

Numerical study of the thermal behavior of an Nb3Sn high field magnet in He II

Slawomir PIETROWICZ, Bertrand BAUDOUY

CEA Saclay Irfu, SACM 91191 Gif-sur-Yvette Cedex, France

slawomir.pietrowicz@cea.fr

CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

□ Motivation

- \Box Two fluid model
- □ Simplified model of He II
- ▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

- ◦Description of Fresca II magnet;
- ◦3D computational region, assumption and boundary conditions;
- ◦Mesh;
- ◦Numerical results.

Unsteady state modeling

 \Box Modeling of thermal process during quench heating $-$ unsteady state model

- ◦Geometry and mesh;
- ◦Numerical results.

Outline

□ Motivation

▫Two – fluid model ▫Simplified model of He II

▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

◦Description of Fresca II magnet;

◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

▫Modeling of thermal process during quench heating – unsteady state model

◦Geometry and mesh;

◦Numerical results.

 \Box Within the framework of the European project EuCARD, a Nb₃Sn high field accelerator magnet is under design to serve as a test bed for future high field magnets and to upgrade the vertical CERN cable test facility, *Fresca 2*.

Motivation

 \Box Calculation of the maximum temperature rise in the magnet during AC losses.

 \Box Calculation of magnet thermal – flow behavior during the quench detection event.

 \Box Implementation of superfluid helium in comercial software - ANSYS CFX software.

▫Motivation

\Box Two – fluid model

▫Simplified model of He II

▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

◦Description of Fresca II magnet;

◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

▫Modeling of thermal process during quench heating – unsteady state model

◦Geometry and mesh;

◦Numerical results.

Two – fluid model

 \Box Density of superfluid helium $\rho = \rho_n + \rho_s$ (1)

$$
\Box \text{ Density flux} \qquad \rho u = \rho_n u_n + \rho_s u_s \qquad (2)
$$

$$
\Box \text{ Continuity equation} \qquad \frac{\partial \rho}{\partial \tau} + \nabla \cdot (\rho_n u_n + \rho_s u_s) = 0 \qquad (3)
$$

▫Momentum equations for the total fluid $\frac{\partial}{\partial \tau}(\rho_n u_n + \rho_s u_s) = -\nabla \cdot (\rho_n u_n u_n + \rho_s u_s u_s) - \nabla p + \eta \left[\nabla^2 u_n + \frac{1}{3}\nabla^2 u_s\right]$ $\frac{1}{3}\nabla(\nabla\cdot u_n)\right] + \rho g$ (4)

\Box Momentum equations for the superfluid component

$$
\frac{\partial u_s}{\partial \tau} = -(u_s \cdot \nabla)u_s + s\nabla T - \frac{1}{\rho}\nabla p + \frac{\rho_n}{2\rho}\nabla |u_n - u_s|^2 + A\rho_n |u_n - u_s|^2 (u_n - u_s) + g \quad (5)
$$

\Box Entropy equation

$$
\frac{\partial}{\partial \tau}(\rho s) = -\nabla \cdot (\rho s u_n) + \frac{A \rho_n \rho_s |u_n - u_s|^4}{T} \tag{6}
$$

▫Motivation ▫Two – fluid model

□ Simplified model of He II

▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

◦Description of Fresca II magnet;

◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

▫Modeling of thermal process during quench heating – unsteady state model

◦Geometry and mesh;

◦Numerical results.

Simplified model of He II (Kitamura et al.)

\Box The momentum equations for the superfluid component is simplified to the form

$$
s\nabla T = -A\rho_n |u_n - u_s|^2 (u_n - u_s)
$$

(the thermomechanical effect term and the Gorter-Mellink mutual friction term are larger than the other)

Superfluid component:

$$
u_s = u - \frac{\rho_n}{\rho} (u_n - u_s) = u + \left(\frac{\rho_n^3 s}{A \rho^3 \rho_n |\nabla T|^2} \right)^{1/3} \nabla T
$$

Normal component:

$$
u_n = u + \frac{\rho_s}{\rho} (u_n - u_s) = u - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} \nabla T
$$

Momentum equation

$$
\rho \frac{\partial u}{\partial \tau} = -\rho (u \cdot \nabla) u - \nabla p - \nabla \cdot \left[\frac{\rho_n \rho_s}{\rho} \left(\frac{s}{A \rho_n |\nabla T|^2} \right)^{2/3} \nabla T \nabla T \right] + \eta \left[\nabla^2 u + \frac{1}{3} \nabla (\nabla \cdot u) - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2} \right)^{1/3} \left\{ \nabla^2 (\nabla T) + \frac{1}{3} \nabla (\nabla \cdot \nabla) T \right\} \right] + \rho g
$$

The system of equation for He II simplified model

▫Continuity equation

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \ u) = 0 \tag{1}
$$

▫Momentum equation:

$$
\rho \frac{\partial u}{\partial \tau} = -\rho (u \cdot \nabla) u - \nabla p - \nabla \cdot \left[\frac{\rho_n \rho_s}{\rho} \left(\frac{s}{A \rho_n |\nabla T|^2} \right)^{2/3} \nabla T \nabla T \right] +
$$

$$
\eta \left[\nabla^2 u + \frac{1}{3} \nabla (\nabla \cdot u) - \left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2} \right)^{1/3} \left\{ \nabla^2 (\nabla T) + \frac{1}{3} \nabla (\nabla \cdot \nabla) T \right\} \right] + \rho g \tag{2}
$$

where:

$$
\nabla \cdot \left[\frac{\rho_n \rho_s}{\rho} \left(\frac{s}{A \rho_n |\nabla T|^2} \right)^{2/3} \nabla T \nabla T \right] - \text{the conventional acceleration;}
$$
\n
$$
\left(\frac{\rho_s^3 s}{A \rho^3 \rho_n |\nabla T|^2} \right)^{1/3} \left\{ \nabla^2 (\nabla T) + \frac{1}{3} \nabla (\nabla \cdot \nabla) T \right\} - \text{the viscous effect.}
$$

▫Energy equation:

$$
\rho c_p \frac{\partial T}{\partial \tau} = -\rho c_p (u \cdot \nabla) T - \nabla \cdot \left\{ \left(\frac{1}{f(T) |\nabla T|^2} \right)^{1/3} \nabla T \right\}
$$
\n(3)

▫Motivation ▫Two – fluid model ▫Simplified model of He II

▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

- ◦Description of Fresca II magnet;
- ◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

▫Modeling of thermal process during quench heating – unsteady state model

- ◦Geometry and mesh;
- ◦Numerical results.

Validation of the simplified model

Boundary conditions

on left and right – adiabatic condition on the top $-$ constant temperature on the bottom – constant heat flux $q=const$

on all walls u_{\perp}

$$
= 0 \qquad \text{and} \qquad
$$

$$
\frac{\partial T}{\partial n} = 0
$$

T_b=1.95 K

$$
u_{\parallel} = \left(\frac{\rho_S^3 s}{A \rho^3 \rho_n |\nabla T|^2}\right)^{1/3} (\nabla T)_{\parallel}
$$

Validation of the simplified model

Temperature distribution in He II and solid (partially) domains for the temperature of 1.95 K and 0.70, 1.39 and 2.09 W/cm2 of heat fluxes at steady state condition

Validation of the simplified model

The velocity distribution and the streamlines of total velocity, superfluid and normal components in the region near the bottom and the top of He II domain for the highest heat flux of 2.09 W/cm²

The comparison between analytical and numerical maximum temperature for applied heat flux at the bottom of solid domain

One dimensional turbulent heat transport equation analitycal solution

$$
\dot{q} = \left(\frac{1}{f(T)|\nabla T|^2}\right)^{1/3} \nabla T
$$

The comparison between applied and calculated (from difference between normal and superfluid components) heat fluxes at the bottom and top of He II domain

Outline

▫Motivation

▫Two – fluid model

▫Simplified model of He II

▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

- ◦Description of Fresca II magnet;
- ◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

▫Modeling of thermal process during quench heating – unsteady state model

◦Geometry and mesh;

◦Numerical results.

Description of *Fresca II* magnet

MAGNET SPECIFICATION

- type: block coil, 156 conductors in one pole;
- free aperture: 100 mm;
- total length: 1600 mm;
- outside diameter: 1030 mm;
- magnetic field: 13 T;

OPERATING PARAMETERS

- coolant: superfluid and/or saturated helium;
- temperature: 1.9 K and/or 4.2 K;
- temperature operating margin: 5.84 at 1.9 K and 3.54 K at 4.2 K

3D computational region, assumption and boundary conditions

domains

▷

Assumptions

- Two types of boundary conditions:
	- 1. Constant bath temperature of 1.9 K on walls (red lines);
	- 2. Symmetry (yellow lines);
- Thermal conductivity as function of temperature;
- Perfect contact between solid elements;
- Calculations are carried out for CUDI model (AC loss due to ISCC losses, nonhomogenous spreads)
- He II between yoke and pad laminations $(200 \mu m)$

He II region

Mesh

Thermal conductivity of materials

Cryocomp Software v 3.06 Metalpak Software v 1.00

Numerical results

The distribution map of temperature in the magnet (the plane is located on symmetry of helium side)

S.Pietrow icz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Details of the temperature map in the conductors

Details of the temperature map in the conductor for solid model (S. Pietrowicz, B. Baudouy, *Thermal design of an Nb3Sn high field accelerator magnet, CEC Conference, 2011, Spokane, USA*)

Numerical results

Normal component

▫Motivation

- ▫Two fluid model
- ▫Simplified model of He II
- ▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

- ◦Description of Fresca II magnet;
- ◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

 \Box Modeling of thermal process during quench heating $-$ unsteady state model

- ◦Geometry and mesh;
- ◦Numerical results.

Modeling of thermal process during quench heating – unsteady state model

Assumptions

- Two types of boundary conditions:
	- 1. Constant temperature of the bath and Kapitza resistance on walls (red lines);
	- 2. Symmetry (yellow lines);
- Thermal conductivity and capacity as a function of temperature;
- Perfect contact between solid elements;
- Bath temperature 1.9 K
- Heating power of quench heaters **50 W/cm²** (the magnet is heated 25 ms after quench detection)

S.Pietrow icz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Thermal capacity of the materials

Modeling of thermal process during quench heating – unsteady state model

S.Pietrow icz, CHATS on Applied Superconductivity (CHATS-AS), October 12-14 2011, CERN

Modeling of thermal process during quench heating – unsteady state model

▫Motivation

- ▫Two fluid model
- ▫Simplified model of He II
- ▫Validation of simplified model

Steady state modeling

 \Box Modeling of thermal – flow process during AC losses in Nb₃Sn magnet – steady state

- ◦Description of Fresca II magnet;
- ◦3D computational region, assumption and boundary conditions;

◦Mesh;

◦Numerical results.

Unsteady state modeling

▫Modeling of thermal process during quench heating – unsteady state model

- ◦Geometry and mesh;
- ◦Numerical results.

Conclusions

 \Box The simplified model for calculations of the thermal – flow phenomena was developed and applied in ANSYS CFX Software which is based on FVM (Finite Volume Method)

 \Box The model has been validated on the simple geometry and compared with the analytical solution. The maximum error is varied between 0.6 and 1.7 %.

□ The calculation at steady state conditions for the CUDI model of AC losses of $Nb₃Sn$ magnet – Fresca II has been carried out. In comparison to (with) the solid model (without helium), adding He II to the structure decreased maximum temperature rise.

 \Box The simulation of transient process in He II during the quench heating has been performed.