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Context



Traditional Inference

• ML algorithm inference rarely 
optimized on CPU
• Simple approach = get a computer with 

a GPU/FPGA/ASIC and perform “direct” 
inference
• 1-to-1 correspondence of CPU to 

coprocessor
• “Problems”:

• Limited (often non-optimal) usage of co-
processors

• Can also be expensive
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Illustration of “direct” co-processor paradigm



• Alternative: treat co-processor as distinct server
• Here, CPUs act as clients, preprocessing data for 

inference and making calls to server
• Advantages:

• CMSSW no longer needs to handle ML framework, just 
preprocessing and I/O (can use otherwise unsupported 
frameworks, like PyTorch)

• Take advantage of industry efforts; simple support 
available for different co-processors with no need to 
rewrite models

• One co-processor can service many CPUs – optimize 
computational load

• Server can provide access to multiple types of co-
processor – choose best one on per-model basis

• Can access remote GPUs (only way to do this)!
• Portable, Simple, Containerizable, and Flexible
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Inference as a Service (aaS)
Illustration of aaS paradigm



• For GPUS, we can use the NVIDIA Triton 
Inference Server (more documentation & github)
• Supports Tensorflow, TensorRT, ONNX, and PyTorch, 

XGBoost, Scikit Learn (BDT) models + Custom 
backends

• In CMSSW: runs through SONIC (Services for 
Optimized Network Inference on Coprocessors)
• Main code in SonicCore and SonicTriton
• Can make asynchronous inferences requests
• If GPU resource not available, automatically spins up

fallback server on CPU
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Taking advantage of industry efforts

https://developer.nvidia.com/nvidia-triton-inference-server
https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/index.html
https://github.com/triton-inference-server/server/blob/r21.07/README.md
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton


• Use acquire() and produce() functions to send/receive information 
to/from server
• See example of use for DeepMET algorithm (and model file PRs)
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SONIC Visualized

ASYNCHRONOUS

https://github.com/cms-sw/cmssw/pull/37963
https://github.com/cms-data/RecoMET-METPUSubtraction/pull/6
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Workflow Demonstrator
– or –

The Benefits of SONIC
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MiniAOD Demonstrator

• We made a MiniAOD demonstrator includes 
SONICized versions of the algorithms circled 
on the right
• ParticleNet – ONNX model for jet tagging (AK4, 

AK8 flavor, AK8 MassRegression, and mass) 
decorrelator
• See presentation and paper

• DeepMET – TF MET calculation
• See internal twiki, Yongbin’s thesis

• DeepTau – TF model with CNN for tau ID
• CADI, approval talk, also these older slides

• These account for ~9% of total miniAOD
production latency*
• This was all run on a ttbar dataset

• Presentations from the fall:
• O&C
• S&C Blueprint

Time(ms) Fraction(%)

Total 920.4 100

ParticleNet 43.4 4.7

DeepTau 22.3 2.4

DeepMET 14.0 1.5

Sum 89.7 8.6

RUN 2

*11-12% for 
Run 3 miniAOD

https://indico.cern.ch/event/766872/contributions/3357992/attachments/1831591/2999672/ParticleNet_IML_20190417_H_Qu.pdf
https://arxiv.org/abs/1902.08570
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DeepPFMET
https://drum.lib.umd.edu/handle/1903/26843
https://cms.cern.ch/iCMS/analysisadmin/cadilines?id=2333&ancode=TAU-20-001&tp=an&line=TAU-20-001
https://indico.cern.ch/event/1038542/
https://indico.cern.ch/event/868940/contributions/3813676/attachments/2081474/3496242/AndreaCardini-ICHEP2020-DeepTau.pdf
http://cds.cern.ch/record/2694158/files/DP2019_033.pdf
https://indico.cern.ch/event/1087458/
https://indico.cern.ch/event/1088913/


• Servers load the model files (PRs: DeepTau, DeepMET, ParticleNet)
• Three SONIC Producers to do the pre/post-processing and handle the IOs 

for model inferences (PRs: DeepTau, DeepMET, ParticleNet)
• We validated object by object that the output between the regular workflow and 

SONIC producers are identical (up to the numerical precision)
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Explicit Workflow

https://github.com/cms-tau-pog/RecoTauTag-TrainingFiles/pull/16
https://github.com/cms-data/RecoMET-METPUSubtraction/pull/6
https://github.com/cms-data/RecoBTag-Combined/pull/48
https://github.com/cms-tau-pog/cmssw/pull/159
https://github.com/cms-sw/cmssw/pull/37963
https://github.com/cms-sw/cmssw/pull/37964


• Workflow can be deployed in a variety of 
computing contexts
• Google Cloud: Triton server on cloud VM, with 

client-side CPUs also in cloud.  Effectively, use cloud 
as a scalable, temporary tier 2
• Current Tier 2 (Purdue): 2 T4s available – client CPUs 

at Purdue (can also use cloud GPUs)
• HPC computing cluster (NTU - NCHC): Many GPUs 

available – client CPUs in Taiwan (can also use cloud 
GPUs)

• NOTE: Can use CPUs at one site to communicate 
with GPUs at another site
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Production testbeds



• In the IaaS paradigm, GPU server is wholly separate from client side
• Triton provides a variety of native tools to explore model performance

• Using these tools, we can explore different model configurations to 
achieve peak throughput
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Optimization: understanding our models

Triton server 
makes 

inferences with 
random inputs

Configure:
• #concurrent requests
• Batch size
• #model instances
• Model flavor

Throughput Results
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Optimization: perf_client examples
• Tests performed with a Triton server on 1 NVIDIA T4 GPU

• Single model is loaded into server, and triton’s perf_client feeds in random inputs to 
determine throughputs

• Examples of what we can learn:
• Expected throughputs
• Optimal configuration
• “Best” version of model if multiple available

TRT* outperforms bare ONNXPyTorch preferred at higher 
batch size (number of jets 
inferenced at once)

Peak expected performance at 
batch size ~60 jets

*TRT=TensorRT.  An NVIDIA-specific 
algorithm to optimize performance 
on NVIDIA GPUs
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Optimization: saturation scan examples

Results for TRT-ized version of PN-AK4.  1 GPU can handle about 115 simultaneous 4-threaded 
jobs, but for server setup, might want to use ~105 jobs to be safe

• We also want to know how many client-side 
jobs a single GPU can handle
• Allows us to reach the GPU-per-CPU “sweet spot”
• Also allows us to calculate how many GPUs we need

Adjust the number of GPUs per 
client-CPU core to get as close to the 

“sweet spot” as possible

Inference as a Service:



• Optimization can be performed with just 
a few GPUs per algorithm of interest
• For a demonstration of how this scales 

up, we can deploy ~100 GPUs to service 
thousands of CPU nodes, all in the cloud

P. McCormack – Particle Physics in the Cloud 14

Demonstration: Scale tests

Here, we ran with 10,000 CPU cores and ~100 GPUs, 
achieving expected speed-up in processing.  NOTE:
with direct inference (say 32-to-1 CPU to GPU ratio), 
this would take ~300 GPUS

AK4

DT

AK8

DM
Our servers are on VMs 
behind a Kubernetes load 
balancer – DT achieved 
throughputs close to 12 GB/s



• Comparing the throughputs 
between one server at Purdue and 
one server in Google Cloud VM
• CMSSW jobs running at Purdue T2 

(Run-3) workflow
• Similar results between Purdue server 

and GCP server
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Demonstration: Server location robustness

*

*Improvements = fractional increase in throughput relative to CPU-only inference



• Why use SONIC?
• Increase throughput

• GPUs enable acceleration of ML algorithms
• Optimize GPU-to-CPU ratio

• Save money if looking to buy GPUs or increase 
utilization of current resources

• Flexibility of algorithm design + optimization
• Not restricted to currently supported frameworks 

in CMSSW
• Can tweak deployment parameters to optimize

inference rates and use e.g. TRT
• Not restricted to local GPUs

• You just need access to a GPU, you don’t need to 
buy one necessarily

• Bandwidth limitations not yet seen in realistic 
deployments
• We got up to 12 GB/s of data transfer for deepTau

in our scale tests
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SONIC: Summary of benefits
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Looking Forward



• On our to-do list: create resource 
allocation framework
• Assign GPUs to jobs
• Automated way to spin up GPU-based 

servers
• Ensure that we don’t saturate GPU 

resources
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GPU server deployment
Want to make this as easy 
as possible for users



• Beyond data processing, SONIC could be useful for analysis groups
• Let’s say you have a complex ML algorithm but no GPU
• Perhaps in the future, you could deploy a server on some collaboration-wide shared GPU 

resources and run using that
• “PySONIC” framework under development

• Implementing some additional Triton features, such as “ragged batching”
• E.g. Currently have to zero-pad tensors for ParticleNet, increasing network demands and 

latency
• “Ragged batching” makes zero-padding unnecessary

• New demonstrator algorithms under development (only possible with SONIC 
for now)
• ECAL Dynamic Reduction Network regression – PyTorch Geometric based algorithm [S. 

Rothman]
• SPVCNN algorithm to use depth information in HCAL clusterizing

• Algorithms in the pipeline
• MLPF
• Tracking as a service (ExaTrk or ACTS)
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Additional Projects

https://indico.cern.ch/event/1034469/contributions/4434644/attachments/2281338/3876248/Reconstructing%20Electrons%20and%20Photons%20in%20the%20CMS%20ECAL%20using%20Graph%20Neural%20Networks.pdf


• Coprocessors, such as GPUs are becoming increasingly important
• But they can be expensive and not widely available

• SONIC is a powerful tool to optimize coprocessor utilization and 
availability
• Already demonstrated to deliver expected throughput increases at large scale 

for MiniAOD reprocessing

• Physics case for SONIC: we can deploy models in any format 
supported by Triton and even make custom backends
• More flexibility than what is currently in CMSSW!

• Working on robustness studies and developing ease-of-use tools
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Summary
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Backup



• Currently available:
• TritonService: tracks available servers and 

models
• Local fallback server: will automatically start a 

server on local GPU or on CPU if model not on 
remote server

• Shared memory: can speed up inference on local 
servers – for CPU uses memory-backed 
temporary file system and for GPU uses CUDA to 
copy directly to GPU memory

• I/O compression: Use some CPU resources to 
compress I/O to use less bandwidth

• SSL Authentication support
• CMSSW ProcessModifier “enableSonicTriton” 

turns on SONIC features
• Also “allSonicTriton” to enable full workflow

SONIC Features and Performance - Patrick McCormack 22

SONIC: Some Current Features
• Still to come:

• Client-side ragged batching – use of 
different size inputs vectors within 
the same batch; in contact with 
NVIDIA now (3x speed up when 
ragged batching is used in direct CPU 
inference for ParticleNet jet tagging)



• We can choose how to distribute our models
over GPUs
• Difficult option to probe in perf_client

• Main options:
• Load every model onto every GPU
• Load models onto separate GPUs and run with 

multiple servers
• Use different combinations of models on GPUs

• In practice, we often see slightly better 
performance with split models
• ~3% fewer GPUs needed
• This is likely sample dependent (most R&D here 

used ttbar samples)
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Optimization: server deployment
• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

One IP address

4 IP addresses in this example

• AK8

• AK8

• AK8

• AK8

• AK8

• AK8

• DT • DT • DT • DM

• AK4

• AK4



• Disclaimer: in our Google Cloud VMs, we give each GPU 24 
CPU cores
• HOWEVER: this is because allowed bandwidth in Google Cloud is 

somewhat restricted based on the number of CPUs in a VM
• Triton doesn’t actually use all of these cores

• We can monitor the actual CPU utilization at the saturation point, 
as below
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Note: How many server-side CPUs do we need?

Model CPU utilization percent 
(24 cores available)

Cores used per GPU

PN AK4 TRT 4.8% 1.15

PN AK8 TRT (all 3 models) 8.4% 2.02

DeepTau TRT 8.93% 2.14

DeepMET 17.48% 4.19

ALL Models on 1 GPU 
(saturation at ~32 4-

threaded jobs)*
16.09% 3.86 *In this simplified scenario, 128 client-side cores are 

serviced by 1 GPU with 4 server-side CPUs

76 jobs/GPU 90 jobs/GPU 100 jobs/GPU

Example of bandwidth and CPU 
utilization monitoring in 2-GPU VM 
servicing DeepTau for runs with various 
numbers of synchronized jobs


