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Basic relations

Let & = 1/137.036... be the fine-structure constant.

Effective coupling in the on-shell scheme:

a(q”) =

T 1-Aa(g?)
Hadronic contribution to Aa(q?):
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Dispersive representation in terms of the R-ratio

Or use lattice QCD for II(¢?). .. many figures in the following are from the
recent Ce, Gérardin, von Hippel, HM, Miura, Ottnad, Risch, San José,
Wilhelm, Wittig 2203.08676 (accepted in JHEP).
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Mainz/CLS, 2203.08676; time-momentum representation Bernecker & HM, 1107.4388.

—II(0) from lattice-QCD current-current correlators G(t)



Chiral and continuum extrapolation in a2 and m2
P 7
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Flavour-decomposition of vacuum polarization
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Hadronic contribution to running of o and sin? 6y
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Running of « and sin? y: error budget
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At large Q?, error increases due to the more difficult continuum exptrapolation.
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Comparison btw lattice and dispersive determinations of Aaj.q(—Q?)
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Tension of up to 3.5 standard deviation between our lattice calculation and
phenomenological estimates for space-like virtualities between 3 and 7 GeV2.

Q2 = 3GeV?: Mainz CLS result about 2% larger than BMWc17 result, but only a
1.30 effect.



Running of o up to Z-pole, Aal(l?d(ﬂfg)

Use lattice data in the ‘Euclidean split’ technique:
[Eidelman, Jegerlehner, Kataev, Veretin hep-ph/9812521 ]

Aaf2 (M3) = Bl (-Q3)+[Aafy(— M) = Aall (-QD) |+ [Aafl (M3) - Aaf (—M3)]

had had

The second term is handled either as an integral over the perturbative Adler
function QQ%, or dispersively using ete™ cross-section data.
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Recent progress on understanding cutoff effects from short distances

At short distances in massless lattice QCD:
G(t,a) = Geom () (1 + O((a/H)*)
Therefore, since Geont(t) ~ 1/t3,
t t t 1
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one obtains a logarithmically enhanced cutoff effect from short distances.
In leading order of Wilson lattice perturbation theory, one finds
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Also, developed strategy to reach higher virtualities: at high Q2
II(—Q?) — I(—(Q/2)?) is not very sensitive to the volume
~~ for the same cost, simulate finer lattices.

C&, Harris, HM, Toniato, Torok [2106.15293] (JHEP).



Possible strategies to improve control over the long-distance tail

1. Auxiliary calculation of the (discrete, finite-volume) spectrum of 7 states
and their coupling to the e.m. current.
The low-lying states saturate the correlator at long distances.
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2. ‘all-to-all' propagators using the low eigenmodes of the Dirac operator
RBC collaboration 1801.07224 (PRL); BMW collaboration 2002.12347 (Nature).

3. approximate factorization of the QCD path integral with bias correction.
Dalla Brida et al., 2007.02973.



Conclusion

P Lattice calculations for hadronic contribution to running of
Aapaa(—3 GeV2) are in reasonbly good agreement, but exhibit
a tension of 3+ standard deviations with dispersive
determination.

» Similar tension seen in the intermediate ‘window' contribution
to aEVp: resolving this tension currently has the highest priority.

BMW 2002.12347; Mainz-CLS 2206.06582; ETMC 2206.15084; Fermilab-HPQCD-MILC 2207.04765.

» Future improvement of lattice-based Aay,q(M%) will require
reaching higher Q2 in lattice QCD ~~ dedicated treatment of
discretization effects required.

> Reduction of current uncertainty on Aapaq(M%) based on
lattice-QCD & perturbation theory by a factor of two to three
is realistic within the next five years.



