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Overview of JackPot-AC network model 

Cable cross section from 

JackPot simulation 

Simplified electrical network 
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 Cable model that accurately 
describes all strand trajectories in 
CICC; 

 

 

 

 Simulated strand trajectories are 
used to: 

 Calculate interstrand contact 
resistance distribution; 

 Strand-to-joint’s copper sleeve 
contact resistance distribution; 

 Mutual inductances 

 Coupling with background field 
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Calculation of the mutual coupling 

 Strand currents are considered to be line currents flowing along their axis.  

 The mutual coupling between two strand elements can then be written as 

 

 

 

 

 When A is multiplied by the current flowing in line j, it gives the magnetic 

vector potential of this line at position r.  BA 



Simplification of the mutual coupling 

 

 

 Solving the double integral for the mutual coupling requires considerable 

effort: simplification is desirable; 

 When the change of Aj along Li is small, the first equation can be 

simplified to: 

 

 where ri,c is the centre location of line i. 

 If, in addition, Aj does not change much along rj either, another 

simplification is allowed: 

 

 

 The latter simplification takes away all integrals. 
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Effect of approximations on the mutual inductance 

 The mutual inductance is 

calculated between two strand 

sections located in parallel to 

each other; 

 The error due to the 

approximation reduces rapidly 

with the distance between the 

strands; 

 Both simplifications are used in 

JackPot-AC; 

 Single integrals for  

Blue: double integral 

Green: single integral 
Red: no integral 



Limitation due to the calculation of mutual inductances 

 Problem: calculation effort is still O(N2) dependence. For a simulated 

cable with 1000 strands in 100 cross sections, this means 1010 

interactions. 

 This makes direct solution of the system undesirable because of 

 Storage of the system matrix (computer memory required); 

 Time required to solve (which has also an O(N2) dependence); 

 The Multi-Level Fast Multipole Method (MLFMM) has the potential to 

relieve this computation1. 

1L.F. Greengard, “The rapid evaluation of potential fields in particle systems”, 

Cambridge, MA, USA, 1988 
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The interaction between two groups of sources 

 Consider the line current elements as point sources for simplicity 

 Calculate the potential of the N particles at the M locations 

 The total number of direct interactions is MxN 

 The objective is to facilitate this calculation with mathematical tricks 

 



Multipole expansion of the group of sources 

 The potential at one target point due to the N sources can be written as a 

series expansion 

 

 

       (the red circle) is called a Multipole, which can be used to calculate the 

effect of all N sources on any of the M targets; 

 Under given constraints about the distance between the sources and 

targets, the maximum error is a known function of p. 

 The computational effort for to compute the potential in all other sources in 

this configuration is now O( p2*(M + N) ) 
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Distributing the sources among boxes 

 First step in the implementation of the FMM is to distribute the sources 

among a grid of uniformly shaped boxes; 

 The illustration shows the interactions between the particles in the yellow 

box and all other boxes 

 Near field interactions are calculated directly between particles inside this 

box (yellow), and all neighbouring boxes (blue) 



2D illustration: Multipole expansions 

 Far field interactions can then be calculated with multipoles around the 

centre of each box (red circles); 

 The potential at the targets can then be calculated by expanding the 

multipoles to the target locations; 

 Expanding the multipoles on each individual target particle is still 

computational intense… 



Conversion of Multipole expansions to Local expansions 

 A multipole expansion can be converted into a local expansion by 

 

 

 Where                                     location of the multipole expansion 

 Since expansions can be added, this treatment eventually reduces the 

number of required operations 
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2D illustration: Multipole-to-Local (M2L) expansions 

 The local expansions are now calculated at the centre of the yellow box, 

from where the potential at target locations can be calculated; 

 However, for larger systems that need more boxes, the number of M2L 

computations can still be high (only a few are illustrated in the right figure); 

 This is where the “multi-level” concept is introduced… 



2D illustration: Multi-Level Fast Multipole Method 

 The fast multipole methods also provides ways to translate multipole 

expansions and local expansions to different coordinates; 

 Since these expansions can be added when calculated on the same 

coordinates, expansions from different locations can be grouped into 

bigger boxes; 

 The further away from the target locations, the bigger the area that can be 

grouped without loss of accuracy; 



2D illustration: Multi-Level Fast Multipole Method 

 This illustration shows two translations of multipole and local expansions 

(red and blue lines, respectively) and one M2L conversion (green line) 

 There are three levels on which the multipole method is carried out. 

 If NL is the number of levels, there are always 4N
L boxes in a 2D 

simulation, and 8N
L in a 3D simulation. 



 This chart illustrates the MLFMM concept with a hierarchical tree: 

 P2M: Particle to Multipole expansion 

 M2M: Multipole to Multipole translation 

 M2L: Multipole to Local expansion conversion 

 L2L: Local to Local translation 

 L2P: Local to Particle conversion 

Hierarchical tree concept 

Courtesy: L.A. Barba, Boston University 



Considerations for the implementation 

 The MLFMM is developed for calculating the scalar field of moving 

particles, from fluid dynamics to stellar systems; 

 Its algorithm is suitable for parallel computation; 

 Our system has to calculate the vector field of fixed objects (strand 

segments); 

 Advantage: The distribution of objects has to be done only once, prior to a 

simulation; 

 Drawback: The evaluation of the multipole method has to be done three 

times, one for each dimension. 



Verification of the MLFMM model 

 Verification of the MLFMM is done by 

comparing the results with direct 

calculations; 

 This example shows the simulation of a 

20 cm long ITER PF1 cable, which has 

1440 superconducting strands; 

 The induced electric field due to a 1 A/s 

current ramp in 10 strands is shown; 

 The error is less than 0.5 % 

everywhere. 
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Implementation of the method on a GPU 

 The mutually induced voltages can be calculated in parallel, but a CPU 

usually has only up to eight cores; 

 In the recent years, Graphics Processing Units (GPUs) have been 

developed, which consist of many hundreds of cores; 

 Their main advantage is that they can carry out many computations in 

parallel on low-cost hardware; 

 For this reason, they are now also widely used for scientific calculations; 

 In JackPot-AC, both the MLFMM and the direct computation for the 

mutual coupling are implemented for use on a GPU. 



Speedup acquired with the MLFMM method 

 The time is measured for the calculation of the coupling in an ITER 

PF1 cable with different length (and thus number of variables); 

 Implementation of the direct method on the GPU lead to a more than 

100 times faster solution; 

 The overhead for the MLFMM 

(FMM init.) is required only 

once for every simulation; 

 The x in the legend refers to 

the relationship: 

 time = (length)x; 

 A fast, and O(N) solution is 

obtained with the MLFMM on 

the GPU. 
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Considerations for solving the system 

 The system can generally be described as 

 

 

 Which, after discretisation becomes 

 

 

 This makes it impossible to solve the system directly, since the MLFMM 

produces matrix-vector products (M*xn) instead of a matrix; 

 As such, the system is solved iteratively, which takes away the need to 

construct the system matrix explicitly; 

 



Iterative solution of the system matrix 

 A strongly simplified explanation of the iterative solution of the system is 

as follows: 

 Start with an initial guess xn,0 for xn, and repeat the following until xn is 

accurate enough (or the residual vector rn is small enough): 

 

 

 

 This requires a preconditioner matrix B, which resembles, but is not equal 

to the system matrix: 

 For JackPot-AC, incomplete LU factorisation is used, where matrix M 

contains the self-inductances and the mutual inductances of only the 

closest strands; 

 At present, calculating the preconditioner matrix is the bottleneck in the 

computation time for JackPot-AC. 
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Results: obtaining the interstrand contact resistivity 

 A contact resistivity parameter is required for the calculation of the 

interstrand resistances; 

 Interstrand resistances are measured on CICCs in the Twente press by 

connecting sets of two strands to a power source; 

 By simulating this experiment, the parameter is found by adjusting it until 

the simulation results match the measurements; 

 For cables with sub-cable wraps, two parameters are used to account for 

the higher contact resistivity between strands from different sub-cables… 

Intra-petal R Inter-petal R 



Results: obtaining the interstrand contact resistivity 

 The TFJA-5 was used to find the parameters below; 

 Intra-petal R: resistance between strands from the same petal; 

 Inter-petal R: resistance between strands from different petals; 

 Since the offset phase of the sub-cables are unknown, different 

simulations are carried out with different sets of random phase angles 

(three in the simulation below) 

Intra-petal R Inter-petal R 



Results: Frequency response 

 The power dissipation in a CICC is measured in a uniform, harmonic 

background field at different frequencies; 

 This is also simulated, with the contact resistivity parameters obtained 

before; 

 This leads to good agreement with the measurements. 
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Conclusions 

 We have implemented the MLFMM on a GPU for calculating the mutual 

inductance between N strand segments; 

 This has lead to a considerable speedup in the calculations, and it has 

been demonstrated that the time dependence approaches O(N) for the 

O(N2) mutual couplings; 

 A small number of expansions (p) is needed to satisfy the accuracy 

demands of the cable model; 

 The model has been validated with one measured ITER TF conductor 

sample; 

 It has been demonstrated that the model can analyse the coupling loss of 

an ITER size conductor in any type of background field within a 

reasonable simulation time. 


