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Overview of JackPot-AC network model 

Cable cross section from 

JackPot simulation 

Simplified electrical network 
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 Cable model that accurately 
describes all strand trajectories in 
CICC; 

 

 

 

 Simulated strand trajectories are 
used to: 

 Calculate interstrand contact 
resistance distribution; 

 Strand-to-joint’s copper sleeve 
contact resistance distribution; 

 Mutual inductances 

 Coupling with background field 
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Calculation of the mutual coupling 

 Strand currents are considered to be line currents flowing along their axis.  

 The mutual coupling between two strand elements can then be written as 

 

 

 

 

 When A is multiplied by the current flowing in line j, it gives the magnetic 

vector potential of this line at position r.  BA 



Simplification of the mutual coupling 

 

 

 Solving the double integral for the mutual coupling requires considerable 

effort: simplification is desirable; 

 When the change of Aj along Li is small, the first equation can be 

simplified to: 

 

 where ri,c is the centre location of line i. 

 If, in addition, Aj does not change much along rj either, another 

simplification is allowed: 

 

 

 The latter simplification takes away all integrals. 
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Effect of approximations on the mutual inductance 

 The mutual inductance is 

calculated between two strand 

sections located in parallel to 

each other; 

 The error due to the 

approximation reduces rapidly 

with the distance between the 

strands; 

 Both simplifications are used in 

JackPot-AC; 

 Single integrals for  

Blue: double integral 

Green: single integral 
Red: no integral 



Limitation due to the calculation of mutual inductances 

 Problem: calculation effort is still O(N2) dependence. For a simulated 

cable with 1000 strands in 100 cross sections, this means 1010 

interactions. 

 This makes direct solution of the system undesirable because of 

 Storage of the system matrix (computer memory required); 

 Time required to solve (which has also an O(N2) dependence); 

 The Multi-Level Fast Multipole Method (MLFMM) has the potential to 

relieve this computation1. 

1L.F. Greengard, “The rapid evaluation of potential fields in particle systems”, 

Cambridge, MA, USA, 1988 
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The interaction between two groups of sources 

 Consider the line current elements as point sources for simplicity 

 Calculate the potential of the N particles at the M locations 

 The total number of direct interactions is MxN 

 The objective is to facilitate this calculation with mathematical tricks 

 



Multipole expansion of the group of sources 

 The potential at one target point due to the N sources can be written as a 

series expansion 

 

 

       (the red circle) is called a Multipole, which can be used to calculate the 

effect of all N sources on any of the M targets; 

 Under given constraints about the distance between the sources and 

targets, the maximum error is a known function of p. 

 The computational effort for to compute the potential in all other sources in 

this configuration is now O( p2*(M + N) ) 
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Distributing the sources among boxes 

 First step in the implementation of the FMM is to distribute the sources 

among a grid of uniformly shaped boxes; 

 The illustration shows the interactions between the particles in the yellow 

box and all other boxes 

 Near field interactions are calculated directly between particles inside this 

box (yellow), and all neighbouring boxes (blue) 



2D illustration: Multipole expansions 

 Far field interactions can then be calculated with multipoles around the 

centre of each box (red circles); 

 The potential at the targets can then be calculated by expanding the 

multipoles to the target locations; 

 Expanding the multipoles on each individual target particle is still 

computational intense… 



Conversion of Multipole expansions to Local expansions 

 A multipole expansion can be converted into a local expansion by 

 

 

 Where                                     location of the multipole expansion 

 Since expansions can be added, this treatment eventually reduces the 

number of required operations 
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2D illustration: Multipole-to-Local (M2L) expansions 

 The local expansions are now calculated at the centre of the yellow box, 

from where the potential at target locations can be calculated; 

 However, for larger systems that need more boxes, the number of M2L 

computations can still be high (only a few are illustrated in the right figure); 

 This is where the “multi-level” concept is introduced… 



2D illustration: Multi-Level Fast Multipole Method 

 The fast multipole methods also provides ways to translate multipole 

expansions and local expansions to different coordinates; 

 Since these expansions can be added when calculated on the same 

coordinates, expansions from different locations can be grouped into 

bigger boxes; 

 The further away from the target locations, the bigger the area that can be 

grouped without loss of accuracy; 



2D illustration: Multi-Level Fast Multipole Method 

 This illustration shows two translations of multipole and local expansions 

(red and blue lines, respectively) and one M2L conversion (green line) 

 There are three levels on which the multipole method is carried out. 

 If NL is the number of levels, there are always 4N
L boxes in a 2D 

simulation, and 8N
L in a 3D simulation. 



 This chart illustrates the MLFMM concept with a hierarchical tree: 

 P2M: Particle to Multipole expansion 

 M2M: Multipole to Multipole translation 

 M2L: Multipole to Local expansion conversion 

 L2L: Local to Local translation 

 L2P: Local to Particle conversion 

Hierarchical tree concept 

Courtesy: L.A. Barba, Boston University 



Considerations for the implementation 

 The MLFMM is developed for calculating the scalar field of moving 

particles, from fluid dynamics to stellar systems; 

 Its algorithm is suitable for parallel computation; 

 Our system has to calculate the vector field of fixed objects (strand 

segments); 

 Advantage: The distribution of objects has to be done only once, prior to a 

simulation; 

 Drawback: The evaluation of the multipole method has to be done three 

times, one for each dimension. 



Verification of the MLFMM model 

 Verification of the MLFMM is done by 

comparing the results with direct 

calculations; 

 This example shows the simulation of a 

20 cm long ITER PF1 cable, which has 

1440 superconducting strands; 

 The induced electric field due to a 1 A/s 

current ramp in 10 strands is shown; 

 The error is less than 0.5 % 

everywhere. 
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Implementation of the method on a GPU 

 The mutually induced voltages can be calculated in parallel, but a CPU 

usually has only up to eight cores; 

 In the recent years, Graphics Processing Units (GPUs) have been 

developed, which consist of many hundreds of cores; 

 Their main advantage is that they can carry out many computations in 

parallel on low-cost hardware; 

 For this reason, they are now also widely used for scientific calculations; 

 In JackPot-AC, both the MLFMM and the direct computation for the 

mutual coupling are implemented for use on a GPU. 



Speedup acquired with the MLFMM method 

 The time is measured for the calculation of the coupling in an ITER 

PF1 cable with different length (and thus number of variables); 

 Implementation of the direct method on the GPU lead to a more than 

100 times faster solution; 

 The overhead for the MLFMM 

(FMM init.) is required only 

once for every simulation; 

 The x in the legend refers to 

the relationship: 

 time = (length)x; 

 A fast, and O(N) solution is 

obtained with the MLFMM on 

the GPU. 
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Considerations for solving the system 

 The system can generally be described as 

 

 

 Which, after discretisation becomes 

 

 

 This makes it impossible to solve the system directly, since the MLFMM 

produces matrix-vector products (M*xn) instead of a matrix; 

 As such, the system is solved iteratively, which takes away the need to 

construct the system matrix explicitly; 

 



Iterative solution of the system matrix 

 A strongly simplified explanation of the iterative solution of the system is 

as follows: 

 Start with an initial guess xn,0 for xn, and repeat the following until xn is 

accurate enough (or the residual vector rn is small enough): 

 

 

 

 This requires a preconditioner matrix B, which resembles, but is not equal 

to the system matrix: 

 For JackPot-AC, incomplete LU factorisation is used, where matrix M 

contains the self-inductances and the mutual inductances of only the 

closest strands; 

 At present, calculating the preconditioner matrix is the bottleneck in the 

computation time for JackPot-AC. 
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Results: obtaining the interstrand contact resistivity 

 A contact resistivity parameter is required for the calculation of the 

interstrand resistances; 

 Interstrand resistances are measured on CICCs in the Twente press by 

connecting sets of two strands to a power source; 

 By simulating this experiment, the parameter is found by adjusting it until 

the simulation results match the measurements; 

 For cables with sub-cable wraps, two parameters are used to account for 

the higher contact resistivity between strands from different sub-cables… 

Intra-petal R Inter-petal R 



Results: obtaining the interstrand contact resistivity 

 The TFJA-5 was used to find the parameters below; 

 Intra-petal R: resistance between strands from the same petal; 

 Inter-petal R: resistance between strands from different petals; 

 Since the offset phase of the sub-cables are unknown, different 

simulations are carried out with different sets of random phase angles 

(three in the simulation below) 

Intra-petal R Inter-petal R 



Results: Frequency response 

 The power dissipation in a CICC is measured in a uniform, harmonic 

background field at different frequencies; 

 This is also simulated, with the contact resistivity parameters obtained 

before; 

 This leads to good agreement with the measurements. 
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Conclusions 

 We have implemented the MLFMM on a GPU for calculating the mutual 

inductance between N strand segments; 

 This has lead to a considerable speedup in the calculations, and it has 

been demonstrated that the time dependence approaches O(N) for the 

O(N2) mutual couplings; 

 A small number of expansions (p) is needed to satisfy the accuracy 

demands of the cable model; 

 The model has been validated with one measured ITER TF conductor 

sample; 

 It has been demonstrated that the model can analyse the coupling loss of 

an ITER size conductor in any type of background field within a 

reasonable simulation time. 


