

4C analysis of thermal-hydraulic transients in the KSTAR PF1 superconducting coil

L. SAVOLDI RICHARD[#], R. BONIFETTO[#], Y. CHU[&], A. KHOLIA[#], S.H. PARK[&], H.J. LEE[&], R. ZANINO[#]

[#]Dipartimento di Energetica, Politecnico di Torino, Italy [&]National Fusion Research Institute, Daejeon, Korea

- Introduction
- The KSTAR PF1 coil
- Scenario
- Simulation strategy
- Simulation results and comparison with experiment
- Conclusions and perspective

Introduction

- The KSTAR tokamak is operating since 2008 at the National Fusion Research Institute in Korea.
- KSTAR is equipped with a full superconducting magnet system including the central solenoid (CS) made of four pairs of coils (PF1L/U-PF4L/U)
- The coils are pancake-wound using Nb₃Sn CICC, cooled with SHe in forced flow at ~4.5 K and ~5.5 bar inlet conditions.
- In the KSTAR campaigns, a higher temperature rise than estimated was observed in the CS during current pulses – dedicated tests were performed
- Here we analyze a thermal-hydraulic transient due to AC losses in the PF1L/U coils with the 4C code

KSTAR PF1 conductors & coil

			Superconductor	Nb ₃ Sn
			Cable pattern	$3 \times 4 \times 5 \times 6$
			SC / Cu strands	240/120
			Strand diameter (mm)	0.78
CUR06		Channel 10	Conduit material	Incoloy 908
CUR05		Channel 9	Void fraction (%)	32.7
TCUR04		Channel 7 Channel 7	Channel hydraulic length (m)	64.5
TCUR03		Channel 5 Channel 4	Coil made of 10 double-pa	ancakes
TCUR02		Channel 3 Channel 2	(channels)	
TCUR01		Channel 1		
		L1_MHL_TCUS00		4

Hydraulic circuit of KSTAR PF1 coils

Scenario

Runs analyzed here from 2011 campaign: 1 kA/s up to 15 kA; 5 s plateau; 0.5 - 1 - 2 - 4 - 6 kA/s down in PF1L/U only

6

• 2 main peaks in all outlet T signals

The 4C model

Quasi-3D FE model of the **structures** : casing, radial plates, [L. Savoldi Richard, F.Casella, B. Fiori and R.Zanino, *Cryogenics* 50 (2010) 167-176]

Cryogenic circuit (winding + casing cooling channels) 0D/1D model: Pumps, valves, HX, cryolines, LHe bath, ...

National Fusion Research Institute

4C validation and application (so far)

Model of AC losses in PF1

• Hysteresis losses in SC

$$Q_{hys} = \frac{2}{3\pi} J_c d_{eff} \left| \frac{dB}{dt} \right| A_{non_cu} \quad (W/m)$$

- Coupling losses in SC strands $Q_{cp} = \frac{n \tau_{cp}}{\mu_0} \left(\frac{dB}{dt}\right)^2 \left\{ 1 - \frac{\tau_{cp}}{\tau_m} [1 - \exp(-\tau_m / \tau_{cp})] \right\} A_{st} \quad (W/m)$
- Eddy currents in jacket and Cu strands accounted for (but small)
- Hysteresis losses in jacket neglected

- 1. Evaluate **hysteresis** losses from available experimental data
- 2. Introduce PF1 simplified **circuit** model \rightarrow find suitable n τ to best fit experimental data (1st peak in T_{out}) **in PF1 1kA/s-1kA/s scenario**
 - Assess effect of inter-turn/inter-pancake (ITIP) thermal coupling on 2nd peak in T_{out}^{max}
 - 4. Freeze $n\tau$ and check the model in the other PF1 scenarios

4C simulation assumptions (I)

 All 10 channels and their thermal coupling simultaneously accounted for

Ground insulation / outer shell (structures) neglected
External (radiation /conduction) heat loads neglected

③ Turn Insulation

- 4C simulation assumptions (II)
- Assume mass flow rate equally split between channels

 Friction factor derived from end-of-cool-down data

Evaluation of hysteresis losses(I)

- Hysteresis losses measured on KSTAR Nb3Sn strand
- Average hysteresis loss within 200- 250 mJ/cc @ +/- 3T
- On PF1 chan8 the fit gives ~ 300 J for the AC loss scenarios analyzed here
- Formula for Q_{hys} gives similar result

Evaluation of hysteresis losses(II)

- Hysteresis loss estimated from the extrapolation of experiment results (calorimetry) at zero current ramp rate
- Result on chan8 here is about 2.400 J (upper bound)

Circuit model

Very simplified circuit model introduced to account for pressure rise at boundaries – PF2-7 in parallel are NOT accounted for

16

Calibration of nτ (I) (PF1 –1kA/s-1kA/s)

- Perform scan in nτ
- Find optimum nτ that, <u>during the</u> <u>current pulse</u>, minimizes

$$< \frac{\left|T_{comp}\left(t\right) - T_{exp}\left(t\right)\right|}{T_{exp}\left(t\right)} >$$

over different thermometers

Calibration of nτ (II) (PF1 –1kA/s-1kA/s)

Calibration of nτ (III) (PF1 –1kA/s-1kA/s)

Effect of the ITIP coupling 1st peak almost On the 2nd peak

Research Institute

Effect of circuit

 Smoothing effect of outlet manifold needed to reproduce temperature evolution

1 kA/s – 6 kA/s

- A first analysis of a set of trapezoidal scenarios in the KSTAR PF1 coils has been performed with 4C
- At low ramp rates, 0.5-2 kA/s, $n\tau = n\tau_{opt}$ leads to very good agreement in the temperature signal at the coil outlet; other measured signals are also reproduced with acceptable qualitative agreement
- At higher ramp rates, 4-6 kA/s, $n\tau = n\tau_{opt}$ leads to overestimate the temperature at the coil outlet
- In all cases $n\tau_{opt} >> n\tau_{design} = 60 \text{ ms}$
- More detailed circuit modeling and AC loss analysis will be performed to confirm these results

