

Thermo-hydraulic simulation of the ITER PF coil joints based on their coupling losses calculated with JackPot-AC

Ezra van Lanen¹, Wietse Offringa¹, Yuri Ilin² and Arend Nijhuis¹

¹Energy, Materials and Systems, Enschede, the Netherlands

2 ITER organisation, Cadarache, France

CHATS-AS workshop, CERN, October 2011

Service Contract No.: UT- ITER/CT/09/4300000070

- Objective for temperature calculation
- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- **Results**
- Conclusions

• Objective for temperature calculation

- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- Results
- Conclusions

Temperature calculation workflow

- Coupling loss model has only linear components; no strand saturation is included;
- As a result, the temperature distribution is not calculated simultaneously, but afterwards;
- **The algorithm is as follows:**
- 1. Calculate coupling losses, no saturation in strands
	- If strand currents exceed their critical current, it is assumed that a quench will happen anyway;
- 2. Calculate the magnetic field at strand locations;
- 3. Calculate the critical current assuming constant temperature
	- **First opportunity for checking instability;**
- 4. Calculate hysteresis loss (requires critical current)
- 5. Calculate temperature distribution (and if necessary, calculate the critical current again based on this temperature)

- Objective for temperature calculation
- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- Results
- Conclusions

 $V = 0$

Overview of JackPot-AC network model

 $V = V_{strand}$

 Cable model that accurately describes *all* strand trajectories in CICC;

 $dr_k dr_{k+1}$

φ

- Simulated strand trajectories are used to:
	- Calculate interstrand contact resistance distribution;
	- Strand-to-joint's copper sleeve contact resistance distribution;
	- Mutual inductances
	- Coupling with background field

Overview of JackPot-AC copper sole model

- A Partial Element Equivalent Circuit (PEEC) model is used to simulate the copper sole;
- This results in an electrical network that can easily be coupled to the cable model;
- The shape of the sole is approximated by removing PEEC boxes at the cable locations
- The coupling between the voltage nodes of the copper sole and the strands is determined from the geometric data;
- Similar to the interstrand resistances, the strand-to-sole resistances depend on the contact area between strands and the cable periphery.

Validation JackPot-AC joint coupling loss model

- The joint model has been validated with measurements on a mock-up joint;
- Interstrand and strand-to-joint contact resistivity were determined from interstrand resistance measurements on sub-size CICCs;
- **Additional measurements were carried** out on one cable and the copper sole separately;
- The measurements were done with different orientation of the harmonic background field. Serial field

Validation JackPot-AC joint coupling loss model

- Good agreement between measurement and simulation;
- Expected deviation due to hysteresis loss and intra-strand loss in the measurements, which are not included in the model;
- Peak power dissipation in "parallel" field at much lower frequency than in "serial" field due to the inter-cable coupling loops.

Simulation conditions for an ITER PF joint

- Three locations for the joints are used;
	- The radial field components are stronger in the "Top" and "Bottom" joints than in the "Middle" joint;
- Transport current distribution among strands is assumed homogeneous at current entry and exit;
- To allow for current distribution among strands outside the joint region, an extra 0.25 m of cable is added at both ends of the joint in the simulation.
- The joint RRR is 100.

Coupling loss in the PF2-top joint at the start of a 15 MA plasma scenario

- A 300 second linear coil current ramp precedes the start of the plasma scenario (left figure);
- This is included in the simulations to have an initial current distribution;

EIVISI

 The power dissipation includes both the effects of dB/dt and of the transport current.

Strand currents in PF2-top Cable 1

- The left figure shows the strand currents of Cable 1 in the centre of the joint versus time;
- The clear bias towards negative values is caused by inter-cable coupling currents due to the radial field component;
- It's effect is made clear by the right figure, which shows the total cable current along the length of the two cables at $t = 25$ seconds.

- Objective for temperature calculation
- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- Results
- Conclusions

Hysteresis model

- The model assumes full filament penetration during the whole campaing. In general, the penetration field is only a few tenths of teslas;
- The equations for calculating the transient hysteresis loss are

$$
\frac{dP_{hyst}}{dz} = \frac{2I_c}{3\pi} \left[1 + \frac{I_t^2}{I_c^2} \right] \cdot \left| \frac{dB}{dt} \right| d_{\text{eff}} k_{\text{nonCu}}
$$

- I_c = critical current
- I_t = transport current
- d_{eff} = effective filament diameter
- k_{nonCu} = fraction of non-copper material
- This includes both the change of the background field and the change of the transport current

Hysteresis loss in PF5-middle Cable 1 at start of scenario

- In the cable region the field on the strands is either amplified or reduced due to the transport current $(-0.5 < \alpha x) \cdot (-0.25 \text{ meter})$;
- As a result, the hysteresis loss alternates along the length;
- Inside the joint, the transport current decays; the hysteresis loss becomes more homogeneous

- Objective for temperature calculation
- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- Results
- Conclusions

Overview of thermal model

- The temperature distribution is calculated along the length of the joint for:
	- **Individual strand bundles of both cables**
	- **Helium inside these bundles**
	- Upper and lower half of the joint box
- Thus, for PF joints, a total of 26 temperature profiles are calculated

Equations for the strand bundle

- The density (ρ_{st}) , heat transfer coefficient ($h_{st\text{-}He}$), strand-helium wetted perimeter (*Cst*) and heat conductivity (*kst*) are assumed constant;
- A quadratic fit for the *cp,st* (specific heat) versus temperature is taken;
- Direct heat exchange between strand bundles does not take place;
	- This exchange is covered by the helium;
- Contact term is a function of position to account for the rotation of the petal, and the partial contact between the cable and the copper sole.

$$
A_{st} \rho_{st} \frac{\partial c_{p,st} T_{st,n}}{\partial t} = A_{st} k_{st} \frac{\partial^2 T_{st,n}}{\partial z^2}
$$

\n
$$
-C_{st-He} h_{st-He} (T_{st,n} - T_{He,n}) - C_{st-sole} h_{st-sole} (T_{st,n} - T_{sole}) + \frac{dP_{st,n}}{dz}
$$

\nHeat exchange with helium
\nHeat exchange with solve
\nPower dissipation in strand bundle

Equations for the copper sole

- The density (ρ_{Cu}) , heat transfer coefficients ($h_{sole\text{-}He}$ and $h_{sole\text{-}sole}$), jointhelium wetted perimeter (*Csole*) and heat conductivity (*kCu*) are assumed constant;
- A quadratic fit for the *cp,sole* (specific heat) versus temperature is taken;

$$
A_{\text{sole}} \rho_{\text{Cu}} \frac{\partial c_{\text{p,Cu}} T_{\text{sole}}}{\partial t} = A_{\text{sole}} k_{\text{Cu}} \frac{\partial^2 T_{\text{sole}}}{\partial z^2}
$$

- C_{\text{sole-He}} h_{\text{sole-He}} (T_{\text{sole}} - T_{\text{He}}) - C_{\text{sole_sole}} h_{\text{sole-sole}} (T_{\text{sole}} - T'_{\text{sole}}) + \frac{dP_{\text{sole}}}{dz}
\n\text{Heat exchange with helium} \text{Heta of sole} \text{Power dissipation in strand bundle}

Equations for the helium flow

- The heat transfer coefficient (h_{He-He}) inter-petal wetted perimeter (C_{He-He}) are assumed constant;
- Linear interpolation is used from data for the density (ρ_{He}) and specific heat ($c_{p,He}$) versus temperature relationship;
- A fixed mass flow rate $(m = A_{He} \cdot v_{He} \cdot \rho_{He})$ is assumed
- Pressure is 5 bar.

$$
A_{He}\rho_{He} \frac{\partial c_{p,He}T_{He,n}}{\partial t} = A_{He}k_{He} \frac{\partial^2 T_{He,n}}{\partial z^2}
$$

\n
$$
-\dot{m} \cdot c_{p,He} \frac{\partial T_{He,n}}{\partial z}
$$
 Helium flow
\n
$$
-C_{st-He}h_{st-He}(T_{He,n} - T_{st,n})
$$
 Heat exchange with cable
\n
$$
-C_{sole-He}h_{sole-He}(T_{He,n} - T_{sole})
$$

$$
+ \text{heat exchange with sole}
$$

\n
$$
-\sum_{i=1}^{6} C_{He_{e}}\rho_{He_{e}}k_{He_{e}}(T_{He,n} - T_{He,i})
$$

- Objective for temperature calculation
- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- **Results**
- Conclusions

PF5: Power dissipation along joint length

 The power dissipation is calculated along the length of each component (strand bundle, joint half)

EMSIS

- Shown here is the result at the start of the plasma scenario ($t = 0$ s);
- $CJ =$ cable-to-joint contact layer;
- Biased power due to coupling currents between cables

PF5-top: Petal temperature distribution at start of scenario

- Results at start of the scenario $(t = 0 s)$;
- Despite biased power dissipation, the temperature profiles are equivalent in both cables;
- Periodicity of the temperature is due to the rotation of the cable in the joint and periodic contact with the copper sole.

PF5-top: Copper sole temperature

- Results at start of the scenario $(t = 0 s)$;
- Temperature profile identical for both joint halfs;
- High thermal conductivity leads to smoothing of the temperature distribution;
- Considerably higher temperature in the copper sole than in the cables.

PF5: Evolution of temperature during the scenario

- The temperature is shown at the downstream-end of the "hottest" petal (identical geometries were taken for the "top" and "middle" joints);
- The stronger radial field in the "top" joint leads to a +0.15 K higher temperature after the start of plasma;
- This temperature difference decays during the plasma burn phase, when the dB/dt and dI/dt are much smaller.

Performance of other joints

- Other joints have been simulated as well, which show similar temperature behaviour during the plasma scenario;
- The PF6-bottom joint shows a large temperature increase during the current ramp preceding the scenario;
- During the scenario, its temperature decreases, whereas the transport current increases…

PF6-bottom: Inter-cable coupling currents

- The PF6 coil starts the scenario with a high transport current;
- As a result, it also has a high dB/dt during this phase, with a considerable radial component for the bottom joint;
- This results in much larger coupling currents before the scenario (left figure) than during the scenario (right figure).

- Objective for temperature calculation
- **JackPot-AC coupling loss model**
- **Hysteresis loss model**
- **Thermal model**
- Results
- Conclusions

Conclusions

- JackPot-AC, The coupling loss model for CICC joints has been expanded with a thermal model;
- Although these models are not coupled, they serves as a powerful analysis tool for CICC joints;
- The copper sole smears out non-uniform power dissipation along the cable axes;
- The radial field component causes a considerable coupling current between the cables in joints at the edges of a coil, compared to joints in the middle;
- As a result of these coupling currents, a more than 0.15 K peak temperature difference is observed in the simulation of the PF5 joints;
- Similar coupling currents increase the peak temperature of the PF6 bottom joint to more than 0.35 K above the inlet temperature before the start of the plasma scenario.

