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E— Context |
- Nb3Sn:
- For field strengths 10-18 T
- Brittle & strain sensitive material
- “Wind & react”
- NbySn structure formation at ~ 650° C (for days)
- Impregnated coils
- LBNL: Development of high-field Nb,Sn dipoles and quadrupoles

- U.S. LARP collaboration (LBNL, FNAL, BNL, SLAC): Demonstration of
Nb,Sn technology matureness for the high luminosity LHC

- Large aperture quadrupoles for the interaction region upgrade

- Quench protection is one of the several challenges in the
development of long Nb,Sn accelerator magnets
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N Outline

Introduction

* Quench process and protection challenges in long Nb,Sn magnets
* Technology jump from LHC NbTi

e State-of-the-art quench protection & its limitations

* Research in my PhD

Qcode development

* Modeling goals

e Status and demonstration

Summary
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- Quench - A local resistive transition +
thermal runaway

Strands in Nb,Sn cable

@20K and 10 T:
Pcy = 5-107100m
prgSTl = 2.6 - 10_7Qm

Joule heating: Power/ Volume = pCujgu

Example
Nb,Sn LARP HQ: Jeu = 2000 m— (Quench @ I;;@ 1.9 K and 15T)

— Power/ Volume = 2 GW /m?3

Higher the copper current density, faster the action needed.
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B The stored magnetic energy dissipated
in the resistive heating

AE
V - CV (T)

Temperature rise: AT =

SOLUTION

Magnet

Larger the stored energy, the larger the resistive volume
needed to absorb it.
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- Basic quench protection circuit

Rdump

CS

To Power Supply

t=1L/ (Rdump+ rquench)

1. Quench detection

2 .Current supply disconnection, activate PH and Ry, ..,
3. Protection heater efficient + R, connected

— 4. Circuit resistance increase = Current decay

UNIVERSITY OF TWENTE. I T. Salmi — Integrated quench protection model for high-field Nb,Sn accelerator magnets I 7




BEEN LARP R&D Nb,Sn vs. LHC NbTi

LHC NbTi Main Dipole (MB)

Long Quadrupole (LQ) High-gradient Quad. (HQ)

a IR quad.(MXAB)

e
x

“aed

aspi (2011)

Parameters at 1.9 K LQ HQ MB MQXA MQXB
Length (m) 36 |09 143 6.4 5.5
Aperture (mm) 90 120 56 70 70
Short sample current I **(kA) 15 19 11.8 ~7.5 ~11.8
Copper current density, Jc, (A/mm°) _ 930 ~930 ~1200
Magnetic field at Iss (T) 13 14.8 8.6 8.6 7.7
Gradient at Iss (T/m) 240 214 N/A 215 215
Stored energy at I (kJ/m) _ 480 360 0.25
Self inductance at I, (mH/m) 5 ~7.7 7 14 3.5

** In LHC parameters for nominal operation

Next LARP goal: Long HQ (LHQ) — 3.6 m scale up of HQ
Full-scale IR quad: 6 =10 m long “HQ”
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B State-of-the-art quench protection and its
limitations

 LARP Trace technology: 25 um stainless steel circuits on a 45 ym Kapton®
sheet

« Dump resistor in magnet tests

LQ-3.6m

23 mm wide 11 cm
<

9 mm,

S, g strands covered

/ |

d _— e
H. Felice (2009)

Limitations:
1) Long magnets - Heater powering
2) Superfluid He = “Bubbles” in inner layer heaters
3) Reaction temperatures & Kapton - No heaters between layers

Can this technology be suitable for longer magnets?

UNIVERSITY OF TWENTE. I T. Salmi — Integrated quench protection model for high-field Nb,Sn accelerator magnets I 9



E— Research in my PhD
GOAL.:
Protect long high-field Nb,Sn magnets.

Find a technical solution to quench the winding fast and uniformly
after a quench.

Research questions:

1) What is an optimum protection heater layout for any given
magnet?
- “Given magnet”: length, stored energy, cable, operation, “environment”

- To be minimized: Temperature peaks and gradients, voltages
- Variables: Protection heater layout, materials, powering, external circuit

2) Is there a length / stored energy limitation in protecting
magnets using protection heaters?

3) Distribution of resistive and inductive voltages during a
guench
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Starting point:

Context Il

Temperature
100 200
o i

4.2 245

Protection of short R&D Integrated magnet design at Quench propagation
quadrupoles and dipoles LBNL calculation
\tl. Felice (2009) S. Caspi (2006) D. Arbelaez (2010) j

Y

In my PhD: Systematic protection

heaters study in different magnets

- Integrate a numerical quench
protection simulation model
with other analysis software

- Protection experiments . )
P Work in progress — Here

presented the status of the work.

y

UNIVERSITY OF TWENTE. I T. Salmi — Integrated quench protection model for high-field Nb,Sn accelerator magnets I 11



- Outline

Qcode development

* Modeling goals

e Status and demonstration
Summary
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Integrated 3-D magnet design at LBNL

2D cross-section
from ROXIE or
PKLBL +

Turn by turn
coil model
for cos n@
magnets

\_

End parts and
island
fabrication

NEW \

ADDITION!

[BEND] [ CAD ] [VFOperaBD] [ANSYS 30] [Qcode]

End optimization and

peak field management E——
(length of yoke)

' '3D Mechanical
Analysis

4

Thermal &
electrical
quench
analysis

/

S. Caspi, and P. Ferracin, “Towards Integrated Design and Modeling of High Field Accelerator Magnets” (2006)
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Coil geometry, magnetic field,
cable parameters and
operation conditions

Qcode idea

. 9 mm, 4 strands
23 mm wide < 11cm . covered
800 aal

Example of a heater design ( LARP LQ) /

Qcode

¥

Electrical circuit and
protection components

Temperature and
voltage evolution

VALIDATION with
protection heater

’

GOAL:
Protection heater

experiments during
magnet tests

‘ Protection heater design I optimization

modeling and
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- Programming starting point

* A code by D. Arbelaez (LBNL): Quench propagation in a wire

* Longitudinal segmentation

 Material properties in each cross-section

* Computation of heat fluxes in / out (finite difference method) + internal heating
 Developments: Cable and coil, magnetic field, protection heaters, flexibility

Calculation loop

Material properties, Ext. heating.
Y
Loop until Calculate resistive voltages —> Quench detection
end of the v delavs
simulation Calculate current decay Y
time :
v Dump resistor,
Calculate temperature increase PH firing
2
D. Arbelaez et el., "Numerical
Calculate the quench propagation velocity Investigation of the Quench
Behavior of

Bi,Sr,CaCu,Ox Wire” (2010)
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. Coil geometry
- Input: Coil geometry file
- Cable discretization

- Lateral thermal neighbors
- Detection of a structural component (a wedge or a spacer)

Example geometry: Inner
layer of the HQ coil
by courtecy of S. Caspi
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B The heat transfer model

aT
pr (T)E = Qlong + Qtransv + + Q]oule + QPH + QQB + Qext - QHe
_a( (T)aT)+a( (T)6T>+ + p(T,B)J?
~ox gy dy “y dy UL B
+QPH + QQB + Qext — QHe X, ¥, zin [m]; tin [s]; T(x,y,zt) in [K]; C,(T) in [J/(K-kg];

v in [kg/m3]; k(T) in [W/(K-m)]; p(T,B) in [Q-m];
J,in [A/m?]; Qg Qpyy, Qo Qe In [W/m?]

5
fmmmmmmmmm- - ()
Qtransv ﬂ : . . : :
. Longitudinally 1 |
Q Qs D> | segmented i
7] Quoute ' cable :j

| V4

Qcoolin v o

o g
e Quench initiation

* In each segment balanced the heat fluxes in / out (n x 1D)
* Finite difference with 6% order Runge-Kutta algorithm & adaptive time-stepping
* Temperature rise = Current sharing 2 Quench
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— Temperature gradients numerically

For the longitudinal and transversal heat flux computation.

Longitudinal Transversal
) OOOOOONnnnnnS _.::::
Ky Gy Ki Kzl Kia
| | I ::::: CV,i
L, I, T, [ | w
e—23& S
<—D><&——>
AZi—l AZI- T;—NZturn T; T;+NZturn
0 oT
5 (=M3;) 9 ( - 6T>
1 Az — Ky (T) —
B (Azi—l + AZi)Z [Ki_l [(2 + AZi—l) Ti_l ax ax 1
AZi—l AZl' AZi—l = K'l T'_N - T)
B <2 + Az; + AZi_1> T+ A—ZiTi+1] Wca(blehins [ l ( l)] “turn l
Zi Aziy | Az + Ki2(Ti+nz,,,, — T
+ Ki+1 [Azi—l Ti_l <2 + AZL' + AZi_1> Ti “

Az;_4
P2+
Az

i
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B Heat flux from protection heaters

« Time and space dependency
* Analytical solution under study
« Validation with experiments and FEM

Analytical approximations exists but are not straight

Stainless steel forward with non-linear material properties
lime dependent surface (&=t )l
i 'l + n/2)
heat flux. n/2 ¥ 3 n rx=0 T 20
vat 2 + 2
t=ti,x>0,‘t=0. qoon"r (2+2)
n/2
it O R et Bl (t - t,)k -
n=-1,0,1, 2 ... = 200201 + n/z)in+lerfc(Fo*)
' q,VaT T ; X

Cable (~ Cu)

Analytical formula can be coded into
the program if an acceptable match
with FEM and experiment
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B Heater layout

Goal is to model any heater geometry: Examples
1) Continuous

2) Heating stations

3) Combination

Optimization: Width, period, “amplitude”, ...
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B Model status and demonstration 1

Development status:

- Testing of propagation velocities and hotspot temperatures in progress
- Magnetic field is initially constant and scaled down with current

- Protection heater layout “by hand”

- Heat from protection heaters directly into the strands

Example 1 — Quench propagation

Parameters:
- Initial current, field and inductance: 14 800 A, 11.7 T, 6 mH
- Dump resistor: 30 mQ, trigger delay: 10 ms, detection threshold: 125 mV

- No protection heaters
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Temperature
145

tios

Quench initiation

Temperature
?0
40

30
20
10
4.2
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. Example output

Type of output that can be compared with magnet tests

“Quench propagation” Current decay
0.1""!""!""!'"1""!'*" 16k""l"“l""! """""" =
0.8} < 14k |
: Coail / | ‘
B | resistance s
£ 006 i < 12k
€ | Propagation _ g f
E 0.04| to next turn . 3 10k
0.02 - . gk |
0 TR SN S T T SN T S SN NS ST SN SN S ST Y W ST S S 6k-..‘.I....I....l‘..\l...-l..-.
0 25 5 75 10 125 15 0 25 50 75 100 125 150
Time (ms)

Time (ms)
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E— Voltage taps

* Resistive voltage across each 0.5] |
segment = Voltage tap ol Vi1l-2
simulation in arbitrary locations |
* Calculation of inductive voltages ™’}
will be implemented, then: ” 0al
e Turn-to-turn and coil to PH _
voltages O'lf |
* Voltage tap signals vs. quench 0, e e
type in a magnet test o)

Voltage taps (Vt) in the pole turn
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B \odel status and demonstration 2

Example 2 — Protection heaters

Parameters:
Initial current, field and inductance: 14 800 A, 11.7 T, 6 mH

Protection heaters fired 5 ms after the detection

- Heating stations every ~ 20 cm, covering ~ 4 cm

No dump resistor

No turn-to-turn propagation

o2 emiperaluie Initial quench
: 55.10479

=50

'40

N30

20
10
4.2
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. Protection heaters example

Example: Protection heaters cover ~ 4 cm periodically every ~ 20 cm.

Alemperature r -~ Flemperature
~ \85.10479 : f 1\ 58.06472

=50

. -
'40 40
=30 #
l20

10

4.2

Slemperature
63.88149
60

|40
k2o

4.2
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Animation
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N Outline

Summary
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E— Summary

* Large coverage of efficient protection heaters needed for protecting high-field
Nb,Sn accelerator magnets in case of a quench

* To define general guidelines for heater geometries and protection design in
different magnets, an integrated tool for protection design, Qcode, is being
developed at LBNL

e Qcode modeling goals:

* Multi-physics of quench propagation, temperature and voltage development
* Protection heater geometry and heat diffusion in the coil
* Fast & flexible: Coil geometry and magnetic field map from external sources

* Realistic & reliable: Validation against other software and experiments in R&D
magnets

* Optimization algorithms for the heater design

* Possible extension: Simulation in “inverse mode” to relate voltages tap signals
during a magnet test to a quench type and origin

e (Qcode development status:

 Quench propagation in a coil and protection heaters using simplifications

* Programming work in progress and first benchmarking of the model expected at
the beginning of 2012
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[
About material properties

. . . 1 - C
Homogenized volumetric heat capacity: 2 _ S%‘)per

e - Epoxy
)/Cp = Ul)/lcp,l + Uz)/ZCpQ + Ue)/ecp,e I:i

Insulation around cable not accounted U U +U = 1
e
0.020
g —Qcode
Thermal conductivity: — QuenchPro
' =—Fit 76 % Nb 24 % Sn
0.015 | .
K = VK 1_V 5 Fit (76 % Nb 24 % Sn) + 5 wt% Cu
1 1( e) . - | e=="Fit 75.2 % Nb 24.8 % Sn"
= [
Electrical resistivity: 30010 |
0= P1P2 -
lez + Vzpl 0.005 _'
Joule heat generated: i
‘Fits” from: M. A. Susner: “Application of heat | . |, . . ., |, . . . .

2 capacity measurements to analyze the T,
p(T,B)J7x(1 —v,) distribution of Nb;Sn Samples”. The Ohio 10 15 20

State University (2010) mperature (K)
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