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Introduction 

Lower operating temperatures allow 
for higher current densities and thus 
stronger magnetic fields. 

The operating point of superconducting magnets 
needs to lie underneath the critical surface. 

In the case of Nb-Ti technology, 
magnets are typically cooled 
with helium. The operating 
temperature of the inner triplet 
quadrupole magnets of the LHC 
is 1.9 K in a static superfluid 
helium bath. Critical surface of Nb-Ti 

COMSOL Multiphysics is used to implement helium bahavior 
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Helium phase diagram 1 
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Helium phase diagram 2 

Small differences in published data occur. HEPAK gives: 
Lambda point pressure = 5.041 kPa 
Lambda point temperature = 2.1768 K 
Critical point pressure = 227.46 kPa 
Critical point temperature = 5.1953 K 
 
Therefore two typical situations can be distinguished: 
Saturated condition below the lambda point (both temperature and 
pressure). 
Subcooled condition at temperatures below the lambda temperature 
and pressures above the lambda point pressure. 
 
Inner triplet quadrupole magnets operate in the subcooled condition.  
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Critical Heat Flux 

Critical Heat Flux (CHF) is defined as the maximum applied heat flux at a 
solid-helium interface such that the helium at the interface just stays 
superfluid and does not undergo a lambda-transition. 

It must be stretched that heat transport in He II places no fundamental 
limit to the maximum steady state heat transfer. The allowable 
temperature difference is the limiting factor and depends strongly on 
the applied geometry.  

What does the temperature distribution in the helium (and the total 
structure) looks like and how can you stay below the CHF? 

How does the heat transfer behave when the critical heat flux is 
exceeded and is recovery possible? 

Two important questions arise for engineering purposes: 
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q<CHF using f(T)-1
 

For q<CHF temperature distributions in one-dimensional (1D) 
channels can be calculated  easily assuming that the heat transfer 
can be described using the Gorter-Mellink equation for turbulent 
heat transport in Tisza’s two-fluid model: 

Assuming the theoretical value of m=3 this results in: 

Rewriting this into a Fourier conduction like equation implies the 
use of an effective thermal conductivity: 
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f(T)-1 graph 

q<1 W/m2 

q>1 W/m2 
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f(T)-1 function 
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q<CHF using ‘Claudet’ 

For 1D channels a engineering relation was obtained by Claudet and 
co-workers. Based on measurements a relation was found between: 
- the warm end of a heated channel, 
- the heat flux through the channel, 
- the channel’s length, 
- the open end bath temperature. 

 
In principle this is nothing else then integrating the before mentioned 
f-1(T) function over the correct interval. 
 
Advantage of the f-1(T) function is that it can be applied in FEM 
applications as a material property and therefore in 2D and 3D as well. 
Advantage of the ‘Claudet’ approach is that it can be used easily in 
spreadsheets or spice models, but only at atmospheric pressure and 1D. 
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‘Claudet’ graph 
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‘Claudet’ function 

For comparison recall: 
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Temperature distributions <Tλ 

 

1/f(T): CHF= 17240 W/m2 

Claudet: CHF=16128 W/m2 
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q=CHF 
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q=CHF 
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Cable insulation 
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Cable insulation 
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Phase change: saturated condition 

q=0 W/m2 

Solid He II 

Kapitza resistance 

First order: well defined 
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Phase change: saturated condition 

q=CHF 

Solid He II 
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First order: well defined 
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Phase change: saturated condition 

q>CHF 

Solid He II V 

Kapitza resistance 

First order: well defined 
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Phase change: subcooled condition 

q=0 W/m2 

Solid He II 

Kapitza resistance 

Second order: ‘vague’ 
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Phase change: subcooled condition 

q>CHF 

Kapitza resistance 

Second order: ‘vague’ 

Solid He II He I 
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Phase change: subcooled condition 

q>CHF 

Solid He II Solid He II 

Kapitza resistance 

Solid He II He I Solid He II V He I 

First and second order 

Film boiling 
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Heat equation 

ρD is mass density in kgm-3 
cp is the volumetric specific heat in J kg-1 K-1 
k is the thermal conductivity in Wm-1K-1 
u is the velocity vector in ms-1 
q is the volumetric heat source in Wm-3 
T is the temperature in K 
t is the time in s  
B is the magnetic field in T 

Transient, non-constant properties with fluid flow 
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Heat equation 

ρD is mass density in kgm-3 
cp is the volumetric specific heat in J kg-1 K-1 
k is the thermal conductivity in Wm-1K-1 
u is the velocity vector in ms-1 
q is the volumetric heat source in Wm-3 
T is the temperature in K 
t is the time in s  
B is the magnetic field in T 

Transient, non-constant properties without flow 
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Heat equation 

ρD is mass density in kgm-3 
cp is the volumetric specific heat in J kg-1 K-1 
k is the thermal conductivity in Wm-1K-1 
u is the velocity vector in ms-1 
q is the volumetric heat source in Wm-3 
T is the temperature in K 
t is the time in s  
B is the magnetic field in T 

Transient, rewritten 
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Heat equation 

ρD is mass density in kgm-3 
cp is the volumetric specific heat in J kg-1 K-1 
k is the thermal conductivity in Wm-1K-1 
u is the velocity vector in ms-1 
q is the volumetric heat source in Wm-3 
T is the temperature in K 
t is the time in s  
B is the magnetic field in T 

Steady state 
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Thermal conductivity 
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Mass density 
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Specific - and latent heat 

For first order phase transitions a latent heat is recognized,  
which can be modeled numerically as an (additional) peak in the  
specific heat at the transition temperature. 
The lambda transition is called like that since the specific heat as a 
function of temperature has the shape of the Greek letter lambda. 
Although a peak occurs, the phase transition is of second order. 
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Specific - and latent heat 
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Specific - and latent heat 

Along the saturation line 
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Thermal diffusivity 
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Kapitza conductance 1 

On interfaces between solids, a thermal and electrical resistance is 
found: the contact resistance. This phenomenon can be explained by 
imperfections in the contact surface. 

Prediction by acoustic mismatch (AM or Khalatnikov) theory 
underestimates and by diffuse mismatch (DM or phonon radiation limit) 
theory overestimates  this so-called Kapitza conductance. This 
discontinuity occurs between any two dissimilar materials where 
electronic transport does not play a role. 

So
lid

 1
 

So
lid

 2
 

Solid He II q 

T1 T2 T3 T4 

T(x) 

T5 T6 

x 

ΔTi 
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Kapitza conductance 2 

The Kapitza conductance is strongly dependent on temperature, by 
theory a cubic relation is found for small heat fluxes (∆T«T) : 

Implementation of these relations is not straightforward in COMSOL: 
-Dependent variable is continuous if a composite geometry is used 
-Discontinuity of the dependent variable is possible only in an assembly 
-In the assembly “pairs” of boundaries have to be defined 
-A standard relation is implemented in the “thermal module”: 

For large heat fluxes (∆T≈T), a general form fitting experimental data gives:  
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Kapitza conductance 3 

Using the theoretical value of n=4 the following is valid: 

In COMSOL this can be implemented by using so called integration-
coupling-variables to obtain the correct values for the temperature on 
the boundaries. 
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Kapitza conductance 3 
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Phase front tracking 

- Level-set method: A contour line of the globally defined level set 
function, φ, describes the interface between phases. The interface 
can move within any velocity field. In COMSOL, φ is a smooth 
heaviside function. A fixed mesh is used. 

- Phase field: additional to the level-set method, the governing Cahn-
Hilliard equation (4th order PDE) diminishes the total energy of the 
system. A fixed mesh is used. 

- ALE: Arbitrary Lagrangian Eulerian method describes a moving mesh 
where dependent variables (T) represent the mesh movement. 

- Non-linear material properties: the heat equation is solved with 
material coefficients which incorporate the phase change 

- As noticed before, when the CHF is exceeded a phase change occurs. 
This leads to film boiling in the subcooled situation. If a steady state 
heat flux is applied temperatures rise strongly and burn-out results. 
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ALE 

- In the Lagrangian method, the mesh movement follows the 
movement of the physical material. This can be used when 
displacements are small. 

- In the Eulerian method, the mesh is fixed and cannot account for 
moving boundaries but can be used to describe more complicated 
material motion. 

- In the Arbitrary Lagrangian Eulerian method, allows moving 
boundaries, but the mesh does not need to follow the material. 
 

The ALE method makes use of a reference frame, where the mesh is 
fixed and a spatial frame, where the mesh is moving. The movement of 
the boundaries is described by functions of the dependent variable. 
The ALE method asks for input for the position or velocity of the phase 
boundary. This can be dependent on the transient solution. 
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Stefan problems 

At phase boundaries, the heat equation is not valid. An additional 
condition is needed to obtain closure of the Partial Differential Equation: 
the Stefan condition. It expresses the local velocity of a moving 
boundary. The physical constraint in heat transfer problems is the 
conservation of energy. The local velocity depends on the discontinuity 
of the heat flux over the boundary (for first order transitions). 

Typically in absence of flow, in both the He II and the He I domain, the 
heat equation has to be solved. In a semi-infinite geometry, the 
following boundary conditions occur: adiabatic at the end, bath 
temperature at the other end and for the interface the Stefan condition 
is in place. The heat flux is balanced by the product of latent heat, 
density and interface velocity. 
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Subcooling of He channels 1 

Two additional conditions are needed on s, one to give the second 
boundary conditions for the heat equations, and one to determine 
the position of the interface itself. 

He I He II 

s(t) 

Tinit Tbath 

Governing equations 

Boundary conditions 

Initial conditions 
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Subcooling of He channels 2 

Transition temperature 

Stefan condition 

Since the lambda transition is of second order and latent heat does not 
play a role, the heat flux across the boundary is continuous. It is therefore 
also not possible to obtain a velocity of the phase front this way. 
Assuming that the position of the lambda front is known beforehand, the 
corresponding heat fluxes and velocity of the phase boundary can be 
easily calculated. 
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Subcooling of He channels 2 

Transition temperature 

Stefan condition 



October 13th 2011 contact: erwin.bielert@cern.ch 31 of 35 

Similarity solutions 

Ti 

TB 

Increasing time 
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Similarity solutions 

erf(η/2) 

Notice that the thermal conductivity of 
He II is much larger than of He I. 
Therefore, the phase front will move 
rapid compared to the diffusion of  heat 
in the He I. A steep gradient will 
therefore occur right beside the phase 
front at all times. 
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Burnout and recovery 1 

Gives good results for steady state conditions, however for transient 
calculations, this approach is not suitable since the time step taken by 
the solver oscillates and the problem does not converge. 

Gives a circular dependency. However, in 1D steady state problems, the 
applied surface heat flux can be used to solve this problem. For the 
transient case, part of the applied heat is absorbed by the heat capacity. 
Since diffusion is fast and the vapor layer thin, a heat transfer coefficient 
can be applied on the interface and the hot end of the helium equals Tλ. 
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Burnout and recovery 2 
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Burnout and recovery 2 
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Burnout and recovery 2 
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Burnout and recovery 2 

The channel length is known as well as the end temperatures and thus 
the heat flux is known too. The difference between the heat flux 
extracted through the channel and the applied heat flux heats the solid. 
The total temperature rise depends on the specific heat and size. 
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Conclusion 

- Temperature distributions below Tλ can be simulated quite easily in 
1D geometries, but also complex 3D networks of micro-channels filled 
with superfluid helium can be modeled below Tλ with a good 

correlation to experimental results. 
- 3D Critical Heat Fluxes are obtained with good correlation to 
experiments. 
- Non-linear Kapitza conductance can be correctly modeled by making 
use of boundary integration variables. 
- Stefan problems can be modeled by strongly non-linear material 
properties in a straightforward way, but convergence difficulties arise. 
-Stefan problems in 1-dimensional problems can be correctly modeled 
using the Arbitrary Lagrangian Eulerian method. 
- Transient burnout and recovery are very difficult to model, since 
convergence problems arise. 
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Outlook 

Experiments on cable stacks to increase the understanding of the cable 
insulation show that a transition occurs in the heat transfer when the 
cable reaches the lambda temperature. Probably not all the superfluid 
helium in the micro-channels is converted into normal liquid helium, but 
only a thin layer at the surface of the cable. The transition of the heat 
flowing through the helium towards the cable insulation is not modeled 
correctly yet. The correct modeling of this transition is planned for the 
near future. 
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Thank you for your attention, 
please ask your questions! 


