
Coprocessors for ML Algorithm Inference:
SONIC Features and Performance Updates

Patrick McCormack, Philip Harris, Jeffrey Krupa, Dylan Rankin, Simon Rothman (MIT)

Maria Acosta Flechas, Yongbin Feng, Burt Holzman, Kevin Pedro, Nhan Tran (FNAL)

Miaoyuan Liu, Stefan Piperov (Purdue)

Javier Duarte, Raghav Kansal, Nirmal Thomas (UCSD)

IML Monthly Meeting

July 5, 2022

1

2

Context

Traditional Inference

• ML algorithm inference rarely
optimized on CPU
• Simple approach = get a computer with

a GPU/FPGA/ASIC and perform “direct”
inference
• 1-to-1 correspondence of CPU to

coprocessor
• “Problems”:

• Limited (often non-optimal) usage of co-
processors

• Can also be expensive

3

Illustration of “direct” co-processor paradigm

• Alternative: treat co-processor as distinct server
• Here, CPUs act as clients, preprocessing data for

inference and making calls to server
• Advantages:

• CMSSW no longer needs to handle ML framework, just
preprocessing and I/O (can use otherwise unsupported
frameworks, like PyTorch)

• Take advantage of industry efforts; simple support
available for different co-processors with no need to
rewrite models

• One co-processor can service many CPUs – optimize
computational load

• Server can provide access to multiple types of co-
processor – choose best one on per-model basis

• Can access remote GPUs (only way to do this)!
• Portable, Simple, Containerizable, and Flexible

4

Inference as a Service (aaS)
Illustration of aaS paradigm

• For GPUS, we can use the NVIDIA Triton
Inference Server (more documentation & github)
• Supports Tensorflow, TensorRT, ONNX, and PyTorch,

XGBoost, Scikit Learn (BDT) models + Custom
backends

• In CMSSW: runs through SONIC (Services for
Optimized Network Inference on Coprocessors)
• Main code in SonicCore and SonicTriton
• Can make asynchronous inferences requests
• If GPU resource not available, automatically spins up

fallback server on CPU

5

Taking advantage of industry efforts

https://developer.nvidia.com/nvidia-triton-inference-server
https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/index.html
https://github.com/triton-inference-server/server/blob/r21.07/README.md
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicCore
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton

• Use acquire() and produce() functions to send/receive information
to/from server
• See example of use for DeepMET algorithm (and model file PRs)

6

SONIC Visualized

ASYNCHRONOUS

https://github.com/cms-sw/cmssw/pull/37963
https://github.com/cms-data/RecoMET-METPUSubtraction/pull/6

7

Workflow Demonstrator
– or –

The Benefits of SONIC

8

MiniAOD Demonstrator

• We made a MiniAOD demonstrator includes
SONICized versions of the algorithms circled
on the right
• ParticleNet – ONNX model for jet tagging (AK4,

AK8 flavor, AK8 MassRegression, and mass)
decorrelator
• See presentation and paper

• DeepMET – TF MET calculation
• See internal twiki, Yongbin’s thesis

• DeepTau – TF model with CNN for tau ID
• CADI, approval talk, also these older slides

• These account for ~9% of total miniAOD
production latency*
• This was all run on a ttbar dataset

• Presentations from the fall:
• O&C
• S&C Blueprint

Time(ms) Fraction(%)

Total 920.4 100

ParticleNet 43.4 4.7

DeepTau 22.3 2.4

DeepMET 14.0 1.5

Sum 89.7 8.6

RUN 2

*11-12% for
Run 3 miniAOD

https://indico.cern.ch/event/766872/contributions/3357992/attachments/1831591/2999672/ParticleNet_IML_20190417_H_Qu.pdf
https://arxiv.org/abs/1902.08570
https://twiki.cern.ch/twiki/bin/viewauth/CMS/DeepPFMET
https://drum.lib.umd.edu/handle/1903/26843
https://cms.cern.ch/iCMS/analysisadmin/cadilines?id=2333&ancode=TAU-20-001&tp=an&line=TAU-20-001
https://indico.cern.ch/event/1038542/
https://indico.cern.ch/event/868940/contributions/3813676/attachments/2081474/3496242/AndreaCardini-ICHEP2020-DeepTau.pdf
http://cds.cern.ch/record/2694158/files/DP2019_033.pdf
https://indico.cern.ch/event/1087458/
https://indico.cern.ch/event/1088913/

• Servers load the model files (PRs: DeepTau, DeepMET, ParticleNet)
• Three SONIC Producers to do the pre/post-processing and handle the IOs

for model inferences (PRs: DeepTau, DeepMET, ParticleNet)
• We validated object by object that the output between the regular workflow and

SONIC producers are identical (up to the numerical precision)
9

Explicit Workflow

https://github.com/cms-tau-pog/RecoTauTag-TrainingFiles/pull/16
https://github.com/cms-data/RecoMET-METPUSubtraction/pull/6
https://github.com/cms-data/RecoBTag-Combined/pull/48
https://github.com/cms-tau-pog/cmssw/pull/159
https://github.com/cms-sw/cmssw/pull/37963
https://github.com/cms-sw/cmssw/pull/37964

• Workflow can be deployed in a variety of
computing contexts
• Google Cloud: Triton server on cloud VM, with

client-side CPUs also in cloud. Effectively, use cloud
as a scalable, temporary tier 2
• Current Tier 2 (Purdue): 2 T4s available – client CPUs

at Purdue (can also use cloud GPUs)
• HPC computing cluster (NTU - NCHC): Many GPUs

available – client CPUs in Taiwan (can also use cloud
GPUs)

• NOTE: Can use CPUs at one site to communicate
with GPUs at another site

10

Production testbeds

• In the IaaS paradigm, GPU server is wholly separate from client side
• Triton provides a variety of native tools to explore model performance

• Using these tools, we can explore different model configurations to
achieve peak throughput

11

Optimization: understanding our models

Triton server
makes

inferences with
random inputs

Configure:
• #concurrent requests
• Batch size
• #model instances
• Model flavor

Throughput Results

12

Optimization: perf_client examples
• Tests performed with a Triton server on 1 NVIDIA T4 GPU

• Single model is loaded into server, and triton’s perf_client feeds in random inputs to
determine throughputs

• Examples of what we can learn:
• Expected throughputs
• Optimal configuration
• “Best” version of model if multiple available

TRT* outperforms bare ONNXPyTorch preferred at higher
batch size (number of jets
inferenced at once)

Peak expected performance at
batch size ~60 jets

*TRT=TensorRT. An NVIDIA-specific
algorithm to optimize performance
on NVIDIA GPUs

13

Optimization: saturation scan examples

Results for TRT-ized version of PN-AK4. 1 GPU can handle about 115 simultaneous 4-threaded
jobs, but for server setup, might want to use ~105 jobs to be safe

• We also want to know how many client-side
jobs a single GPU can handle
• Allows us to reach the GPU-per-CPU “sweet spot”
• Also allows us to calculate how many GPUs we need

Adjust the number of GPUs per
client-CPU core to get as close to the

“sweet spot” as possible

Inference as a Service:

• Optimization can be performed with just
a few GPUs per algorithm of interest
• For a demonstration of how this scales

up, we can deploy ~100 GPUs to service
thousands of CPU nodes, all in the cloud

P. McCormack – Particle Physics in the Cloud 14

Demonstration: Scale tests

Here, we ran with 10,000 CPU cores and ~100 GPUs,
achieving expected speed-up in processing. NOTE:
with direct inference (say 32-to-1 CPU to GPU ratio),
this would take ~300 GPUS

AK4

DT

AK8

DM
Our servers are on VMs
behind a Kubernetes load
balancer – DT achieved
throughputs close to 12 GB/s

• Comparing the throughputs
between one server at Purdue and
one server in Google Cloud VM
• CMSSW jobs running at Purdue T2

(Run-3) workflow
• Similar results between Purdue server

and GCP server

15

Demonstration: Server location robustness

*

*Improvements = fractional increase in throughput relative to CPU-only inference

• Why use SONIC?
• Increase throughput

• GPUs enable acceleration of ML algorithms
• Optimize GPU-to-CPU ratio

• Save money if looking to buy GPUs or increase
utilization of current resources

• Flexibility of algorithm design + optimization
• Not restricted to currently supported frameworks

in CMSSW
• Can tweak deployment parameters to optimize

inference rates and use e.g. TRT
• Not restricted to local GPUs

• You just need access to a GPU, you don’t need to
buy one necessarily

• Bandwidth limitations not yet seen in realistic
deployments
• We got up to 12 GB/s of data transfer for deepTau

in our scale tests

16

SONIC: Summary of benefits

17

Looking Forward

• On our to-do list: create resource
allocation framework
• Assign GPUs to jobs
• Automated way to spin up GPU-based

servers
• Ensure that we don’t saturate GPU

resources

18

GPU server deployment
Want to make this as easy
as possible for users

• Beyond data processing, SONIC could be useful for analysis groups
• Let’s say you have a complex ML algorithm but no GPU
• Perhaps in the future, you could deploy a server on some collaboration-wide shared GPU

resources and run using that
• “PySONIC” framework under development

• Implementing some additional Triton features, such as “ragged batching”
• E.g. Currently have to zero-pad tensors for ParticleNet, increasing network demands and

latency
• “Ragged batching” makes zero-padding unnecessary

• New demonstrator algorithms under development (only possible with SONIC
for now)
• ECAL Dynamic Reduction Network regression – PyTorch Geometric based algorithm [S.

Rothman]
• SPVCNN algorithm to use depth information in HCAL clusterizing

• Algorithms in the pipeline
• MLPF
• Tracking as a service (ExaTrk or ACTS)

19

Additional Projects

https://indico.cern.ch/event/1034469/contributions/4434644/attachments/2281338/3876248/Reconstructing%20Electrons%20and%20Photons%20in%20the%20CMS%20ECAL%20using%20Graph%20Neural%20Networks.pdf

• Coprocessors, such as GPUs are becoming increasingly important
• But they can be expensive and not widely available

• SONIC is a powerful tool to optimize coprocessor utilization and
availability
• Already demonstrated to deliver expected throughput increases at large scale

for MiniAOD reprocessing

• Physics case for SONIC: we can deploy models in any format
supported by Triton and even make custom backends
• More flexibility than what is currently in CMSSW!

• Working on robustness studies and developing ease-of-use tools

20

Summary

21

Backup

• Currently available:
• TritonService: tracks available servers and

models
• Local fallback server: will automatically start a

server on local GPU or on CPU if model not on
remote server

• Shared memory: can speed up inference on local
servers – for CPU uses memory-backed
temporary file system and for GPU uses CUDA to
copy directly to GPU memory

• I/O compression: Use some CPU resources to
compress I/O to use less bandwidth

• SSL Authentication support
• CMSSW ProcessModifier “enableSonicTriton”

turns on SONIC features
• Also “allSonicTriton” to enable full workflow

SONIC Features and Performance - Patrick McCormack 22

SONIC: Some Current Features
• Still to come:

• Client-side ragged batching – use of
different size inputs vectors within
the same batch; in contact with
NVIDIA now (3x speed up when
ragged batching is used in direct CPU
inference for ParticleNet jet tagging)

• We can choose how to distribute our models
over GPUs
• Difficult option to probe in perf_client

• Main options:
• Load every model onto every GPU
• Load models onto separate GPUs and run with

multiple servers
• Use different combinations of models on GPUs

• In practice, we often see slightly better
performance with split models
• ~3% fewer GPUs needed
• This is likely sample dependent (most R&D here

used ttbar samples)

23

Optimization: server deployment
• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

• AK8 ParticleNet
• AK4 ParticleNet
• DeepTau
• DeepMet

One IP address

4 IP addresses in this example

• AK8

• AK8

• AK8

• AK8

• AK8

• AK8

• DT • DT • DT • DM

• AK4

• AK4

• Disclaimer: in our Google Cloud VMs, we give each GPU 24
CPU cores
• HOWEVER: this is because allowed bandwidth in Google Cloud is

somewhat restricted based on the number of CPUs in a VM
• Triton doesn’t actually use all of these cores

• We can monitor the actual CPU utilization at the saturation point,
as below

24

Note: How many server-side CPUs do we need?

Model CPU utilization percent
(24 cores available)

Cores used per GPU

PN AK4 TRT 4.8% 1.15

PN AK8 TRT (all 3 models) 8.4% 2.02

DeepTau TRT 8.93% 2.14

DeepMET 17.48% 4.19

ALL Models on 1 GPU
(saturation at ~32 4-

threaded jobs)*
16.09% 3.86 *In this simplified scenario, 128 client-side cores are

serviced by 1 GPU with 4 server-side CPUs

76 jobs/GPU 90 jobs/GPU 100 jobs/GPU

Example of bandwidth and CPU
utilization monitoring in 2-GPU VM
servicing DeepTau for runs with various
numbers of synchronized jobs

