2)−1

transverse momentum broadening ⟨kt,f⟩ = ̂qtf → tmed
f =

2ω
̂q

tf ≪ tmed
f

dPvac =
αsCi

2π
dz
z

dθ
θ

tmed
f

[Caucal et al. PRL 120 (2018) 232001]
[Expanding media: Caucal et al. JHEP 04 (2021) 209]

Jet evolution in the medium is a multi-scale process: 

At double-log accuracy, in-medium, vacuum-like emissions must satisfy



Where do we stand in our understanding of jet-QGP interactions?
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pt

L

: vacuum splittings : medium induced splittings : energy loss
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How can we test this (DLA) description of the in-medium jet evolution?
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My approach to the problem: dynamical grooming as an example
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[Mehtar-Tani, ASO, Tywoniuk PRD 101 (2020) 3, 034004]

κ(a) =
1
pT

max
i∈C/A

zi(1 − zi)pT,i(θi/R)a

e.g.              largest-kt

search for Molière scattering

1
σ

dσ
dkt,g

∝ k−4
t

a = 1 →

Find hardest splitting in the jet

1 Extend pp ideas to a heavy-ion context



My approach to the problem: dynamical grooming as an example
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[Caucal, ASO, Takacs JHEP 07 (2021) 020]2

Measurements of the groomed jet radius and groomed splitting fraction ALICE Collaboration
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Figure 7: ALICE measurements of zg distributions in pp collisions at
p

s = 5.02 TeV with dynamical grooming
for two values of the grooming parameter a, compared with pQCD calculations [16, 18].
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Figure 8: ALICE measurements of qg distributions in pp collisions at
p

s = 5.02 TeV with dynamical grooming
for two values of the grooming parameter a, compared with pQCD calculations [16, 18].

surement of a jet substructure observable with the dynamical grooming procedure. We compared these
results to perturbative calculations that include resummation of large logarithms at all orders in the strong
coupling constant, and generally found agreement of the theoretical predictions with the data in the per-
turbative regime. This conclusion holds for all grooming settings considered. However, the soft drop
qg distributions increasingly deviate from the perturbative calculations at small qg as the grooming pa-
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ALICE pt reach prevents a pure pQCD description of the data

Understand its resummation structure in vacuum



My approach to the problem: dynamical grooming as an example
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differential energy loss results into a sharp transition in the
distributions at ✓c.

4. Path-length fluctuations

So far, we assumed that the medium is a homoge-
neous brick of fixed length. In this section we discuss
how to extend our toy theoretical model to account for
the fact that in a realistic heavy-ion collision the hard
scattering that produces the jet can take place anywhere
inside the geometric overlap area between the two col-
liding nuclei.

Note that our homogenous brick model also ignores
the rapid expansion of the medium and the fluctuations
of q̂ along different path lengths. Regarding the expan-
sion of the medium, previous studies showed that a sim-
ple Bjorken-like expansion of the medium is well cap-
tured by rescaling the jet quenching parameter q̂ of a ho-
mogeneous brick [80, 81], q̂ ⌘ ||q̂(t)||1/2, where ||f(t)||1/2
stands for the 1/2-norm of the function f(t) with com-
pact support. This scaling is a consequence of the local
nature of the medium-induced emissions in the multi-
ple soft scattering regime ! ⌧ !c.6 Since we do not
consider medium-induced emissions harder than !c, we
invoke this scaling to extend our results to the Bjorken
expansion case. Beyond the purely longitudinal expan-
sion scenario, a simple rescaling of q̂ does not capture
the medium dynamics. Overall, the impact of a more re-
alistic medium description will be studied numerically
in Sec. III.

We point out that this scaling applies for the medium-
induced emission process for which we can invoke the

6 This scaling is therefore distinct from the one discovered in Ref. [82]
that works for processes dominated by the most energetic medium-
induced emissions (! ⇠ !c). As shown in Ref. [81], it is also violated
by VLEs via a change of the phase space boundaries that we neglect
in this study.

argument of locality. It is not the case for ✓c, since this
angular scale comes from the decoherence of a color sin-
glet dipole traveling through the medium over a dis-
tance L. However, ✓c also obeys an approximate scal-
ing law that relates static and expanding medium which
amounts to the modification q̂ ! q̂(L) in the definition
of ✓c [81]. For a Bjorken expansion, this re-scaling of q̂
differs from a factor of 2 w.r.t. to the rescaling of q̂ that
describes medium-induced emissions. Since at DLA,
we do not control overall pre-factors, we decided not
to study this alternative scaling for the VLE phase space
in our qualitative analysis.

To capture the fluctuation in the path length of the jet
for central collisions, we propose the following model:
(i) the interaction region is approximated by a circle of
radius R = 4 fm around the center of the collision, (ii)
random (x, y) coordinates of hard scatterings are sam-
pled uniformly in the interaction region, (iii) each cre-
ation point is connected with a hard-scattering leading-
order matrix element from Pythia8 [83] (Monash13
tune [84]) in proton-proton collisions, assigning the 4-
momenta of the outgoing legs and (iv) the path lengths
are determined by the intersection of the path with the
edge of the interaction region. The distribution of the
resulted path lengths is shown in the left panel of Fig. 7,
centered around 4 fm, however, hLi = 3.75 fm due to the
asymmetry of the distribution. Even though this model
is over-simplistic, it is sufficient to qualitatively under-
stand the effects of the path length fluctuations on the
✓g distribution. More precise phenomenology would re-
quire to account for the nuclear thickness function and
the precise shape of the interaction region across various
centrality classes similar to Ref. [58].

The ✓g-distribution obtained with the medium-
induced branching kernel, see Eq. (17), and a fluctuat-
ing path length is presented in the right panel of Fig. 7.
The ratio to the average L result is displayed in the bot-
tom panel. The enhancement of large ✓g values is rooted
in the asymmetric nature of the path-length distribu-
tion, see left panel of Fig. 7. More concretely, shorter
than average path-lengths are more probable. This auto-
matically translates into a distribution of ✓c values that
tend to be larger than average due to the ✓c / L�3/2

scaling. Consequently, the ✓g distribution gets broader
when path length fluctuations are included.

C. Final theoretical results

Finally, we present our theoretical curves including all
the ingredients discussed in the previous paragraphs in
Fig. 8. Compared to Fig. 6, we observe that the main
effect of introducing the path length fluctuations is to
smoothen the transition (peak) around the critical an-
gle ✓c. Consequently, the peak of the medium modified
✓g distribution is shifted towards slightly smaller values
of the opening angle, however the peak still persists. It

[Caucal, ASO, Takacs PRD 105 (2022) 11, 114046]3
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Can we access the QGP resolution angle,   , with dynamical grooming?
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Pier Monni

A quasi-pure approach to investigate underlying event
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PanScales NLL showers including heavy quarks
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Lund multiplicity for QCD jets
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