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= Background of the JackPot-AC model
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)) Overview of JackPot-AC network model
= Cable model that accurately
describes all strand trajectories in
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» Simulated strand trajectories are
used to:

= Calculate interstrand contact
resistance distribution;
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= Calculation of the mutual coupling between two strands
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») Calculation of the mutual coupling

= Strand currents are considered to be line currents flowing along their axis.
» The mutual coupling between two strand elements can then be written as

M, = J“:‘ -Aj(.rj —ri-)dlr-.
L.

7 B |
A (r)="22L. [ =dL;
"r‘) A J

= When A is multiplied by the current flowing in line j, it gives the magnetic
vector potential of this line at position r. (VxA - B)
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= Solving the double integral for the mutual coupling requires considerable

effort: simplification is desirable;

= When the change of A along L; is small, the first equation can be
simplified to:
M, =u, 'Aj(rj _ri,c)' L,

= where ;. is the centre location of line i.

S = If, in addition, A; does not change much along r; either, another
simplification is allowed:

Aj(rj,c_ri,c):Z;_ r u_jr_ Lj;
j.c i,C

-
"“ " » The latter simplification takes away all integrals.
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\ Effect of approximations on the mutual inductance
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= The mutual inductanceis
calculated between two strand
sections located in parallel to
each other;

= The error due to the
approximation reduces rapidly
with the distance between the
strands;

= Both simplifications are used in
JackPot-AC;

= Singleintegrals for
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Limitation due to the calculation of mutual inductances

= Problem: calculation effort is still O(N?) dependence. For a simulated
cable with 1000 strands in 100 cross sections, this means 1010
interactions.

» This makes direct solution of the system undesirable because of
» Storage of the system matrix (computer memory required);
= Time required to solve (which has also an O(N?) dependence);

» The Multi-Level Fast Multipole Method (MLFMM) has the potential to
relieve this computation?,
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ﬁ' IL.F. Greengard, “The rapid evaluation of potential fields in particle systems”,
b - Cambridge, MA, USA, 1988
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» The Multi-Level Fast Multipole Method
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) Theinteraction between two groups of sources

Consider the line current elements as point sources for simplicity

Calculate the potential of the N particles at the M locations

The total number of direct interactions is MxN

The objective is to facilitate this calculation with mathematical tricks
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) Multipole expansion of the group of sources

= The potential at one target point due to the N sources can be written as a
series expansion

N
‘ Z Z ”21 ”m ! M rTq = Z qk rsr,]kYn_m
t k=1

nOmn

= M ﬁn(the red circle) is called a Multipole, which can be used to calculate the
effect of all N sources on any of the M targets;

= Under given constraints about the distance between the sources and
targets, the maximum error is a known function of p.

P » The computational effort for to compute the potential in all other sources in
this configuration is now O( p2*(M + N) ) M
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= First step in the implementation of the FMM is to distribute the sources

among a grid of uniformly shaped boxes;

= The illustration shows the interactions between the particles in the yellow

box and all other boxes

= Near field interactions are calculated directly between particles inside this

box (yellow), and all neighbouring boxes (blue)
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=) 2D illustration: Multipole expansions

» Far field interactions can then be calculated with multipoles around the
centre of each box (red circles);

» The potential at the targets can then be calculated by expanding the
multipoles to the target locations;

» Expanding the multipoles on each individual target particle is still
computational intense...
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= A multipole expansion can be converted into a local expansion by

=3 T e

=0 k=]

= Where L'} = f(M mor ) Mo = location of the multipole expansion

n’'mp
= Since expansions can be added, this treatment eventually reduces the
number of required operations

Expansions coming
from different sources \\
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2D illustration: Multipole-to-Local (M2L) expansions

= The local expansions are now calculated at the centre of the yellow box,
from where the potential at target locations can be calculated,;

= However, for larger systems that need more boxes, the number of M2L
computations can still be high (only a few are illustrated in the right figure);

= This is where the “multi-level” concept is introduced...
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A 2D illustration: Multi-Level Fast Multipole Method

» The fast multipole methods also provides ways to translate multipole
expansions and local expansions to different coordinates;

» Since these expansions can be added when calculated on the same
coordinates, expansions from different locations can be grouped into
bigger boxes;

» The further away from the target locations, the bigger the area that can be
grouped without loss of accuracy;
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') 2D illustration: Multi-Level Fast Multipole Method

= This illustration shows two translations of multipole and local expansions
(red and blue lines, respectively) and one M2L conversion (green line)

= There are three levels on which the multipole method is carried out.

= If N is the number of levels, there are always 4N, boxes in a 2D
simulation, and 8N, in a 3D simulation.
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"% ) Hierarchical tree concept

» This chart illustrates the MLFMM concept with a hierarchical tree:
= P2M: Particle to Multipole expansion
= M2M: Multipole to Multipole translation
= MZ2L: Multipole to Local expansion conversion
» |L2L:Localto Local translation
= |L2P: Local to Particle conversion
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= The MLFMM is developed for calculating the scalar field of moving
particles, from fluid dynamics to stellar systems;

» |ts algorithm is suitable for parallel computation;

= Qur system has to calculate the vector field of fixed objects (strand
segments);

» Advantage: The distribution of objects has to be done only once, prior to a
simulation;

= Drawback: The evaluation of the multipole method has to be done three
times, one for each dimension.
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\ Verification of the MLFMM model
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= Verification of the MLFMM is done by
comparing the results with direct
calculations;

»= This example shows the simulation of a
20 cm long ITER PF1 cable, which has

1440 superconducting strands; E 100 F
* The induced electric field duetoa 1 Als 5 80 /

current ramp in 10 strands is shown;
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» The Graphics Processing Unit (GPU)
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» The mutuallyinduced voltages can be calculated in parallel, buta CPU
usually has only up to eight cores;

* In the recent years, Graphics Processing Units (GPUs) have been
developed, which consist of many hundreds of cores;

= Their main advantage is that they can carry out many computations in
parallel on low-cost hardware;

= For this reason, they are now also widely used for scientific calculations;

» |n JackPot-AC, both the MLFMM and the direct computation for the
mutual coupling are implemented for use on a GPU.
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| § Speedup acquired with the MLFMM method

= The time is measured for the calculation of the coupling in an ITER
PF1 cable with different length (and thus number of variables);

» |Implementation of the direct method on the GPU lead to a more than

100 times faster solution;

» The overhead for the MLFMM
(FMM init.) is required only
once for every simulation;

= The x in the legend refers to
the relationship:
= time = (length)*;

= Afast, and O(N) solution is

obtained with the MLFMM on
the GPU.

UNIVERSITY OF TWENTE.

10

107

Time [s]

10

10

—o— Direct, x=2.14
—o— Direct + GPU, x=2,14
—— FMM + GPU, x=0.97

FMM init.

e
BRI T R
o ot e .

T '
0.1 1.0

Cable length [m]




" Solving the system
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The system can generally be described as

M é = Ax+ S,
dt

= Which, after discretisation becomes
(M —Af-A ):r” = 1\-'11*”_1 +Af- S .

» This makes it impossible to solve the system directly, since the MLFMM
produces matrix-vector products (M*x,) instead of a matrix;

= As such, the system is solved iteratively, which takes away the need to
construct the system matrix explicitly;
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Iterative solution of the system matrix

= A strongly simplified explanation of the iterative solution of the system is
as follows:
= Start with an initial guess x,, for x,, and repeat the following until x, is

accurate enough (or the residual vector r, is small enough):
ro=(M-At-A)x,, —Mx, , +At-S,,

p.=B7'r,

Xoks1 = Kok T Py
= This requires a preconditioner matrix B, which resembles, butis not equal
—— to the system matrix: B ~ (M —At-A),

= For JackPot-AC, incomplete LU factorisation is used, where matrix M
contains the self-inductances and the mutual inductances of only the
closest strands;
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* r
ﬁ\' = At present, calculating the preconditioner matrix is the bottleneck in the
* ”‘ computation time for JackPot-AC.
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= Verification of the coupling loss model
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Results: obtaining the interstrand contact resistivity

= A contact resistivity parameter is required for the calculation of the
interstrand resistances;

» |nterstrand resistances are measured on CICCs in the Twente press by
connecting sets of two strands to a power source;

» By simulating this experiment, the parameter is found by adjusting it until
the simulation results match the measurements;

= For cables with sub-cable wraps, two parameters are used to account for
the higher contact resistivity between strands from different sub-cables...
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>\ Results: obtaining the interstrand contact resistivity

» The TFJA-5 was used to find the parameters below;
» Intra-petal R: resistance between strands from the same petal;
» Inter-petal R: resistance between strands from different petals;

= Since the offset phase of the sub-cables are unknown, different

simulations are carried out with different sets of random phase angles
(three in the simulation below)
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» The power dissipation in a CICC is measured in a uniform, harmonic
background field at different frequencies;

= This is also simulated, with the contact resistivity parameters obtained
before;

» This leads to good agreement with the measurements.
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= Conclusions
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) Conclusions

= We have implemented the MLFMM on a GPU for calculating the mutual
inductance between N strand segments;

= This has lead to a considerable speedup in the calculations, and it has
been demonstrated that the time dependence approaches O(N) for the
O(N?) mutual couplings;

= A small number of expansions (p) is needed to satisfy the accuracy
demands of the cable model;

= The model has been validated with one measured ITER TF conductor
sample;

» |t has been demonstrated that the model can analyse the coupling loss of
an ITER size conductor in any type of background field within a
reasonable simulation time.
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