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PHENOMENOLOGY GROUP 
•created in Jan 2018 as an aggregation of pheno activity within LIP [9.0 FTE]


◦ Heavy Ion Pheno Group that had joined LIP from CENTRA@IST one year and half earlier


◦ pheno activities [SM/BSM and quarkonia] by members of experimental collaborations [ATLAS and CMS]


◦ cosmic-ray pheno activity by some Auger members 


•stated aim: LIP’s Phenomenology group conducts research bridging theory and experiment in particle and astro-particle 
physics. Its research, while independent, is centred around areas in which LIP has active experimental activities and aims to 
identify areas in which LIP’s broader programme may evolve in the future. Its purpose is to strengthen the impact of the 
overall LIP programme through the provision of excellent directed phenomenological research.


•group very involved in creation of ‘Big Data and Simulation Competence Centre’ at LIP :: a pool of knowledge usable 
across LIP’s activities


•by 2022 the group has approximately doubled its workforce (20.3 FTE Researchers and PhD/MSc students) across LIP’s 
poles (Lisboa, Coimbra, Braga) with two main lines of work:


◦ New Physics Searches [mostly in Braga]


◦ QCD[mostly in Lisboa]
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a disclaimer: non-perturbative QCD work is carried out in the NP-STRONG group



PEOPLE INVOLVED IN QCD ACTIVITIES :: RESEARCHERS
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Guilherme Milhano [Lisboa], 

current team leader

QCD [jet physics, QGP, CGC]

Liliana Apolinário [Lisboa], 

QCD [jet physics, QGP]

Grigorios Chachamis [Lisboa], 

QCD [forward physics, BFKL]

João Pires [Lisboa], 

QCD [precision, jets, PDFs]

Pablo Guerrero [Lisboa], 

QCD [CGC, jets]

Pietro Faccioli [Lisboa], 

QCD [quarkonia] 

:: also CMS and COMPASS/AMBER

Nuno Castro [Minho], 

NP Searches [but also QCD ML activities]

:: also ATLAS

Miguel Romão  [Minho], 

NP Searches [but also QCD ML activities]

:: also Private Sector

Ricardo Gonçalo  [Coimbra], 

NP Searches [but also QCD jet activities]

:: also ATLAS Carlos Lourenço, 


external collaborator

QCD [quarkonia]



PEOPLE INVOLVED IN QCD ACTIVITIES :: STUDENTS
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Mariana Araújo, PhD student [2019-]

Quarkonia

:: also CMS

João Gonçalves, PhD student [2021-]

Machine Learning for Jet Quenching

João Silva, PhD student [2021-]

Jet substructure 

:: will spend 1 year at IGFAE

André Cordeiro, PhD student [2022-]

Space-time formulation of  jet quenching

:: will spend 1 year at IGFAE

Dario Vaccaro, PhD student [straing Sep 2022]

BFKL Phyiscs

Tomás Cabrito, MSc student [2021-]

Generalized antennas

Francisco Barreiro, MSc student [2022-]

Quenching in small systems

Manuel Mariano, MSc student [2022-]

jet substructure in small systems

Lénea Luís, MSc student [2022-]

unbiased quenching observables

•3 additional photoless MSc students


◦ João Lopes :: coherence in QGP


◦ Nuno Olavo :: hadronization time-
scales


◦ João Gomes :: Deep Learning for jets



COLLABORATIONS
•our QCD activities happen within a large network of collaborations


◦ MIT, CERN-TH, Nikhef, Barcelona, Madrid, Lund, …
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COLLABORATIONS
•our QCD activities happen within a large network of collaborations


◦ MIT, CERN-TH, Nikhef, Barcelona, Madrid, Lund, …


•where the longest standing and most extensive collaboration is with IGFAE …
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Numerical analysis of the Balitsky-Kovchegov equation with running coupling: Dependence of the
saturation scale on nuclear size and rapidity

J. L. Albacete,1,2 N. Armesto,2 J. G. Milhano,2,3 C. A. Salgado,2 and U. A. Wiedemann2

1Departamento de Fı́sica, Módulo C2, Planta baja, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
2Department of Physics, CERN, Theory Division, CH-1211 Genève 23, Switzerland

3Instituto Superior Técnico (IST), CENTRA, Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal
(Received 20 August 2004; published 7 January 2005)

We study the effects of including a running coupling constant in high-density QCD evolution. For fixed
coupling constant, QCD evolution preserves the initial dependence of the saturation momentum Qs on the
nuclear size A and results in an exponential dependence on rapidity Y, Q2

s!Y" # Q2
s!Y0" exp$ !!sd!Y %

Y0"&. For the running coupling case, we rederive analytical estimates for the A and Y dependences of the
saturation scale and test them numerically. The A dependence of Qs vanishes / 1=

!!!!

Y
p

for large A and Y.
The Y dependence is reduced to Q2

s!Y" / exp!"0 !!!!!!!!!!!!!!

Y ' X
p

", where we find numerically "0 ’ 3:2. We study
the behavior of the gluon distribution at large transverse momentum, characterizing it by an anomalous
dimension 1% ", which we define in a fixed region of small dipole sizes. In contrast to previous analytical
work, we find a marked difference between the fixed coupling (" ’ 0:65) and running coupling ("( 0:85)
results. Our numerical findings show that both a scaling function depending only on the variable rQs and
the perturbative double-leading-logarithmic expression provide equally good descriptions of the numeri-
cal solutions for very small r values below the so-called scaling window.

DOI: 10.1103/PhysRevD.71.014003 PACS numbers: 12.38.Bx

I. INTRODUCTION

High-density QCD [1]—the regime of large gluon den-
sities—provides an experimentally accessible testing
ground for our understanding of QCD beyond standard
perturbation theory. The Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [2,3] is the perturbative framework in
which the evolution of parton densities with decreasing
Bjorken-x (increasing energy) is usually discussed. In the
BFKL equation it is implicitly assumed that the system
remains dilute throughout evolution and, hence, correla-
tions between partons can be neglected. The fast growth of
the gluon density predicted by the BFKL equation and
experimentally observed at the Hadron Electron Ring
Accelerator (HERA) located at the Deutsches
Elektronen-Synchrotron, eventually leads to a situation in
which individual partons necessarily overlap and, there-
fore, finite density effects need to be included in the
evolution. These effects enter the evolution nonlinearly,
taming the growth of the gluon density.

The need for and role played by saturation effects was
first discussed in Refs. [4,5]. It was later argued [6–8] that
in the high-density domain a hadronic object (hadron or
nucleus) can be described in terms of an ensemble of
classical gluon fields and that the number of gluons with
momenta smaller than the so-called saturation scale is as
high as it may be (i.e., saturated). The quantum evolution
of the hadronic ensemble can be written in terms of a
nonlinear functional equation [9–15] where the density
effects are treated nonperturbatively (see also [16,17]).

An alternative approach, followed by Balitsky [18],
relies on the operator product expansion for high-energy
QCD to derive a hierarchy of coupled evolution equations
(see [19] for a more compact derivation). In the limit of a

large number of colors, the hierarchy reduces to one closed
equation. This equation was derived independently by
Kovchegov [20] in the dipole model of high-energy scat-
tering [21–23].

The relation between these two approaches has been
extensively discussed [13–15,24–27]. Apart from possible
differences between the evolution equations in the kine-
matical region where the projectile becomes dense [24],
the different approaches yield the same result, usually
known as the Balitsky-Kovchegov (BK) equation. This
equation has served as the starting point for a large number
of analytical and numerical studies. It has also been derived
in the S-matrix approach of Ref. [28] and as the large-Nc
limit of the sum of fan diagrams of BFKL ladders [29,30].
It corresponds, as BFKL, to a resummation of the leading
terms in !s ln!s=s0" (leading-log approximation).

Although the full analytical solution of the BK equation
is not known, several of its general properties, such as the
existence and form of limiting solutions, have been iden-
tified in both analytical [31–37] and numerical [29,38–43]
studies. Most of them refer to the fixed coupling case
without impact parameter dependence, but analyses of
the effect of a running coupling [42,44– 48] and of the
dependence on impact parameter [49–51] have also been
carried out. Besides, there have been attempts to go beyond
the large-Nc limit, either by analytical arguments [52–54]
or by numerically solving the full hierarchy of evolution
equations [47]. In this latter work, nonleading Nc correc-
tions are found to give a contribution smaller than 10%–
15%, in qualitative agreement with what could be naively
expected from a numerical correction of O!1=N2

c". From a
phenomenological point of view, studies of the BK equa-
tion are motivated by the geometrical scaling phenomenon
observed in lepton-proton [55] and lepton-nucleus data
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a few examples of recent work 

[with focus on non-joint Pheno@LIP/IGFAE work] 



NNLO grids for jet production at the LHC
•New interpolation grids for numerous jet datasets at the LHC computed for ATLAS&CMS


•ingredients: → theory predictions from MC NNLOJET


•output → pQCD cross sections projected on grids in FASTnlo and APPLGRID formats 


•Interpolation of the MC cross section on a (x1,x2,Q2) grid allow fast recalculations of the 
cross section for several PDF and ⍺s values. Ex: CMS 8 TeV 3D dijet cross section:


 


•Grid size: few GB ; NNLO cross section evaluation time: few minutes


•Proofs of principle: → gluon PDF fit with HERA DIS+CMS 8 TeV dijet data with xfitter                                                                                                                                          
→  gluon PDF+⍺s fit at NNLO (for two renormalisation and factorization scale choices)             

J.Pires et al., NNLO interpolation grids for jet production at the LHC arXiv:2207.XXXX

Scale uncertainty bands: LO, NLO, NNLO

Gluon PDF fit: HERA DIS+CMS 8 
TeV 3D dijet data

Fitted ⍺s values obtained with the CMS 
dijet data and other jet cross sections

⍺s  scale uncertainties smaller at NNLO and 
smaller ⍺s values (CMS 3D dijet data)



Jet time reclustering [Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

● Recluster jets using the generalised-kT measure:

● Setting p = 0.5 (τ algorithm) clusters jets in formation time: 

● Allows selection of two populations

○ “Early” jets: τ < 1 fm/c (strongly modified)

○ “Late” jets: τ > 3 fm/c (weakly modified)

A jet quenching classifier: 
Important step towards a 

tomographic analysis of the QGP!
This choice maximises correlation between parton 

shower and jet reclustering information

Setting p = 0.5 minimises 
the width and asymmetry of 

the Δτ distribution

https://link.springer.com/article/10.1140/epjc/s10052-021-09346-8


Estimating jet formation times [Apolinário, Cordeiro, Zapp :: EPJC 81, 561 (2021)]

● Quantify the jet – parton shower correlation with the 
difference between formation times,

This distribution is quantified by its quartiles – to 
capture its asymmetry

Q2

Q1 Q3

The τ algorithm: most 
centred and symmetric 
distributions for both 
vacuum and medium 

samples

An unbiased estimator 
of jet formation time

https://link.springer.com/article/10.1140/epjc/s10052-021-09346-8


CLASSIFICATION OF QUENCHED JETS

•jet representations with varying theoretical input for different ML/DL architectures


◦ jet images :: Convolutional Neural Network (CNN)
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Apolinário, Castro, Crispim Romão, Milhano, Pedro, Peres,  :: JHEP 11 (2021) 219



CLASSIFICATION OF QUENCHED JETS

•jet representations with varying theoretical input for different ML/DL architectures


◦ jet images :: 2-channel [pT and multiplicity] calorimetric images in a grid centred on jet 
axis :: Convolutional Neural Network (CNN) :: channels both normalized and 
unnormalized 


◦ Lund plance coordinates :: Recurrent Neural Network (RNN) 
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Apolinário, Castro, Crispim Romão, Milhano, Pedro, Peres,  :: JHEP 11 (2021) 219



CLASSIFICATION OF QUENCHED JETS

•jets in pp and AA are mostly alike [they are QCD jets] but differences [modifications] are 
measurable [at an ensemble level]


◦ are differences enough to allow for discriminations on a jet-by-jet physics ?


◦ is there enough information for a machine to learn to tell them apart ?
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CLASSIFICATION OF QUENCHED JETS

•jet representations with varying theoretical input for different ML/DL architectures


◦ jet images :: 2-channel [pT and multiplicity] calorimetric images in a grid centred on jet axis 
:: Convolutional Neural Network (CNN) :: channels both normalized and unnormalized 


◦ Lund plance coordinates :: (kT, ΔR) for primary branch of C/A [angular ordered] 
declustering of jet :: Recurrent Neural Network (RNN) 


◦ Tabular data :: global (pT and multiplicity) for each jet :: Dense Neural Network (DNN)


•benchmark case with minimal information
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CLASSIFICATION OF QUENCHED JETS
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3.2 Performance of the Deep Learning Architectures

The outputs of the DL networks are shown in fig. 9 for the validation data set. During
network training, the Vacuum sample is identified with a true target value of 0 and the
Medium sample with 1. Thus, the distribution of the predicted labels should be closer to 1
for jets obtained from the Medium sample and closer to 0 for jets obtained from the Vacuum
simulation. This is observed for all DL architectures.

Figure 9: Distribution of the di�erent Deep Learning outputs for the Vacuum and Medium
samples.

The final goal of these classifiers is to identify jets that experienced strong jet quenching
e�ects. However, the Medium sample does not yield a pure sample of medium-modified jets,
containing also a collection of reconstructed jets that, probabilistically, did not experience
strong energy loss modifications (events for which xjZ ≥ 1). Nevertheless, while learning to
distinguish between the Vacuum and Medium samples, part of the network will learn the
e�ects of jet quenching on each data representation type. At the same time, this fact limits
the capacity of the models to discern between the pure vacuum-like jets (proton-proton
collisions) and medium-like jets (whose fragmentation pattern was modified by the presence
of in-medium scatterings and in-medium radiation).

The outputs provided by the RNN, DNN and CNN trained on unormalised images show
the best separation between the Medium and Vacuum samples generated by JEWEL+PYTHIA.
The e�ect shows up on the corresponding Receiver Operating Characteristic (ROC) curves

15

network outputs [discriminant]

Figure 10: ROC curve for the separation of the Vacuum and Medium samples using the
di�erent Deep Neural Network models.

represented in fig. 10, where the area under the ROC curve (AUC) is also reported. The
CNN for normalised images has the poorer AUC, 0.67, while the remaining models achieve
an AUC around 0.74. This is an indication that the jet absolute pT and number of con-
stituents play an important role on distinguishing between the Vacuum and Medium sam-
ples. In Section 4, we further investigate the outputs provided by the DL architectures
to understand if the two classes of jets identified by the networks are compatible with the
desired medium- versus vacuum-like jets separation.

Moreover, in table 3, we also present the AUCs obtained for the di�erent DL models
over the same samples after performing a pT > 125 GeV cut. The reason to do this is that
by increasing the minimum pT,jet, while keeping the same cut on pT,Z , we are discarding
most of the events with pT,Z <125 GeV on both samples (the few vacuum events that will
pass this cut will be the ones with a large ISR contamination; in the presence of a medium,
those will fall below the cut). Most of the selected events will then have a Z-boson with a
pT,Z that is near the momentum threshold for the jet. As such, while jet quenching e�ects
will still be present, the magnitude of those will be highly reduced by definition, since those
should come from the high end of the pT distribution. We observe that the AUCs obtained
with the DNN, RNN and CNN with unnormalised images decrease around 10% for jets
with pT >125 GeV, where the pT spectra are identical between the medium and vacuum

16

performance
Model pT,jet >30 GeV pT,jet >125 GeV
Normalised jet images CNN 0.67 0.65
Unnormalised jet images CNN 0.75 0.68
Lund sequences RNN 0.74 0.69
Global DNN 0.73 0.64

Table 3: Area under the ROC curve of the di�erent Deep Learning architectures for the
separation of the Vacuum and Medium samples in the pre-defined case (pT,jet > 30 GeV)
and in the large jet transverse momentum regime (pT,jet >125 GeV).

categories. Contrarily, the performance of CNNs trained on normalised images are only
slightly a�ected by the jet pT .

4 Results and interpretation of the Deep Learning architec-

tures

In order to investigate how the DL networks separate between jets reconstructed from the
Vacuum and Medium sample, we plot the predicted DL outputs versus xjZ in fig. 11.
Simultaneously, since xjZ is a good proxy for the quenching phenomenon at the jet level,
this allows evaluating the potential of the networks for a jet quenching tagging application.
The outputs of the di�erent DL architectures are nearly uncorrelated with xjZ for vacuum
(see appendix A), which is a desired property for the tagger since events for which xjZ di�ers
from 1 in the vacuum result from spurious e�ects, independent of jet quenching through
interaction with the QGP. On the other hand, the DNN, RNN and CNN from unnormalised
images have larger predictions for smaller values of xjZ , i.e. when the jet modification by
the medium is also larger on average. Therefore, these networks are predicting better
the labels of jets which are quenched and misidentifying as vacuum jets with lower xjZ ,
e�ectively behaving as a jet quenching classifier. Using normalised images, the CNN seems
only slightly correlated with xjZ , which means that in principle the decision boundary of
the model is not the most adequate for tagging quenched jets. Furthermore, in appendix A,
we inspect the correlations between the DL discriminants.

To test the results of the di�erent architectures, we created two samples of medium-like
and vacuum-like jets as identified by the output of each DL network. On both samples
generated by JEWEL+PYTHIA (Vacuum and Medium), we classified jets as quenched (if
the DL discriminant was above a given reference value) or vacuum (if the result was below).
This reference value was not optimised and it was chosen for illustration purposes only.
Taking the results of fig. 9, we set this reference cut to 0.7 except for the CNN trained on
normalised images, which was set to 0.6. A comparison of the resulting Z-boson spectra
contrasting the Monte Carlo truth is shown in fig. 12. We kept the solid lines representing
the Vacuum (orange) and Medium (blue) simulations withdrawn from JEWEL+PYTHIA,
while the open symbols reflect the selection identified by each network as being Vacuum

17



CLASSIFICATION OF QUENCHED JETS :: RECONSTRUCTED 
17
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Figure 14: Reconstructed jet radial profile (average number of constituents) r, for the dif-
ferent Deep Learning architectures. Monte Carlo truth from JEWEL+PYTHIA is provided
in solid symbols for the Vacuum and Medium samples and a subset of events selected by the
DL discriminant appears in open symbols. The DL output selection employed to identify
vacuum-like jets (open blue) and medium-like jets (open orange) is made explicit in the
legend of each plot.

that shows the highest deviation because it is trained only on the relative fragmentation. It
follows the Lund planes and unormalised jet images. We note that while the presence of jet
quenching will induce a narrower average jet radial profile, the opposite is not necessarily
verified. For this reason, the CNN trained on normalised images results into a more flat
xjZ distribution despite showing a selection of very narrow jets. On the other hand, the DL
networks exploring unnormalised images or Lund planes identify a not so narrow jet, but
that indeed lost a significant amount of energy relative to its initial momentum (pT,Z). The
Global DNN, whose training did not contain any information on the jet substructure, still
selects jets whose centre is depleted concerning the Medium sample. These jets are more
evenly populated, and thus likely to contain medium-induced radiation that travelled along
the jet direction. While retaining this energy, these jets continue to experience collisional
energy loss as its absolute multiplicity continues to be smaller than the Medium Monte
Carlo reference.

Finally, the results on the jet mass are shown in fig. 15. As mentioned before, this
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Figure 12: Transverse momentum spectra of the reconstructed Z-boson pT,Z , for the di�er-
ent Deep Learning architectures. Monte Carlo truth from JEWEL+PYTHIA is provided in
solid symbols for the Vacuum and Medium samples and a subset of events selected by the
DL discriminant appears in open symbols. The DL output selection employed to identify
vacuum-like jets (open blue) and medium-like jets (open orange) is made explicit in the
legend of each plot.

jets is also more flat when compared to the Medium sample. The distribution of the output
of this network (fig. 9) for the Medium and Vacuum sample overlaps significantly, making it
more di�cult to select a suitable reference value. Nonetheless, the medium-like xjZ provided
by this CNN seems to enhance medium-like features with respect to the medium sample as
its xjZ distribution is displaced towards smaller values. Training only on jet-wise variables,
such as the Global DNN, provides an excellent description of the vacuum xjZ . As expected,
using pT,jet during the training helps to describe observables that are exclusively sensitive
to energy loss e�ects. The medium-like xjZ provided by the Global DNN is shifted towards
the left and has approximately the same shape as the Medium Monte Carlo truth. By using
a more complete set of jet information - unnormalised images or Lund planes - we see that
the medium-like distribution selected by the corresponding DL architectures is even more
peaked at lower xjZ . The vacuum-like distribution is slightly displaced from the Monte
Carlo truth Vacuum sample. This might also hint that these networks can identify jets in
the Medium JEWEL+PYTHIA sample that did not experience major interactions with the

20

transverse momentum spectrum



HOW MANY OBSERVABLES IS ENOUGH?
18

Crispim Romão, Milhano, van Leeuwen,  :: in preparation

dimension of z equals the number of variables, the AE model will approach the identity348

function, obtaining perfect reconstruction without learning any relations.349

Beside the dimension z, which is the main parameter of interest in this analysis, there350

are number of hyperparameters that determine the training process of the AE, which need351

to be chosen: the number of the encoder and decoder layers, their width (i.e. the num-352

ber of nodes), the non-linear activation function, and optimisation details. Choosing the353

optimal combination of such parameters can be di�cult when performed manually. For354

this reason, we developed a hyperparameter optimisation loop using the python package355

optuna [21]. The network itself was implemented using TensorFlow [22], using its high-356

level API, Keras [23]. The hyperparameter space and optimisation details can be found357

in Appendix B.358

The hyperparameters are tuned for each value of the z dimension, in order to maximise359

the quality of the AE reconstruction, i.e. to minimise the spread in Eq. (14), or equivalently,360

R2, c.f. Eq. (13). Since optuna trains di↵erent models for each value of the dimension of the361

latent space on the pp training set, we take the average of R2 for the top five models in each362

step to assess the quality and stability of the optuna hyperparameter optimisation loop.363

This is shown in Fig. 14, where by comparing with the PCA analogous plot from Fig. 8, we364

see that the AE is capable to reproduce the data fairly well for lower dimensions of z than365

the number of components of the PCA, which is due to the AE capacity to learn non-linear366

relations in the data.367

Figure 14: MvL: Add PCA curveExplained variance R2 as a function of the number of
hidden dimensions nD in the deep autoencoder (mean of top 5 models, see text).

The value of R2 presented in Fig. 14 are an average of the R2 obtained by the quality of368

the reconstruction of each of the variables. In Fig. 15 we present the value of R2 per variable369

as we increase the dimension of the latent space. We see that with only one dimension, the370

AE learns the basic relations between what we have been calling angularity-type variables;371

most of the other variables are not described well. This suggests, just like in the PCA372
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Figure 18:

From the previous figure we now focus on ⌧1, ktD, and rz as the three variables that419

either in isolation or paired with the others appear to be specially sensitive to the presence420

of the medium. To illustrate the separation power for each of these variables, we find the421

cut value at which half of PbPb sample is accepted and calculate the rejection of pp events422

for each cut. Table 2 shows the cut values and the corresponding pp rejection e�ciency,423

which is 0.78 independent of the selection variable used.424
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analogous discussion to that presented before, while also capturing non-linear relations324

between the variables. Deep Auto-Encoders have been explored in HEP in the context of325

Anomaly-Detection in searches for new physics [17, 18, 19, 20], while here we will use them326

as a tool for data analysis.327

A Deep Auto-Encoder, AE, is a neural network architecture that attempts to minimise328

a loss function analogous to Eq. (12), i.e. attempt to reconstruct the inputs as they are329

fed-forward through the network, using a neural network with a bottleneck layer with a size330

much smaller than the number of variables. This means that the AE learns how to project331

the data into a lower dimensional space, i.e. to encode it, and then to reconstruct the inputs332

back to their original form, i.e. to decode it. This bottleneck layer is usually referred to as333

the latent space, z. A diagram of a Deep Auto-Encoder neural network structure can be334

seen in Fig. 13.335
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Figure 13: Deep Auto-Encoder schematic. In this schematic, the data has three variables,
both the encoder and the decoder have only one hidden layer with four nodes, and the
latent space has dimension equal to two.

The loss function used to train the AE is very similar to the once in the PCA, but instead336

of finding the optimal orthogonal transformation, we want to find the optimal non-linear337

map implicit in the AE338

min
w

E[kx�AE(x,w)k2] , (14)

where w are the trainable parameters of the neural network, AE, and x are the inputs, i.e.339

the data.340

The dimension of the latent space in the AE plays a similar role as the number of prin-341

cipal components in the PCA. In the PCA we observed that with lower number of principal342

components, the rotation had to maximise the amount of variance the first principal com-343

ponents could explain, capturing the most relevant mutual linear correlations. Likewise,344

we expect the AE to be able to capture the non-linear relations that explain the largest345

group of correlated variables at lower z, and progressively starts explaining more subtle346

e↵ects (and even noise) as we increase the number of z dimensions. In the limit that the347
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autoencoder :: learns non-linear relations amongst inputs

[PCA analysis — linear correlations only — also done]

correlations between observables encode a wealth 
of information

loss of predictive power signals sensitivity to QGP 
effects


