Direct and indirect probes of Higgs CP violation

Stefania Gori UC Santa Cruz

LHC Higgs Working Group - Common WG2 and WG3 CP violation and Higgs Sector

June 23, 2022

Higgs and CP violation

In the Standard Model,

The only source of CP violation comes from the electroweak sector (CKM phase).
The Higgs has scalar couplings with SM particles.

We need to test these two statements!

From the experimental point of view,

The Higgs CP nature is one of the least known properties of the Higgs boson.
 By now, the CP-odd hypothesis is strongly disfavored.

What if the Higgs is a CP even - CP odd admixture?

Generically, UV scenarios (e.g. 2HDMs) involve extended Higgs sectors and the possibility of CPV Higgs couplings. **Constraints from electric dipole moments?**

Baryon asymmetry (typically) requires new sources of CPV

EDMs, experimental status & prospects

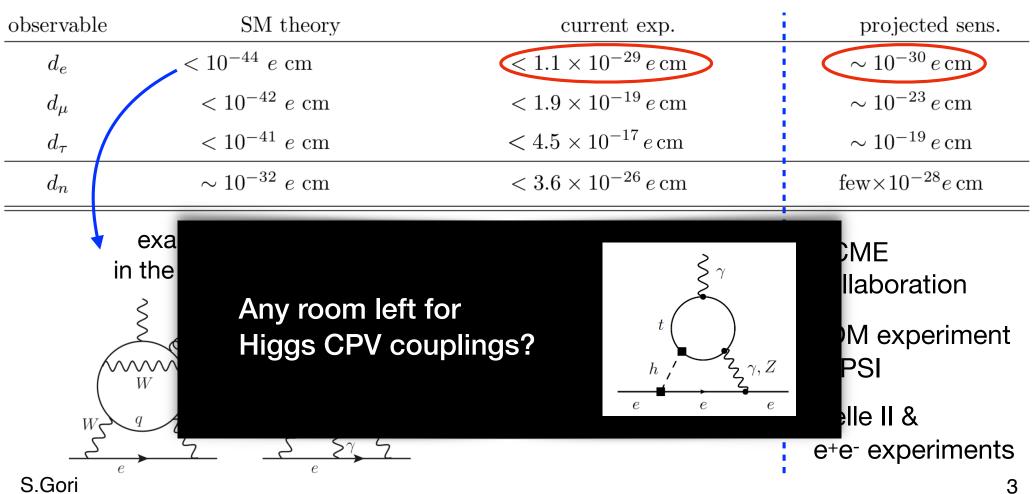
$$egin{aligned} \mathcal{L}_{ ext{eff}} = -\sum_{f}rac{id_{f}}{2}(ar{f}\sigma^{\mu
u}\gamma_{5}f)F_{\mu
u} \end{aligned}$$

from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

observable	SM theory	current exp.	projected sens.	
d_e	$< 10^{-44} \ e \ {\rm cm}$	$< 1.1 \times 10^{-29} e {\rm cm}$	$\sim 10^{-30} e \mathrm{cm}$	
d_{μ}	$< 10^{-42} \ e \ {\rm cm}$	$< 1.9 \times 10^{-19} e {\rm cm}$	$\sim 10^{-23} e \mathrm{cm}$	
$d_{ au}$	$< 10^{-41} \ e \ {\rm cm}$	$< 4.5 \times 10^{-17} e \mathrm{cm}$	$\sim 10^{-19} e \mathrm{cm}$	
d_n	$\sim 10^{-32} \ e \ {\rm cm}$	$< 3.6 \times 10^{-26} e {\rm cm}$	$few \times 10^{-28} e cm$	

EDMs, experimental status & prospects

$${\cal L}_{
m eff} = -\sum_f {i d_f \over 2} (ar f \sigma^{\mu
u} \gamma_5 f) F_{\mu
u}$$


from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

observable	SM theory	current exp.	projected sens.
d_e	$< 10^{-44} \ e \ {\rm cm}$	$< 1.1 \times 10^{-29} e \mathrm{cm}$	$\sim 10^{-30} e \mathrm{cm}$
d_{μ}	$< 10^{-42} \ e \ {\rm cm}$	$< 1.9 \times 10^{-19} e {\rm cm}$	$\sim 10^{-23} e \mathrm{cm}$
$d_{ au}$	$< 10^{-41} \ e \ {\rm cm}$	$< 4.5 \times 10^{-17} e \mathrm{cm}$	$\sim 10^{-19}e{\rm cm}$
d_n	$\sim 10^{-32} \ e \ {\rm cm}$	$< 3.6 \times 10^{-26} e {\rm cm}$	$few \times 10^{-28} e cm$
	example diagrams the Standard Model:	d _e : ACME collaboration	ACME collaboration
	$W \rightarrow \Theta $ $a \downarrow W \downarrow$	d_{μ} : g-2 collaboration	EDM experiment @ PSI
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d _τ : Belle collaboration	Belle II & e+e- experiments
S.Gori			3

EDMs, experimental status & prospects

$$egin{aligned} \mathcal{L}_{ ext{eff}} = -\sum_{f}rac{id_{f}}{2}(ar{f}\sigma^{\mu
u}\gamma_{5}f)F_{\mu
u} \end{aligned}$$


from Altmannshofer, SG, Patel, Profumo, Tuckler, 2002.01400

EDMs, naive bounds on Higgs CPV couplings (EFT approach)

If the Higgs has CP violating couplings:

$$\mathcal{L} \supset -\frac{y_f}{\sqrt{2}} \left(\kappa_f \, \bar{f}f + i \kappa_f \, \bar{f}\gamma_5 f \right) h$$

for example from dim. 6 operators: $\frac{c}{M^2}|H|^2 \bar{e}_L H e_R$

$$\frac{d_e}{e} = \frac{16}{3} \frac{\alpha}{(4\pi)^3} \sqrt{2} G_F m_e \left[\kappa_e \tilde{\kappa}_t f_1(x_{t/h}) + \tilde{\kappa}_e \kappa_t f_2(x_{t/h}) \right]$$

electron EDM bound
$$\stackrel{|\tilde{\kappa}_e|}{\longrightarrow} \begin{array}{l} |\tilde{\kappa}_e| \lesssim 1.7 \times 10^{-3} \\ |\tilde{\kappa}_t| \lesssim 1.0 \times 10^{-3} \end{array}$$

The complex 2HDM

Most general Higgs potential for a 2HDM with a softly broken Z₂ symmetry:

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{1}{2} (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} (\lambda_{5}) \Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.})$$

Only one independent phase

125 GeV
Higgs
$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \mathcal{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ A \end{pmatrix}$$

mass basis used
eigenstates above $\mathcal{R} = \begin{pmatrix} -s_{\alpha}c_{\alpha_2} & c_{\alpha}c_{\alpha_2} & s_{\alpha_2} \\ s_{\alpha}s_{\alpha_2}s_{\alpha_3} - c_{\alpha}c_{\alpha_3} & -s_{\alpha}c_{\alpha_3} - c_{\alpha}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ s_{\alpha}s_{\alpha_2}c_{\alpha_3} + c_{\alpha}s_{\alpha_3} & s_{\alpha}s_{\alpha_3} - c_{\alpha}s_{\alpha_2}c_{\alpha_3} & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$

The complex 2HDM

Most general Higgs potential for a 2HDM with a softly broken Z₂ symmetry:

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \frac{1}{2} (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.}) + \frac{1}{2} \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{1}{2} \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} (\lambda_{5}) \Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{h.c.})$$

Only one independent phase

Set of free parameters (phenomenological):

 $m_{h_1}, m_{h_2}, m_{h_3}, m_{H^{\pm}}, \alpha \text{ (or } x), \alpha_2, \nu, \tan \beta$

$$u \equiv rac{\operatorname{Re}(m_{12}^2)}{v^2 \sin 2\beta}, \ \ \alpha = \beta - \pi/2 + x$$

 α_3 will be a function of these parameters

125 Call

CPV couplings & Higgs rate measurements

$$\mathcal{L}_{ ext{Yuk}} = -rac{m_{f_i}}{v}(ar{f_i}\kappa_f^{(1)}f_i+iar{f_i}\gamma_5 ilde{\kappa}_f^{(1)}f_i)h_1$$

Free parameters for the Higgs pheno:

 $\alpha_2, x, \tan \beta, \nu$ only mildly entering through the Higgs self-coupling & Higgs coupling

to the other Higgs bosons

	Type I	Type II
$\kappa_u^{(1)}$	$c_{lpha_2}c_{lpha}$	$c_{lpha_2}c_{lpha}$
	s_{eta}	s_{eta}
$\mid \kappa_{d,\ell}^{(1)}$	$\frac{c_{\alpha_2}c_{\alpha}}{s_{\alpha}}$	$-rac{c_{lpha_2}s_{lpha}}{c_{lpha_2}}$
$ ilde{\kappa}_{u}^{(1)}$	$s_{oldsymbol{eta}}\ s_{oldsymbol{lpha}_2}$	$egin{array}{c_eta} s_{lpha_2} \end{array}$
	$-\overline{t_eta}$	$-\overline{t_eta}$
$ ilde{\kappa}_{d,\ell}^{(1)}$	$\frac{s_{lpha_2}}{}$	$-s_{lpha_2}t_eta$
	t_eta	

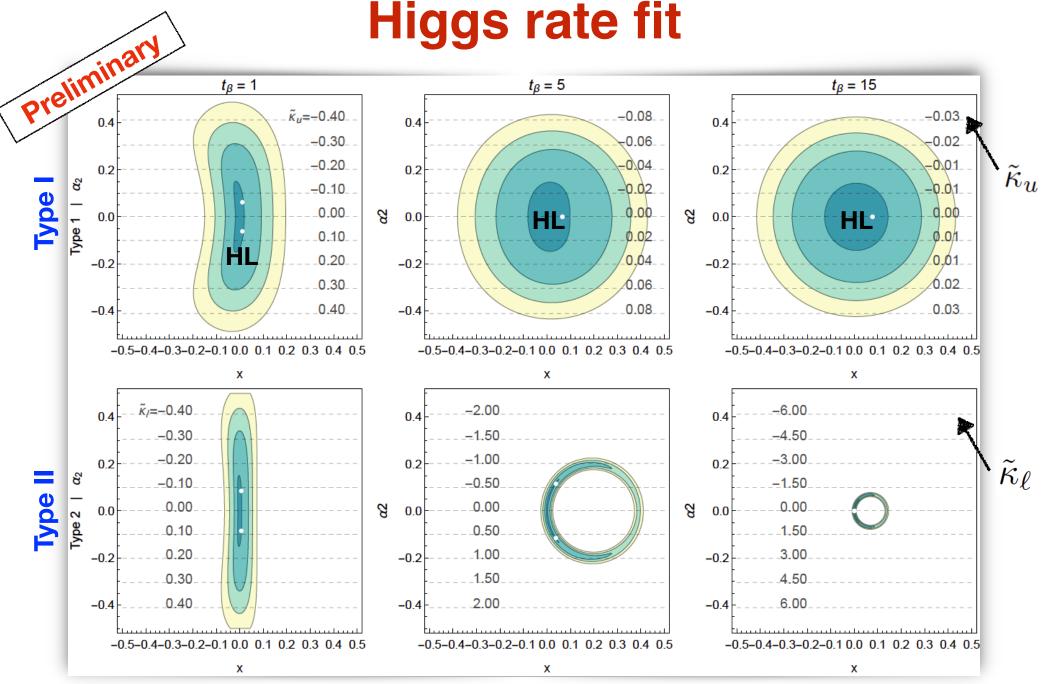
CPV couplings & Higgs rate measurements

$$\mathcal{L}_{ ext{Yuk}} = -rac{m_{f_i}}{v}(ar{f_i}\kappa_f^{(1)}f_i+iar{f_i}\gamma_5 ilde{\kappa}_f^{(1)}f_i)h_1$$

Free parameters for the Higgs pheno:

 $\alpha_2, x, \tan \beta, \nu$ only mildly entering through the Higgs self-coupling & Higgs coupling to the other Higgs bosons

	Type I	Type II
$\kappa_u^{(1)}$	$c_{lpha_2}c_{lpha}$	$c_{lpha_2}c_{lpha}$
	$s_{oldsymbol{eta}}$	$s_{oldsymbol{eta}}$
$\kappa^{(1)}_{d,\ell}$	$c_{lpha_2}c_{lpha}$	$-rac{c_{lpha_2}s_{lpha}}{-}$
	s_eta	c_eta
$ ilde{\kappa}_{u}^{(1)}$	$-\frac{s_{\alpha_2}}{4}$	$-\frac{s_{\alpha_2}}{l}$
\sim (1)	$t_eta\ s_{lpha_2}$	t_eta ,
$ ilde{\kappa}_{d,\ell}^{(1)}$	$rac{arphi_{lpha_2}}{t_eta}$	$-s_{lpha_2}t_eta$

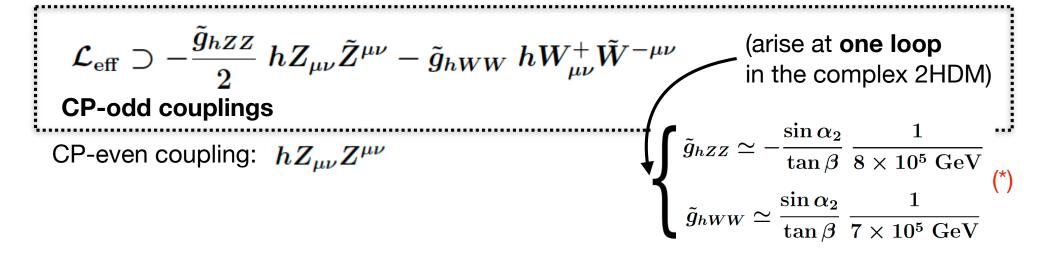

Some rates are easily scaled from the SM predictions:

e.g. $\Gamma(h_1 \to b\bar{b}) \simeq \Gamma(h \to b\bar{b})_{\rm SM}(|\kappa_d|^2 + |\tilde{\kappa}_d^{(1)}|^2)$

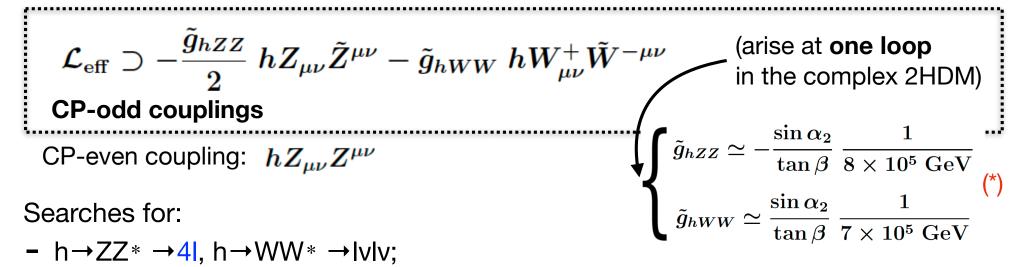
Some other rates are more complicated: e.g.

 $\sigma(gg \to h) \simeq \sigma(gg \to h)_{\rm SM} \times$

 $\times (1.1\kappa_u^2 + 3.6 \times 10^{-3}\kappa_d^2 - 0.12\kappa_u\kappa_d + 2.5(\tilde{\kappa}_u^{(1)})^2 + 3.6 \times 10^{-3}(\tilde{\kappa}_d^{(1)})^2 + 0.19\tilde{\kappa}_u^{(1)}\tilde{\kappa}_d^{(1)})$ S.Gori 6

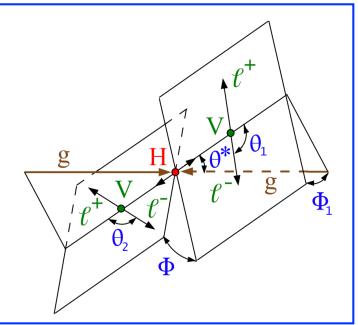


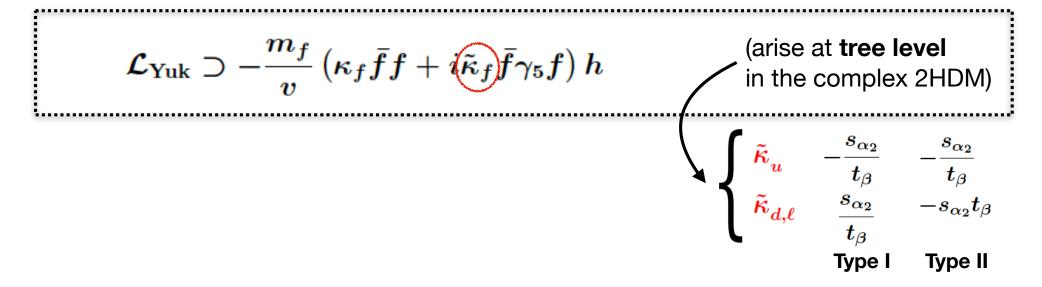
SG, Hamer, appearing soon



S.Gori

Direct searches for Higgs CPV (bosonic)

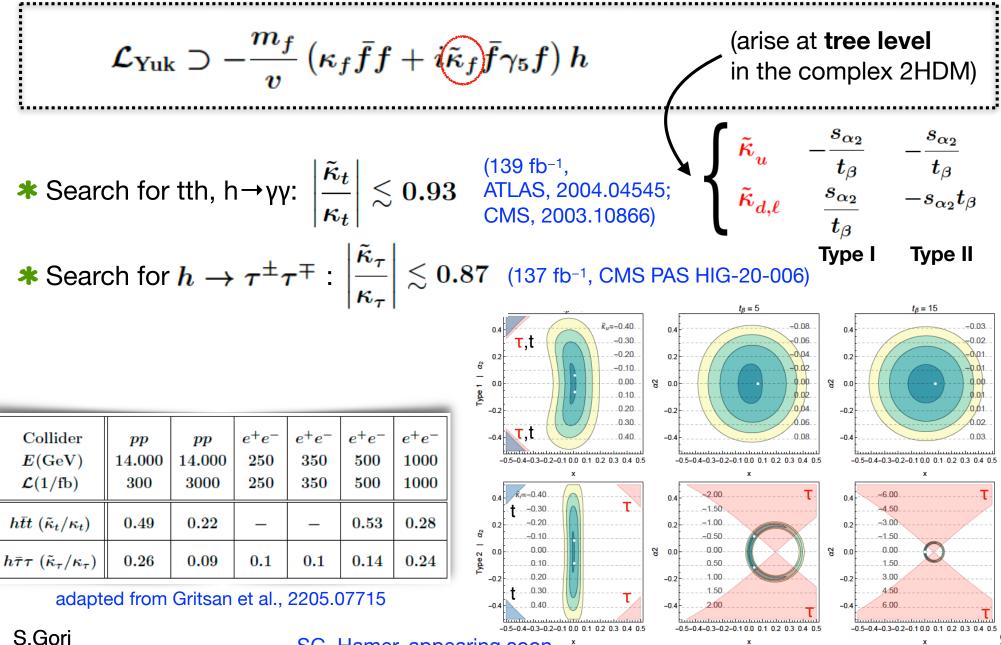

Direct searches for Higgs CPV (bosonic)


- $h \rightarrow \tau \tau$ with the Higgs produced in vector boson fusion;
- h → bb with the Higgs produced in association with a vector boson

 $\left\{ egin{array}{l} ilde{g}_{hZZ} \lesssim rac{1}{3 imes 10^3 \, {
m GeV}} \ (137 \ {
m fb}{}^{-1}, {
m CMS} \ {
m PAS} \ {
m HIG}{}^{-19-009}
ight)
ight. \ ilde{g}_{hZZ} \lesssim rac{1}{8 imes 10^3 \ {
m GeV}} \ ({
m HL}{}^{-LHC}, 1902.00134)
ight.$

(*) Challenging to probe CPV Higgs mixing angles arising from this minimal 2HDM

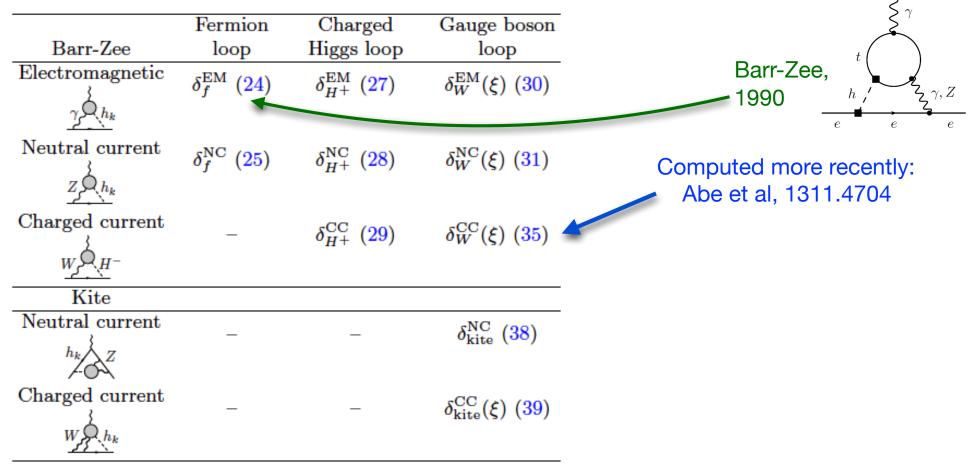
Direct searches for Higgs CPV (fermionic)


Direct searches for Higgs CPV (fermionic)

$$\mathcal{L}_{\text{Yuk}} \supset -\frac{m_f}{v} \left(\kappa_f \bar{f}f + i\tilde{\kappa}_f \bar{f} \gamma_5 f \right) h$$
 (arise at tree level
in the complex 2HDM)
* Search for tth, $h \rightarrow \gamma \gamma$: $\left| \frac{\tilde{\kappa}_t}{\kappa_t} \right| \lesssim 0.93$ (139 fb⁻¹,
ATLAS, 2004.04545;
CMS, 2003.10866) ($\tilde{\kappa}_u -\frac{s_{\alpha_2}}{t_{\beta}} -\frac{s_{\alpha_2}}{t_{\beta}} -s_{\alpha_2} t_{\beta}$
* Search for $h \rightarrow \tau^{\pm} \tau^{\mp}$: $\left| \frac{\tilde{\kappa}_{\tau}}{\kappa_{\tau}} \right| \lesssim 0.87$ (137 fb⁻¹, CMS PAS HIG-20-006) (Type I) Type II

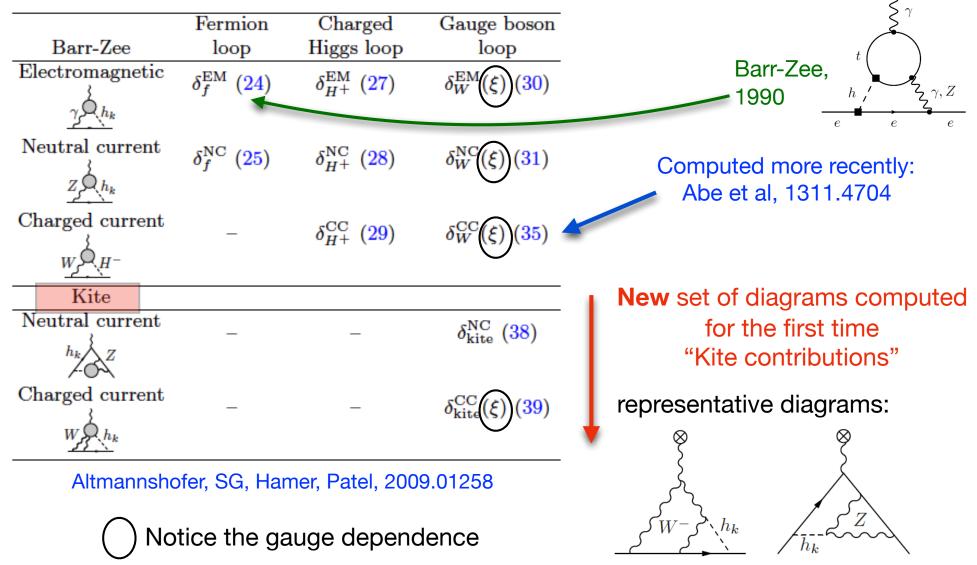
$egin{array}{c} { m Collider} \ E({ m GeV}) \ {\cal L}(1/{ m fb}) \end{array}$	<i>pp</i> 14.000 300	$\begin{array}{c} pp \\ 14.000 \\ 3000 \end{array}$	$e^+e^-\ 250\ 250$	$e^+e^-\ 350\ 350$	$e^+e^-\ 500\ 500$	e^+e^- 1000 1000
$har{t}t~(ilde{\kappa}_t/\kappa_t)$	0.49	0.22	_	_	0.53	0.28
$har{ au} au~(ilde{\kappa}_ au/\kappa_ au)$	0.26	0.09	0.1	0.1	0.14	0.24

adapted from Gritsan et al., 2205.07715


Direct searches for Higgs CPV (fermionic)

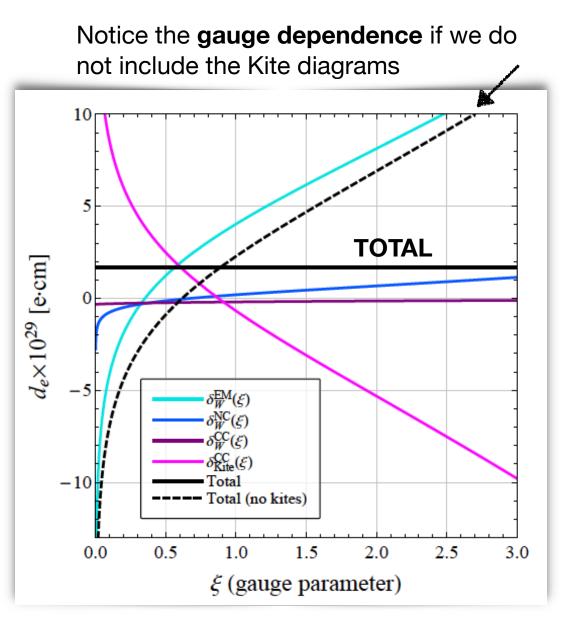
SG. Hamer, appearing soon

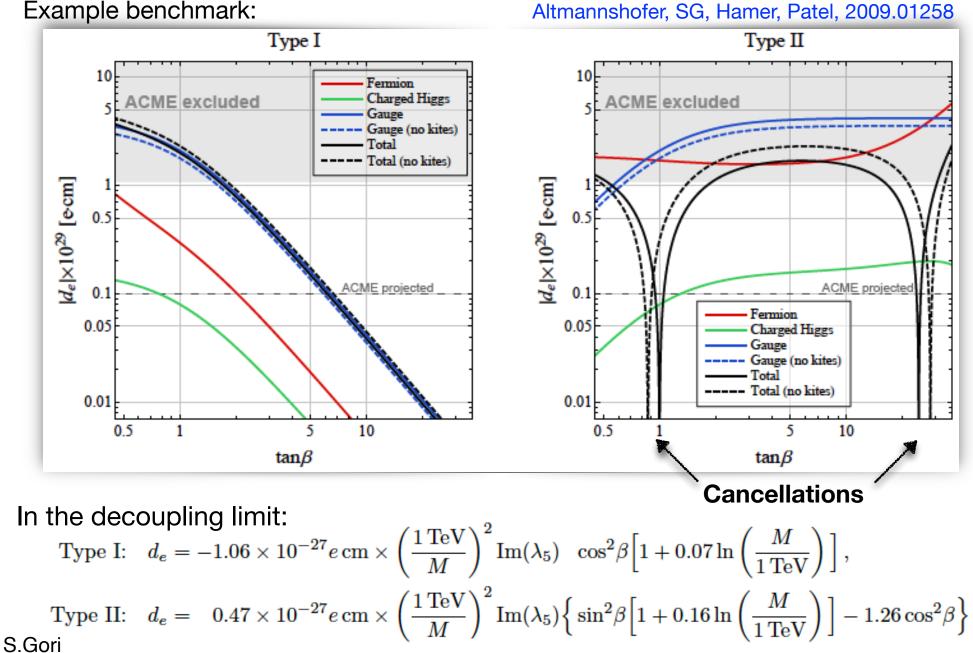
EDMs, a complete 2HDM study


Many contributions to the electron EDM:

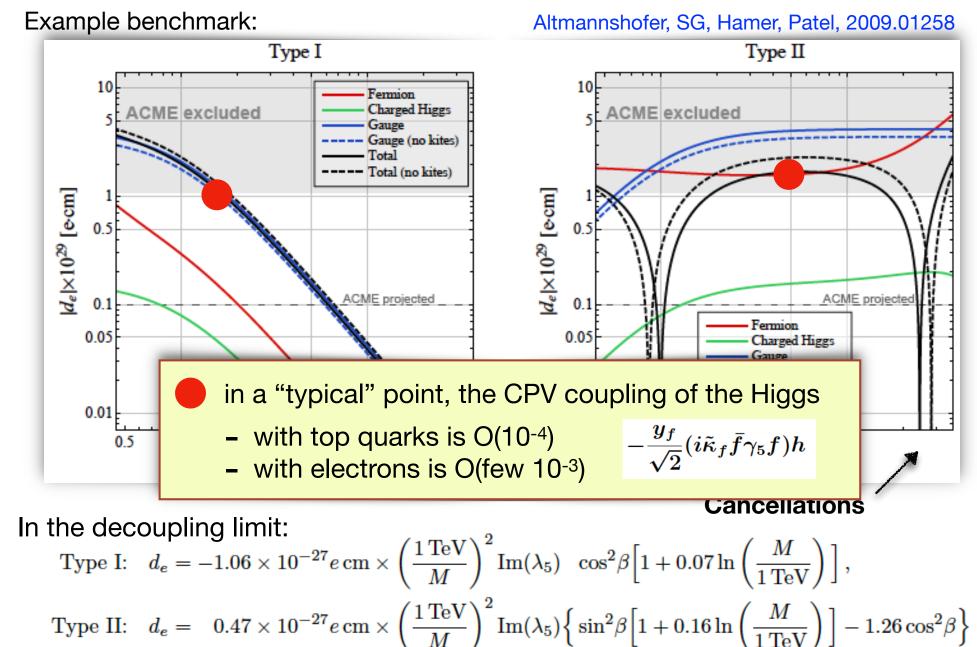
Altmannshofer, SG, Hamer, Patel, 2009.01258

EDMs, a complete 2HDM study

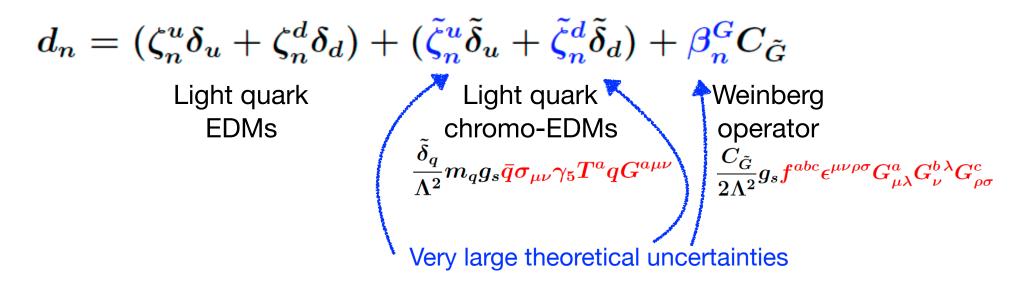

Many contributions to the electron EDM:

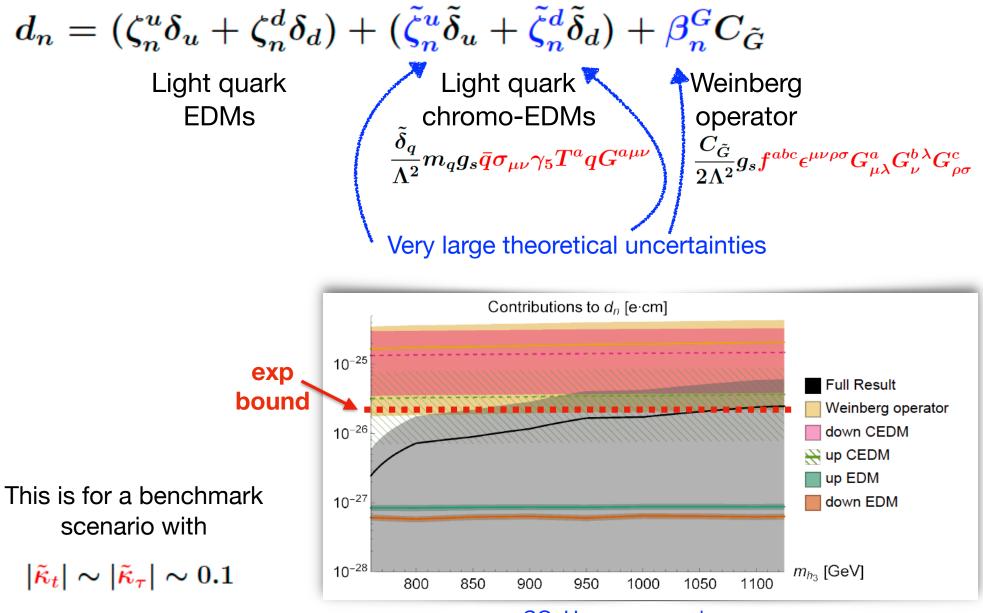

EDMs, a complete 2HDM study, gauge dependence

	Fermion	Charged	Gauge boson
Barr-Zee	loop	Higgs loop	loop
Electromagnetic γQ_{h_k}	δ_f^{EM} (24)	$\delta_{H^+}^{ m EM}$ (27)	$\delta_W^{ m EM}(\xi)$ (30)
Neutral current $Z \xrightarrow{Q} h_k$	$\delta_f^{ m NC}$ (25)	$\delta_{H^+}^{ m NC}$ (28)	$\delta_W^{ m NC}(\xi)$ (31)
Charged current $W \bigcirc H^-$	_	$\delta^{ m CC}_{H^+}$ (29)	$\delta_W^{ m CC}(\xi)$ (35)
Kite			
Neutral current h_k	_	_	$\delta_{ m kite}^{ m NC}$ (38)
Charged current W	_	_	$\delta_{ m kite}^{ m CC}(\xi)$ (39)


Altmannshofer, SG, Hamer, Patel, 2009.01258

EDMs, 2HDM results

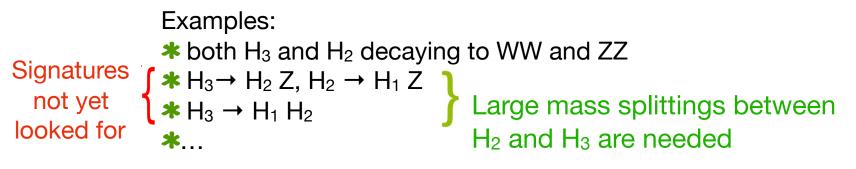

EDMs, 2HDM results


12

S.Gori

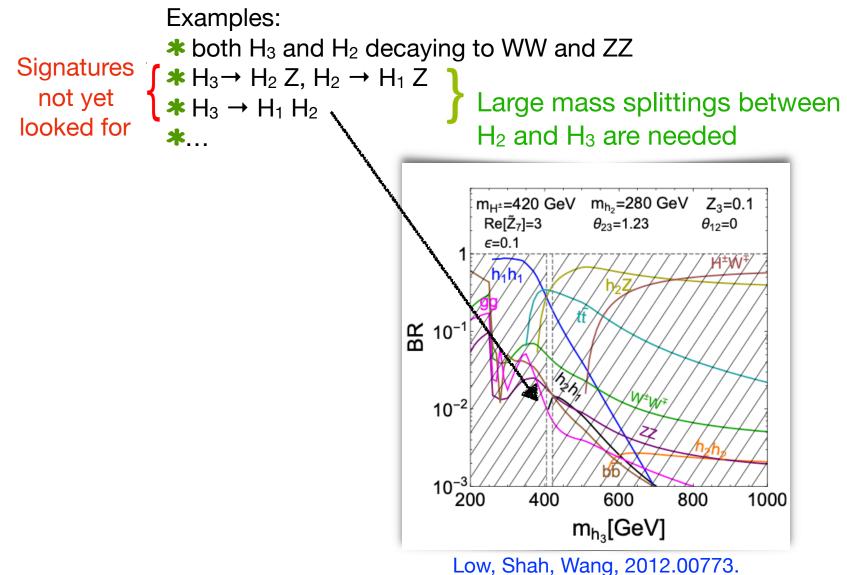
Additional EDM bounds: neutron EDM

Additional EDM bounds: neutron EDM


SG, Hamer, appearing soon

Heavy Higgs pheno. CPV signatures

H₃ and H₂ can lead to striking CPV signatures


Heavy Higgs pheno. CPV signatures

H₃ and H₂ can lead to striking CPV signatures

Heavy Higgs pheno. CPV signatures

H₃ and H₂ can lead to striking CPV signatures

Theory & pheno constraints on large mass splittings

A large mass splitting between h₃ and h₂ requires large Higgs quartic couplings

Constraints from

- perturbativity

 $m_{h_3}=m_{h_2}+F[\lambda_i,eta]rac{v^2}{m_{h_2}}$

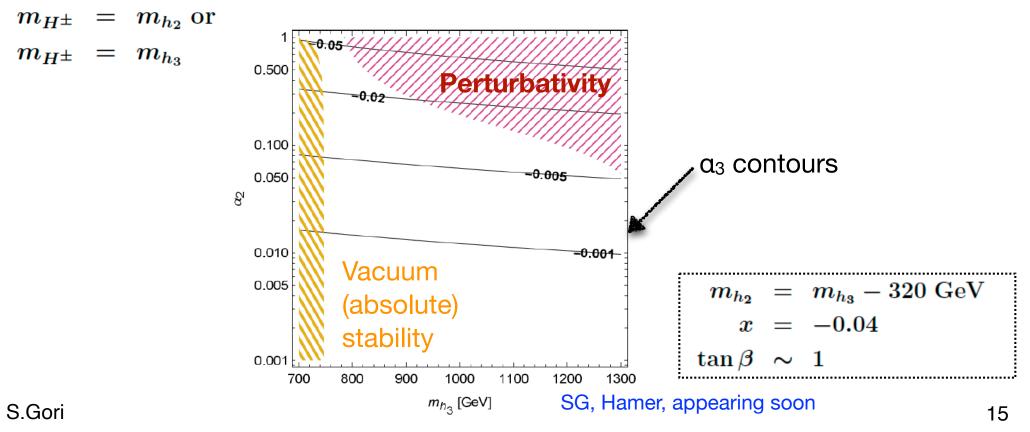
- vacuum stability

Possible constraints from **electroweak precision tests**: **mw!** However, no New Physics effect on mw if

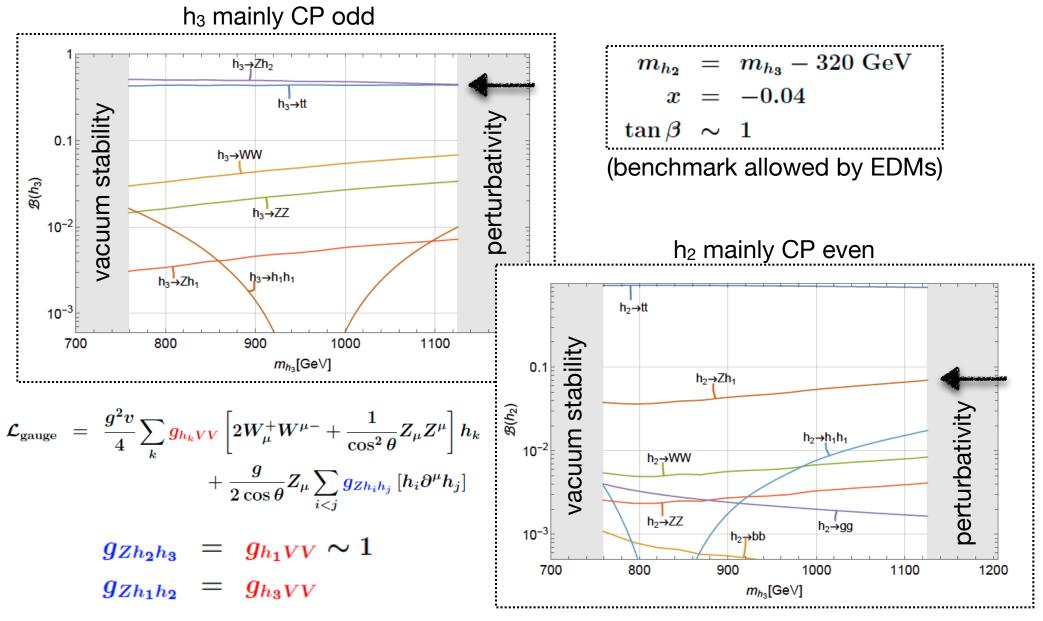
 $m_{H^{\pm}} = m_{h_2} \text{ or }$

 $m_{H^\pm}~=~m_{h_3}$

Theory & pheno constraints on large mass splittings

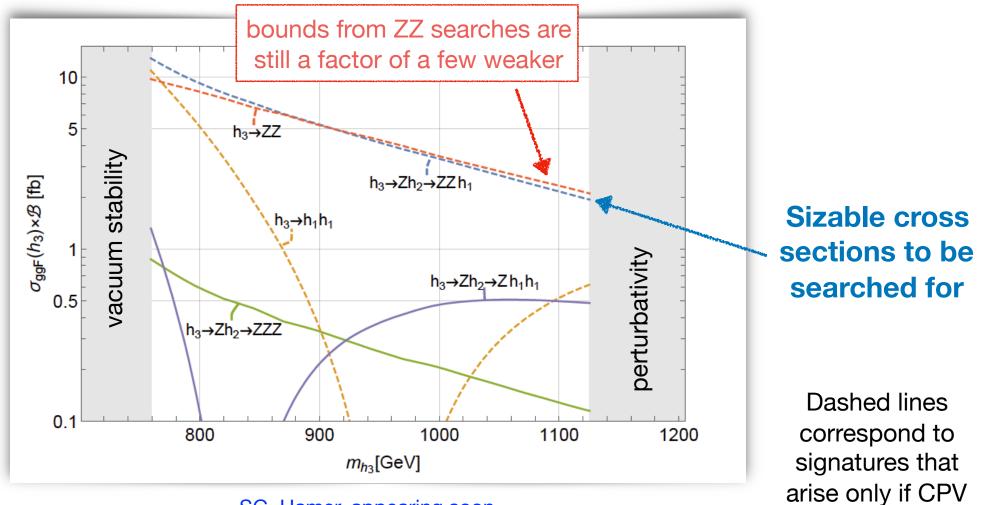

A large mass splitting between h₃ and h₂ requires large Higgs quartic couplings

 $m_{h_3}=m_{h_2}+F[\lambda_i,eta]rac{c}{m_{h_2}}$


Constraints from

- perturbativity
- vacuum stability

Possible constraints from **electroweak precision tests**: **mw!** However, no New Physics effect on mw if



New signature: $H_3 \rightarrow H_2 Z$, $H_2 \rightarrow H_1 Z$ (1)

SG, Hamer, appearing soon

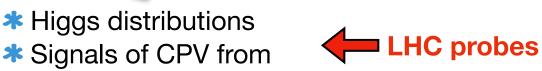
New signature: $H_3 \rightarrow H_2 Z$, $H_2 \rightarrow H_1 Z$ (2)

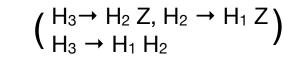
SG, Hamer, appearing soon

Conclusions and outlook

After 10 years since the Higgs boson discovery, there are still many open questions about the nature of the Higgs particle

Testing the CP nature of the Higgs should be a goal for the coming years.

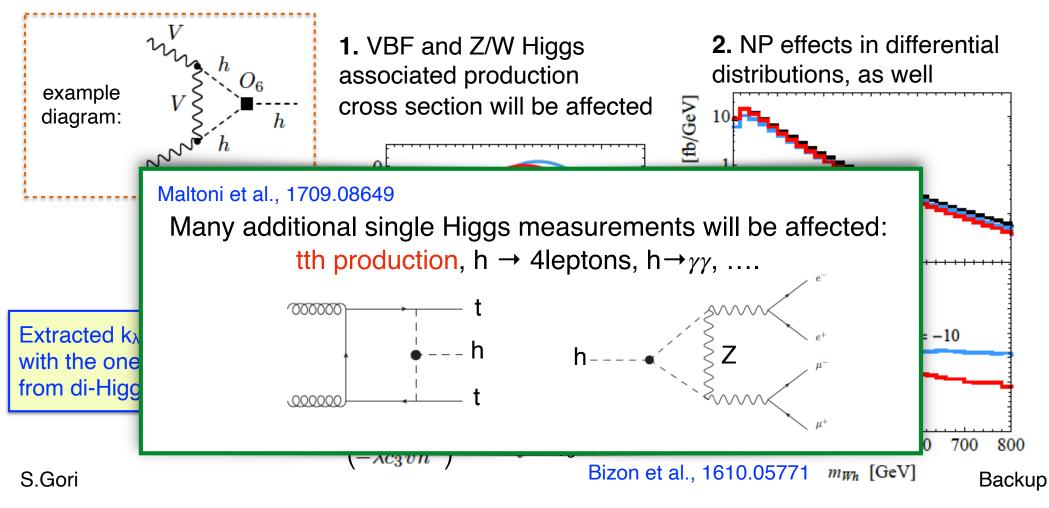

Generically, searches for EDMs set very stringent constraints on CPV Higgs couplings


<u>However</u>, there are regions of parameters not probed by EDMs (the example discussed in this talk is the complex 2HDM)

* Higgs rate measurements

(image: DESY/designdoppel)

***** Higgs distributions

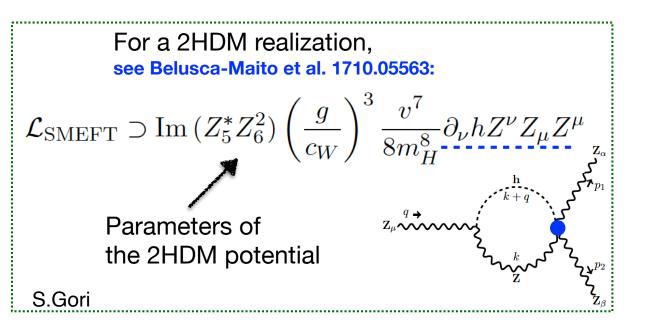

additional Higgs bosons

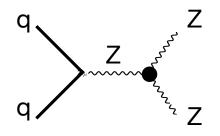
Complementarity

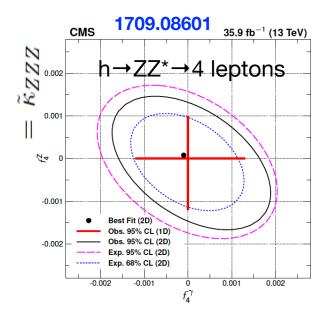
2. Higgs self-couplings and single Higgs

A value of k_{λ} different from the SM prediction will modify the Higgs couplings the other SM particles and, therefore, single Higgs measurements.

For example, the coupling to W and Z bosons:


Other indirect probes: di-boson production


Beyond Higgs measurements, measurements of di-boson production can unveil the existence of new sources of CPV in triple gauge couplings


For example:

$$\mathcal{L}_{\text{eff}} \supset \frac{\tilde{\kappa}_{ZZZ}}{m_Z^2} \partial_\mu Z_\nu \partial^\mu Z^\rho \partial_\rho Z^\nu$$

this CPV operator enters eg. the pp \rightarrow ZZ production (together with CP conserving operators)

Backup

Additional CPV Higgs coupling probes

An (incomplete) list...

tt Goncalves, Kim, Kong, Wu [2108.01083]

htt, h \rightarrow bb. Uses boosted Higgs regime and fat-jets to be Higgs-tagged via the BDRS algorithm.

Zγ Farina, Grossman, Robinson [1503.06470] Takes advantage of interference between continuum background and signal from gluon initiated events.

Gg Dolan, Harris, Jankowiak, Spannowsky [1406.3322] gg \rightarrow hjj, h \rightarrow τ τ . Uses associated jets for angular analysis.

YY Bishara, Grossman, Harnik, Robinson, Shu, Zupan [1312.2955] Requires converted photons and angular resolution on leptonic opening angles.