

Beyond the SM searches with LHCb

IGFAE Retreat 2021

Instituto Galego de Física de Altas Enerxías (IGFAE) Universidade de Santiago de Compostela (USC)

- •About 1500 members from 89 institutes in 19 countries.
- •624 papers, 48243 citations (June 27, 2022).

•Main focus on heavy quark flavour, but over the years LHCb has evolved to become almost a general purpose detector in the forward region.

•CKM & CPV, EW & QCD, semileptonic decays, rare decays, exotica searches, heavy ions and fixed target, spectroscopy...

IGFAE/USC is a founder institution of the collaboration (1995). 43 members now.

Responsibilities in the development, building and operation of the *Silicon Tracker* and the *VELO* detectors for the LHCb and LHCb Upgrade I experiments. Currently developing technologies for the LHCb Upgrade II.

Main research lines of the IGFAE group

- Lepton Flavour Universality in semileptonic decays of heavy mesons and hyperons
- Measurement of CP-violating observables in B meson decays
- Rare decays
- Exotica searches
- Proton-Lead collisions
- Reconstruction, Particle Identification and Real Time Analysis
- Beyond the Standard Model phenomenology
- Instrumentation for the LHCb Upgrades (and medical treatment)

Lepton Flavour Universality (LFU) in semileptonic decays

Test of LFU at tree level. Sensitive to charged Higgs bosons and leptoquarks

$$R(D^{(*)+}) = \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)+} \mu^- \bar{\nu}_{\mu})}$$

Publications with contributions from IGFAE members:

- Measurement of the ratio of the $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$ and $B^0 \rightarrow D^{*-}\mu^+\nu_{\mu}$ branching fractions using three-prong tau-lepton decays, Phys. Rev. Lett. 120, 17802 (2018).
- Test of lepton flavour universality by the measurement of the $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ branching fraction using three-prong decays, *Phys. Rev. D* 97, 072013 (2018).
- Review of Lepton Universality tests in B decays. J.Phys. G46 (2019) no.2, 023001.

Measurement of R(D^{(*)0}) using 3-prong hadronic tau decays

• Ongoing analysis: simultaneous measurement of

$$R(D^{0}) = \frac{\mathcal{B}(\boldsymbol{B}^{-} \to D^{0} \,\boldsymbol{\tau}^{-} \,\bar{\boldsymbol{v}}_{\tau})}{\mathcal{B}(\boldsymbol{B}^{-} \to D^{0} \,\boldsymbol{\mu}^{-} \,\bar{\boldsymbol{v}}_{\mu})} \qquad \qquad R(D^{*0}) = \frac{\mathcal{B}(\boldsymbol{B}^{-} \to D^{*0} \,\boldsymbol{\tau}^{-} \,\bar{\boldsymbol{v}}_{\tau})}{\mathcal{B}(\boldsymbol{B}^{-} \to D^{*0} \,\boldsymbol{\mu}^{-} \,\bar{\boldsymbol{v}}_{\mu})}$$

using 3-prong hadronic $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$ decays.

- Strategy:
 - Measurement of $\mathcal{B}(\mathbf{B}^- \to D^0 \mathbf{\tau}^- \bar{\nu}_{\tau})$ and $\mathcal{B}(\mathbf{B}^- \to D^{*0} \mathbf{\tau}^- \bar{\nu}_{\tau})$ with respect to the normalisation mode $\mathcal{B}(\mathbf{B}^- \to D^0 D_s^- (\to \pi^- \pi^+ \pi^-))$.

Measurement of R(D^{(*)0}) using 3-prong hadronic tau decays

- Much progress since last year:
 - Large simulation samples have been produced. \checkmark
 - Events selection optimised. \checkmark
 - Data and simulation samples processed. \checkmark
 - Fit to the normalisation mode. \checkmark
 - New fit framework based on RooFit created and tested. √
 - Dedicated studies of backgrounds. √
 - Fit to signal data. \checkmark
- Ongoing work:
 - Optimisation of background modelling.
 - Writing of analysis note.
- To be done:
 - Study of systematics.

Proton-Lead collisions

- Research line started in 2016
 - Unique acceptance of LHCb for proton-Ion collisions
 - Bjorken-*x* range in p-Pb 5 TeV collisions:
 - Forward 10⁻⁶<*x*<10⁻⁴
 - Backward 10⁻³<*x*<10⁻¹
 - Access to saturation region in perturbative scale $p_{\rm T}$ >1.5 GeV/*c*
- First Goal:
 - Nuclear modification factor $(R_{\rho Pb})$ in forward and backward regions:
 - Study of cold nuclear matter effects over a wide range of x.
 - Strong constrains to nuclear PDFs and saturation models at intermediate and very low x
 - Required result: determination of the proton-proton inelastic cross-section[LHCb Collaboration, JHEP06(2018)100 [arXiv:1803.10974] and Álvaro Dosil PhD thesis (also in hardware).

Backward $\eta < 0$

Forward $\eta > 0$

First public heavy ion results

- <u>LHCb</u> Collaboration <u>arXiv:2108.13115</u> Phys.Rev.Lett. 128 (2022), 142004
- Óscar Boente PhD thesis (09/09/2021)
- Determination of the double-differential cross-sections at 5 TeV
 - Unique input for Monte-Carlo generator tuning
- Measurement of R_{pPb} in the forward and backward regions
 - Comparison with nPDFs, pQCD and CGC predictions

Ongoing work and future prospects

- Ongoing •
 - Determination of R_{pPb} for pions, kaons and protons [Sara Sellam PhD]
 - Proton (baryon) R_{pPb} particularly interesting
 - Measurement of the charged particle average p_{T} with multiplicity in pPb and pp collisions [Imanol Corredoira PhD]
 - Information about particle production mechanism
 - Color re-connection required to explain tendency •
 - Strangeness production in proton-lead and proton-proton collisions [Clara Landesa PhD]
- Possible future analyses •
 - Particle flow with SMOG (fixed target) Heavy Ion collisions

ALI-PUB-103843

NIVERSIDAD SANTIAGO COMPOSTEL

LHCb Upgrade I

2019-2022

- Remove hardware trigger and read out the detector @ 40 MHz:
 - New front-end and back-end electronics
 - New vertexing and tracking systems
 - Fully software trigger
- Major upgrade of the apparatus

LHCb VELO Upgrade I

- **Primary tracking and vertexing detector** surrounding the collision region
 - In high vacuum (separated from the LHC vacuum by a RF foil)
- Pixel technology (formerly r/φ silicon microstrip)
 - More robust track reconstruction performance
 - Better resolution
 - Closer to beam (8.1mm to 5.1mm). <u>Two retractable halves</u>.
- Faster readout (1MHz to 40MHz)
- New ASIC VeloPix, based on TimePix family
- New micro-channel evaporative CO₂ cooling
- Some figures:
 - 52 modules, 624 VeloPix ASICs
 - $\circ \quad \ \ \text{Detector active area 0.12} \ m^2$
 - ~41 M pixels (55x55 μm²)
 - $\circ \quad \ \ \text{HV tolerance of 1000V}$
 - Trigger-less readout ~2.9 Tb/s
 - Highly non-uniform radiation (4MGy)

Feature	Old VELO	upgraded VELO
Sensors	R&Φ silicon strips semicircular	Pixel sensors, L shape geometry
Maximum fluence	4.3 ×10¹ 1 MeV neq cm⁻²	8 ×10¹⁵ 1 MeV neq cm⁻²
HV tolerance	500 V	1000 V
Readout rate	1 MHz	40 MHz
Total data rate	~150 Gb/s	~ 2.9 Tb/s
Power consumption	~ 0.8 kW	~ 1.6 kW
Operating Temp.	-8°C	-20°C

LHCb VELO Upgrade I installation

LHCb VELO Upgrade I installation

- 1st side of VELO installed on March 2nd.
- 2nd side of VELO completed in May 11th as foreseen at RRB.
- Commissioning of detector now proceeding
 well!!

LHCb Upgrades timeline

5/7/22

<u>European Strategy Update 2020</u> "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

LHCb Upgrade II

Same spectrometer footprint, innovative technology for detector and data processing

Key ingredients:

- granularity
- fast timing (few tens of ps)
- radiation hardness

Targeting same performance as in Run 3, but with pile-up ~40!

VELO R&D for LHCb Upgrade II: 4D Vertexing

- High temporal resolution (tens of ps) and high granularity (small pixels) at high rates:
 - Sensors (3D, iLGAD , thin planar...) production at CNM will finish Nov 2022.
 - Front-end and DAQ (TimePix4, and successors, most likely 28nm CMOs).
- AIDAinnova H2020-INFRAINNOV-2019-2020 (GA : 101004761) (2021-2025), RD50 ...
- Test beam campaigns this summer 2022
- Multichannel timing board
 - 16 Channel readout board with first and second stage amplifiers integrated
 - Regulated input Voltage
 - 15 mm x 15 mm central opening
 - Use of miniaturized coaxial connectors. High life cycle
 - First and second stage SiGe Transistor
 - Sensor board
 - Quick sensor test around
 - Simplified probing and reduce sensor damage
 - Temperature monitoring
 - Low noise
 - Low material budget and easy alignment

Infineon	BFR840L3RHESD	
G _{max}	26.5 dB	
I _c max	35.0 mA	
NF	0.5 dB	
OIP3	17.0 dBm	
OP1dB	4.0 dBm	
V _{CEO} max	2.25 V	
Frq. Range	Up to 12 GHz	

INIVERSIDADE

24 members

5 senior staff:

A. Gallas, A. Romero, J. Saborido, C. Santamarina, P. Vázquez.

2 postdoc:

S. Belin, A. Brossa

5 engineers/technicians: E. Lemos, A. Fernández, A. Pazos, E. Pérez, M. Seco.

9 PhD students:

B. García, A. Gioventú, J. Lomba, I. Corredoira, S. Sellan, C. Eirea, C. Landesa, E. Rodriguez, J. Novoa.

3 Master students:

J. I. Cambón, L. Carcedo, C. J. Barbero

Backup Slides

Publications in instrumentation (2019-2022)

- 1) The HEV Ventilator: at the interface between particle physics and biomedical engineering. J. Buytaert et. al. <u>https://royalsocietypublishing.org/doi/10.1098/rsos.211519</u>
- 2) PhD Thesis: Development of electronics for the VELO upgrade detector. Antonio Fernández Prieto. Supervisor: Pablo Vázquez. November the 24th 2020.
- 3) Readout Firmware of the Vertex Locator for LHCb Run 3 and Beyond. IEEE Transactions on Nuclear Science. (2021) DOI:10.1109/TNS.2021.3085018.
- 4) Phase I Upgrade of the Readout System of the Vertex Detector at the LHCb Experiment. IEEE Trans.Nucl.Sci. (2020) DOI: 10.1109/TNS.2020.2970534.
- 5) LHCb VELO Timepix3 telescope. 2019 JINST 14 P05026. DOI:10.1088/1748-0221/14/05/P05026.

4D Vertexing

- 4D tracking
- Ensures similar performance to Upgrade I
 - $\sim 50 \text{ps}, 50 \mu \text{m}^2$
- Extreme lifetime fluence
 - $-\ 6\times 10^{16}n_{eq}/cm^2$

LHCb VELO Upgrade I

- "Old" Inner Tracker (IT) dismantled at LHCb cavern
- VELO readout system developments:
 - DAQ, Control and Synch firmware
- VELO detector Design, Construction and QA:
 - 320 High-speed data links (D,C,QA)
 - 190 High Voltage tapes (C,QA)
 - 52 Vacuum Feedthrough and Optical Power Boards (C,QA)

LHCb VELO Upgrade I

• Validation of a complete VELO slice :

- Microchannel cooling: operation and QA
- Verification and optimization of on-detector electronics
- LV and HV systems
- Monitoring
- VELO installation :
 - 2 sides installed in March and May 2022
- VELO commissioning and calibration:
 - Monitoring and Control software for readout
 - FE ASICs calibration tools (software and firmware)

PhD Thesis (2019-2022)

- 1) Analysis of the production of charged particles in proton-nucleus and proton-proton collisions in the LHCb experiment. Óscar Boente García. 09/09/2021.
- Development of electronics for the VELO Upgrade Detector. Antonio Fernández Prieto. 24/11/2020.
- 3) Study of the $B^0 \rightarrow \rho K^*$ decay with an amplitude analysis of $B^0 \rightarrow (\pi \pi)(K\pi)$ decays. María Vieites Díaz. 27/03/2019.

- PID2019-110378GB-100. Ministerio de Ciencia e Innovación. IPs: A. Romero, A. Gallas. Budget: 869.627,00 €. 2020-2023
- 2020-PG054. Consolidación 2020. Modalidad C. Xunta de Galicia. IP: A. Romero. Budget: 115.000,00 €. 2020-2024
- 3) RyC2018-024626-I. IP: A. Romero. Budget: 40.000,00 €. 2020-2024
- 4) ED431C 2018/15. Xunta de Galicia. IP: J. Saborido. Budget: 400.000,00 €. 2019-2021
- 5) AIDAinnova H2020-INFRAINNOV-2019-2020 / H2020- INFRAINNOV-2020-2 (Grant Agreement number: 101004761).IP: A. Gallas, D. González. Budget: 75.000,00 €. 2021-2025
- 6) IGFAE/IGNITE. IP: E. Lemos, A. Pérez. Budget: 70.000,00 €. 2021-2022

The LHCb detector

Tier2 GRID computing

LHCb THCp

- The Spanish LHCb Tier2 center runs now only at IGFAE. It has produced over the years about the 5% of the LHCb-Tier2 integrated resources.
- At present we have 74 working nodes: 148 physical (1016 logical) cores delivering 10 kHS06

Sensors & Electronics (IGFAE/USC)

IGFAE/USC contributions to (already since 2008):

- **Sensors:**
 - Technology choice (strips vs pixels) Ο
 - R&D, sensor design, prototype construction Ο
 - Radiation resistance certification (neutron irradiations). Ο
- Front-end electronics qualification (VeloPix ASIC):
 - Design and construction ASIC PCB carrier, Needle Probe Card Ο
 - HV, High Speed Data Tapes and Vacuum Feed Through testing PCBs Ο
 - Electronic Design Review (https://indico.cern.ch/event/725985/) Ο
 - **Radiation hardness:** Ο
 - Single Event Effects studies
 - Total Ionization Dose certification (up to 400 Mrad) in the USC X-ray facility.
 - Testing and quality assurance Ο
- **Back-end electronics development:** 0
 - Workshop for the integration of VELO detector in the LHCb framework 0
 - 2 RO setups, based on Intel and Xilinx FPGAs, running at IGFAE/USC 0
 - Main Readout firmware developer 0

VELO Upgrade : 1st full readout chain test-beam

IGFAE Main contributor to the test-beam

Front-end electronics expert (IGFAE/USC) VELO DAQ and firmware coordinator

Back-end electronics expert (IGFAE/USC) Main firmware developer

- High temporal resolution and high granularity (small pixels) at high rates Vertexing for LHCb phase-II upgrade :
 - Sensors (3D, pixelated iLGAD, 3D, thin planar...)
 - Front-end and DAQ (TimePix4, and successors)
 - Test set-ups (Laser, X-ray, test-beam)
 - Radiation (Louvaine, Ljubljana, USC)
- R&D also done in collaboration with
 - different partners from RD50, ATTRACT (EU program) outside LHCb

Thick I-LGAD cross-section