

4C analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

L. SAVOLDI RICHARD[#], R. BONIFETTO[#], Y. CHU[&], A. KHOLIA[#], **S.H. PARK&, H.J. LEE&, R. ZANINO#**

#Dipartimento di Energetica, Politecnico di Torino, Italy &National Fusion Research Institute, Daejeon, Korea

- Introduction
- The KSTAR PF1 coil
- Scenario
- Simulation strategy
- Simulation results and comparison with experiment
- Conclusions and perspective

Introduction

- The KSTAR tokamak is operating since 2008 at the National Fusion Research Institute in Korea.
- KSTAR is equipped with a full superconducting magnet system including the central solenoid (CS) made of four pairs of coils (PF1L/U-PF4L/U)
- The coils are pancake-wound using $Nb₃Sn$ CICC, cooled with SHe in forced flow at ~4.5 K and ~5.5 bar inlet conditions.
- In the KSTAR campaigns, **a higher temperature rise than estimated was observed in the CS during current pulses** – dedicated tests were performed
- Here we analyze a thermal-hydraulic transient due to AC losses in the PF1L/U coils with the 4C code

rcı

тc

тc

KSTAR PF1 conductors & coil

Hydraulic circuit of KSTAR PF1 coils

Scenario

• Runs analyzed here from 2011 campaign: 1 kA/s up to 15 kA; 5 s plateau; 0.5 - 1 - 2 - 4 - 6 kA/s down **in PF1L/U only**

6

• 2 main peaks in all outlet T signals

The 4C model

Quasi-3D FE model of the **structures** : casing, radial plates,

…

[L. Savoldi Richard, F. Casella, B. Fiori and R. Zanino, *Cryogenics* **50** (2010) 167-176]

Cryogenic circuit (winding + casing cooling channels) 0D/1D model: Pumps, valves, HX, cryolines, LHe bath, …

lational Fusion Research Institute

4C validation and application (so far)

Model of AC losses in PF1

• Hysteresis losses in SC

$$
Q_{hys} = \frac{2}{3\pi} J_c d_{\text{eff}} \left| \frac{dB}{dt} \right| A_{\text{non-cu}} \quad (\text{W/m})
$$

- Coupling losses in SC strands $Q_{cp} = \frac{n \tau_{cp}}{\mu_0} \left(\frac{dB}{dt}\right)^2 \left\{1 - \frac{\tau_{cp}}{\tau_m} \left[1 - \exp(-\tau_m / \tau_{cp})\right]\right\} A_{st}$ (W/m)
- *Eddy currents in jacket and Cu strands accounted for (but small)*
- *Hysteresis losses in jacket neglected*

- 1. Evaluate **hysteresis** losses from available experimental data
- 2. Introduce PF1 simplified **circuit** model find suitable $n\tau$ to best fit experimental data (1st peak in Tout) **in PF1 1kA/s-1kA/s scenario**
	- 3. Assess effect of inter-turn/inter-pancake (ITIP) thermal coupling on 2nd peak in T_{out}^{max}
	- 4. Freeze nt and check the model in the other PF1 scenarios

4C simulation assumptions (I)

• All 10 channels and their thermal coupling simultaneously accounted for

•Ground insulation / outer shell (structures) neglected •External (radiation /conduction) heat loads neglected

 0.06

0.055

0.05

0.045

0.04

2000

4000

13

• Friction factor derived from end-of-cool-down data

equally split between channels

n

Stady state

6000

Re

8000

Shot #2524 (beg.)

Shot #2524 (end)

4C simulation assumptions (II)

Evaluation of hysteresis losses(I)

- Hysteresis losses measured on KSTAR Nb3Sn **strand**
- Average hysteresis loss within 200- 250 mJ/cc $@ +/- 3T$
- On PF1 chan8 the fit gives \sim 300 J for the AC loss scenarios analyzed here
- Formula for Q_{hys} gives similar result

Evaluation of hysteresis losses(II)

- Hysteresis loss estimated from the extrapolation of experiment results (calorimetry) at zero current ramp rate
- Result on chan8 here is about 2.400 J (upper bound)

Circuit model

Very simplified circuit model introduced to account for pressure rise at boundaries – PF2-7 in parallel are NOT accounted for **T**_{out} (central

16

Calibration of nt **(I)** (**PF1** -1**kA/s-1kA/s**)

- Perform scan in $n\tau$
- Find optimum $n\tau$ that, during the current pulse, minimizes

$$
<\frac{\left|T_{comp}\left(t\right)-T_{exp}\left(t\right)\right|}{T_{exp}\left(t\right)}>
$$

over different thermometers

Calibration of nt **(II)** (**PF1** -1**kA/s-1kA/s**)

Calibration of nt **(III)** (**PF1** -1**kA/s-1kA/s**)

tesearch Institute

Effect of the ITIP coupling on the 2nd peak 1st peak almost

Effect of circuit

• Smoothing effect of outlet manifold needed to reproduce temperature evolution
 $6.4 \rightarrow 6.4$

Summary of results (all shots)

1 kA/s – 6 kA/s

- A first analysis of a set of trapezoidal scenarios in the KSTAR PF1 coils has been performed with 4C
- At low ramp rates, 0.5-2 kA/s, $n\tau = n\tau_{\text{opt}}$ leads to very good agreement in the temperature signal at the coil outlet; other measured signals are also reproduced with acceptable qualitative agreement
- At higher ramp rates, 4-6 kA/s, $n\tau = n\tau_{\text{opt}}$ leads to overestimate the temperature at the coil outlet
- In all cases $n\tau_{opt}$ >> $n\tau_{design} = 60$ ms
- More detailed circuit modeling and AC loss analysis will be performed to confirm these results

