#### UHE interactions using data from the surface and radio detectors at the Pierre Auger Observatory



J. Alvarez-Muñiz<sup>1</sup>, L. Cazón<sup>1</sup>, R. Conceição<sup>2</sup>, M. Gottowick<sup>1</sup>, M. Martins<sup>1</sup>, G. Parente<sup>1</sup>, F. Riehn<sup>2,1</sup>, E. Zas<sup>1</sup> 1 IGFAE 2 LIP IGFAE-LIP Santiago 4 Jul 2022

# **Auger: Eev scale** Depends on HE extrapolations Can test particle physics beyond LHC

#### Average 2.42.22.0 $\langle R_\mu angle/(E/10^{19}\,{ m eV})$ Fe 1.61.2EPOS-LHC 1.0QGSJetII-04 SIBYLL-2.3c Auger 2019 Preliminary 0.8 $10^{19}$ $10^{20}$ E/eV



Shower maximum: First and second moments Depth of muon production:  $X_{\mu}^{max}$ Average number of muons:  $N_{\mu} => R_{\mu}$  Discrepancies more apparent when considering composition results from  $X_{max}$  measurements



Use variable "Z" to label composition as obtained using observable " $\alpha$ " This is because observables typically related to composition through "lnA"

$$z_{\alpha} = \frac{\langle \ln(\alpha) \rangle - \langle \ln(\alpha) \rangle_{p}}{\langle \ln(\alpha) \rangle_{Fe} - \langle \ln(\alpha) \rangle_{p}}$$

Z characterizes "lnA" assigning

0 for protons 1 for iron

### Muon deficit confirmed and measured in other energy ranges/experiments WHISP (transcollaborative effort) Inconsistency: $\Delta z = z(\mathcal{N}_{\mu}) - z(Xmax)$



J. Albrecht, L. Cazon, et al., Astrophys. and Space Science 367 (2022)

### Muon Measurements: SD => Inclined showers + ... Direct (AMIGA/AugerPrime)



Inclined reconstruction:
Fit 2D muon patterns for "muon size"
Universal pattern for given geometry
Signal scales with energy (Dependence on composition) (Dependence on hadronic model)

Standard SD reconstruction: Muon size is SD energy estimator Energy calibrated with FD Energy Calibration: Muon size correlated with energy measurement from FD



*Muon measurement =>* 

- Use hybrid data only
- Independent energy (i.e. FD)
- *Muon size => muon number*

A. Aab et al. Phys. Rev. D91 (2015) 032003 Err. Phys. Rev. D91 (2015) 059001 Phys. Rev. Lett. 126 (2021) 15, 152002

#### Fixing the Energy we can obtain distributions of muon number



A. Aab et al. Phys. Rev. Lett. 126 (2021) 15, 152002

MORE TO IT: Fluctuations (second moment) related to the first interaction! L. Cazon, R. Conceição & F. Riehn, Phys. Lett. B 784 (2018) 68-76



(Normalized to size) Consistent with  $X_{max}$ 

> Muon deficit is not due to 1st interaction i.e. **cummulative**

A. Aab et al. Phys. Rev. Lett. 126 (2021) 15, 152002

More links to 1st interaction:

Leading  $\pi^0$  production directed related to shape of  $\mathcal{N}_{\mu} \sim \mathcal{R}_{\mu}$  distribution

It appears possible to obtain further properties of first interaction With machine learning techniques



## Difficulties: STATISTICS

Inclined data is scarce in hybrid mode This becomes an issue for the 750-array Systematics must be minimized

Alternatives

- Calibrate with Radio
- Measure directly (AMIGA and AugerPrime developments)

### Muon measurements with Pierre Auger Observatory

$$z_{\alpha} = \frac{\langle \ln(\alpha) \rangle - \langle \ln(\alpha) \rangle_{p}}{\langle \ln(\alpha) \rangle_{Fe} - \langle \ln(\alpha) \rangle_{p}}$$



#### Muon measurements with Pierre Auger Observatory

$$z_{\alpha} = \frac{\langle \ln(\alpha) \rangle - \langle \ln(\alpha) \rangle_{p}}{\langle \ln(\alpha) \rangle_{Fe} - \langle \ln(\alpha) \rangle_{p}}$$



Plan for muon analysis:

Adjust inclined reconstruction for 750 m array Optimize reconstruction and migrate to Offline Prepare alternative calibration with AERA (radio data)

Objectives

- Infill data production for spectrum, muon content ...
- Obtain muon distributions and measure moments
- Extract parameters of leading p0 in first interaction
- Apply ML techniques for further properties of first interaction

