Direct $\alpha_{\text{QED}}(m_z)$ measurement at FCC-ee

Based on arXiv:2106.13885

Based on arXiv:1512.05544

- Outline
 - **Motivation** Based on (very) recent estimates from A. Blondel (July 2022)
 - Method
 - Projected uncertainties
 - Parametric
 - \rightarrow m_Z, Γ_{Z} , sin² $\theta_{W,eff}$, G_F UPDATE
 - Experimental
 - → √s calibration UPDATED
 - → √s spread NEW
 - → Other
 - Theoretical
 - → EW higher orders
 - → QED: ISR, FSR, IFI

Based on work by S. Jadach and P. Janot in July/August 2018

FCC

- Summary
- Outlook shopping list for interested newcomers

Based on arXiv:1909.12245

Introduction (see all other talks today)

Today, $\alpha_{\text{QED}}(m_z)$ is determined from $\alpha_{\text{QED}}(0)$ with the well-known running formula

$$\alpha_{\text{QED}}(m_{\text{Z}}^2) = \frac{\alpha_{\text{QED}}(0)}{1 - \Delta \alpha_{\ell}(m_{\text{Z}}^2) - \Delta \alpha_{\text{had}}^{(5)}(m_{\text{Z}}^2)}$$

• Its uncertainty is dominated by the determination of the hadronic vacuum polarization

$$\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z}^2) = \frac{\alpha m_{\rm Z}^2}{3\pi} \int_{4m_{\pi}^2}^{\infty} \frac{R_{\gamma}(s)}{s(m_{\rm Z}^2 - s)} ds$$

- $R\gamma(s)$ is the hadronic cross section normalized to the dimuon cross section in e^+e^- collisions
 - → Relies on measurements at low centre-of-mass energies \sqrt{s}
- Most recent/precise evaluation (DHMZ'19) gives $\Delta \alpha_{had}^{(5)}$ (m_Z²) = (276.10 ± 1.0)·10⁻⁴

$$\alpha_{\rm QED}^{-1}(m_Z^2) = 128.946 \pm 0.013 \quad \Longrightarrow \quad \frac{\Delta \alpha}{\alpha} \simeq 1.0 \times 10^{-4}$$

See presentations from B. Malaescu, A. Keshavarzi, F. Jegerlehner, H. Meyer

Motivation for a direct measurement at $\sqrt{s} = m_z$?

- Systematic uncertainties are entirely different
 - No running from low energy to m_z
 - No need for low-energy measurements
- $\alpha_{\text{QED}}(m_{z}^{2})$ dominate the parametric uncertainties on the SM prediction for $\sin^{2}\theta_{W,\text{eff}}$
 - Today's precision

Direct measurement

EWPO Fit to the SM (and nothing else)

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23153 \pm 0.00016$

 $\begin{aligned} \sin^2 \theta_{\rm W}^{\rm eff} &= 0.231488 \pm 0.000029_{m_{\rm top}} \pm 0.000015_{m_{\rm Z}} \pm 0.000035_{\alpha_{\rm QED}} \\ &\pm 0.000010_{\alpha_{\rm S}} \pm 0.000001_{m_{\rm H}} \pm 0.000047_{\rm theory} \\ &= 0.23149 \pm 0.00007_{\rm total}, \end{aligned}$

• Direct measurement will be improved by two orders of magnitude at FCC-ee

Direct measurement

 $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23153 \pm 0.0000015$

Parametric uncertainties will need to drop accordingly FCC-ee prospects for m_Z , m_{top} , $\alpha_S(m_Z)$, m_H are good Need to improve $\alpha_{QED}(m_Z^2)$ as much as possible

$lpha_{ m QED}({ m m_Z^2}) \sin^2\! heta_{ m W}^{ m eff}$ Stat. N.A. N.A. 4 Input N.A N.A. N.A 1.166378 ± 0.000006 Input N.A. Input; from $A_{FB}^{\mu\mu}$ off peak 3 N.A.

from

N.A.

0.078

4

Spoiler alert – FCC-ee prospects

с <u>л</u> µµ 1	$\Lambda \text{ pol}, \tau$
from A'_{FB} and	$\mathbf{A}_{\mathrm{FB}}^{\mathrm{pol},\tau}$ at Z peak
Dessible alter	
Possible alte	rnative input

From Z line shape scan

Beam energy calibration

Comments

0.53	0.076	stat. based on muon pair statistics NB cleanest determination of ρ parameter
0.17	0.025	ratio of hadrons to leptons determination of strong coupling constant
0.42	0.06	ratio of $b\bar{b}$ to hadrons test of N.P. coupled to 3d generation

Must measure $\alpha_{OFD}(m_7)$ with

the best possible precision

For the other EW observables, use $sin^2\theta_{W,eff}$ as alternative input, much better measured at FCC-ee

A. Blondel, 07/22

Parametric uncertainties on other FCC-ee observables

from

10.5

0.547

28

FCC-ee

1.5

0.250

0.2

0.06

0.3

 $\mathbf{4}$

present

value $\pm \text{ error}$

 91186700 ± 2200

 128952 ± 14

 231480 ± 160

 80350 ± 15

 83985 ± 86

 20767 ± 25

 216290 ± 660

 2495200 ± 2300

Observable

 $m_{\rm Z} \,({\rm keV})$

 $G_{\rm F}(\times 10^{-5})$

 $\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$

 m_W (MeV)

 Γ_{ℓ} (keV)

 $\mathbf{R}^{\mathbf{Z}}_{\ell} (\times 10^3)$

 $|R_{\rm b}| (\times 10^6)$

 $|\Gamma_{\rm Z}|$ (keV)

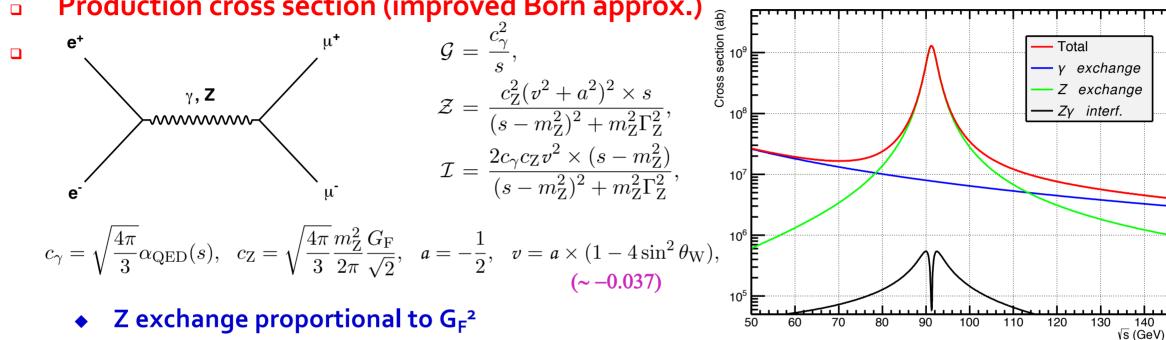
 $1/\alpha_{\rm OED}({\rm m}_{\rm Z}^2)(\times 10^3)$

FCC note in preparation

Uploaded to the agenda

First attempt: the $e^+e^- \rightarrow \mu^+\mu^-$ process

Production cross section (improved Born approx.)

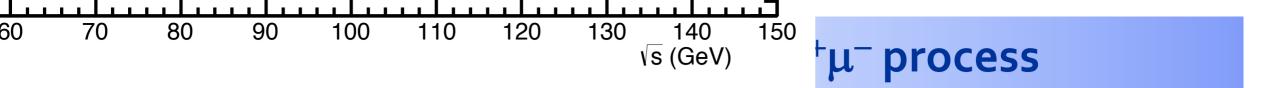


- γ exchange proportional to α^2 (s)

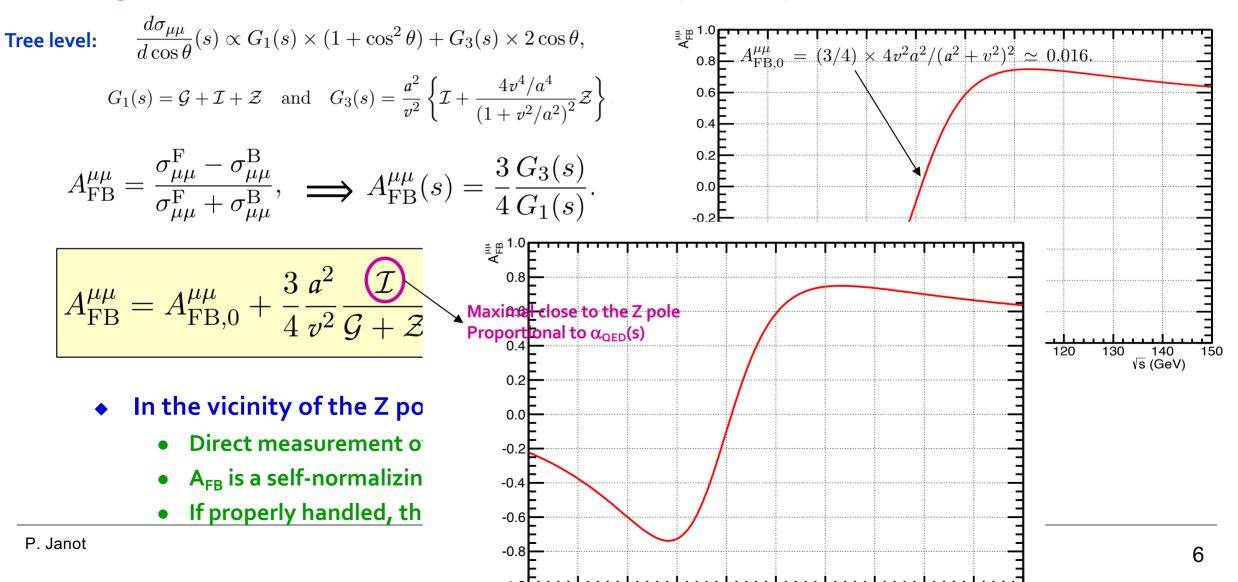
Sensitivity to $\alpha_{OED}(s)$

- Interference term proportional to $\alpha(s)$ G_F ٠
 - Largest sensitivity below the Z pole with the γ exchange term
 - → Extrapolation issue, not a "direct" measurement, not (yet) in the baseline programme
 - Absolute cross section measurements challenging to the required precision
 - → Absolute luminosity determination, absolute selection efficiency / acceptance simulation

150



Angular distribution and forward-backward asymmetry



FCC-ee target : Statistical uncertainty

. - . - - - /

$$\int (A_{FB}^{\mu\mu}) = \sqrt{\frac{1 - A_{FB}^{\mu\mu}}{\mathcal{L}\sigma_{\mu\mu}}}$$

$$\int Variation of A_{FB} with \alpha$$

$$A_{FB}^{\mu\mu} = A_{FB,0}^{\mu\mu} + \frac{3}{4} \frac{a^2}{v^2} \frac{\mathcal{I}}{\mathcal{G} + \mathcal{I}}, \qquad \frac{d\mathcal{I}}{d\alpha} = 0; \quad \frac{d\mathcal{I}}{d\alpha} = \frac{\mathcal{I}}{\alpha}; \quad \frac{d\mathcal{G}}{d\alpha} = \frac{2\mathcal{G}}{\alpha}$$

$$\frac{\Delta A_{FB}}{\Delta \alpha} = \frac{1}{\alpha} \frac{3}{4} \frac{a^2}{v^2} \frac{\mathcal{I}(\mathcal{I} - \mathcal{G})}{(\mathcal{G} + \mathcal{I})^2} = (A_{FB} - A_{FB,0}) \times \frac{\mathcal{I} - \mathcal{G}}{\mathcal{I} + \mathcal{G}} \times \frac{1}{\alpha}$$

$$\frac{\Delta \alpha}{\alpha} = \frac{\Delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu} - A_{FB,0}^{\mu\mu}} \times \frac{\mathcal{I} + \mathcal{G}}{\mathcal{I} - \mathcal{G}} \simeq \frac{\Delta A_{FB}^{\mu\mu}}{A_{FB}^{\mu\mu}} \times \frac{\mathcal{I} + \mathcal{G}}{\mathcal{I} - \mathcal{G}}, \qquad \sqrt{s_{\pm} - \mathcal{G}} \times \frac{1}{\sqrt{s_{\pm} - 87.9}} \text{ GeV}$$

$$\int S_{\pm} = 87.9 \text{ GeV}$$

Extracting $\alpha(m_Z)$ from A_{FB}: two methods

- From two measurements A_{FB}(s_) and A_{FB}(s₊)
 - Extract two values of α

 $\alpha_{-} \equiv \alpha_{\text{QED}}(s_{-}) \text{ and } \alpha_{+} \equiv \alpha_{\text{QED}}(s_{+}),$

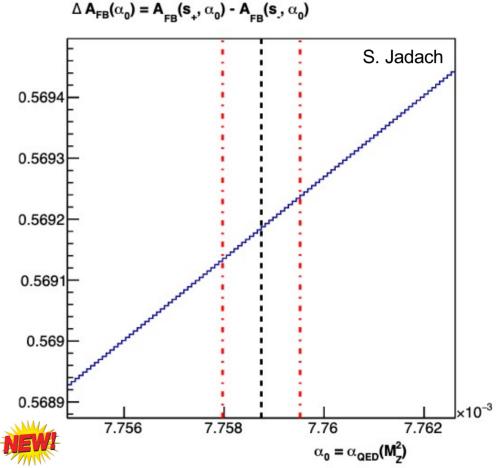
Run from s_± to m_Z : two determinations of α₀

 $\frac{1}{\alpha_0} = \frac{1}{\alpha_\pm} + \beta \log \frac{s_\pm}{m_Z^2}$

• Solve for $\alpha_0 = \alpha(m_Z)$ exactly

$$\frac{1}{\alpha_0} = \frac{1}{2} \left(\frac{1-\xi}{\alpha_-} + \frac{1+\xi}{\alpha_+} \right), \quad \text{where} \quad \xi = \frac{\log s_- s_+ / m_Z^4}{\log s_- / s_+} \simeq 0.045$$

- Solve directly for α_0 from $\Delta A_{FB} = A_{FB}(s_{-}) A_{FB}(s_{+})$
 - Quasi-linear dependence, solve iteratively (exactly)



 \square In both cases, almost exact cancellations for correlated effects at s_±

Parametric uncertainties

- At (improved) born level, the asymmetry depends on m_z , Γ_z , $\sin^2\theta_{W,eff}$, G_F (and \sqrt{s})
 - These parameters will be measured precisely at FCC-ee
 - Except G_F, which is already very precisely measured
 - The corresponding parametric uncertainties are negligible wrt the statistical error $(3 \cdot 10^{-5})$
 - The Z mass is entirely correlated with the absolute \sqrt{s} determination (next slide)

Observables	Present value	FCC-ee stat.	FCC-ee exp. syst.	Δα/α	
m _z (keV)	91 187 500 ± 2100	4	100	-	
Γ _Z (keV)	2 495 500 ± 2300 [*]	4	25	5.10-7	UPDATED
$\sin^2 \theta_{W,eff}(\times 10^6)$	231 530 ± 160	1.5	?	10-6	UPDATED
G _F (×10 ⁶)	1 166 378. 76 ± 0.51	-	-	5.10-7	

→ Negligible effect

- **Centre-of-mass energy calibration (with resonant depolarisation)**
 - At $s = s_{\pm}$, the energy dependence of AFB can be approximated as

$$A_{\rm FB}^{\mu\mu}(s, m_{\rm Z}) \propto (s - m_{\rm Z}^2)/(s m_{\rm Z}^2)$$

• Error propagation

$$\frac{\sigma(A_{\rm FB}^{\mu\mu})}{A_{\rm FB}^{\mu\mu}} \simeq \frac{1}{\sqrt{sm_Z}} \sqrt{\left(s + m_Z^2 - \sqrt{sm_Z}\right)^2 \frac{\sigma_D^2}{D^2} + \left(s + m_Z^2 + \sqrt{sm_Z}\right)^2 \frac{\sigma_\Sigma^2}{\Sigma^2}} \qquad D$$

 $D = \sqrt{s} - m_{\rm Z}$ $\Sigma = (\sqrt{s} + m_{\rm Z})/2.$

 $\sigma_{\sqrt{s_+}-\sqrt{s_-}}$

Method :

 $\frac{\sigma(\alpha_0)}{\approx} =$

 α_0

• Dominant term : point-to-point calibration uncertainty D

$$\frac{\sigma(\alpha_{\pm})}{\alpha_{\pm}} \simeq \frac{\sigma_{D_{\pm}}}{D_{\pm}}, \quad \text{with} \quad D_{\pm} = \sqrt{s_{\pm}} - m_{\text{Z}} \quad \text{or}$$
Method 1

♦ Related uncertainty : 6.10⁻⁶

UPDAT

40 keV

- Centre-of-mass energy spread (~0.12% around the Z pole)
 - On average, modify the asymmetry as follows

$$\Delta A_{\rm FB}^{\mu\mu}(s_{\pm}) = \frac{\int A_{\rm FB}^{\mu\mu}(s)\sigma_{\mu\mu}(s)\exp{-\frac{\left(\sqrt{s}-\sqrt{s_{\pm}}\right)^{2}}{2s_{\pm}\delta^{2}}d\sqrt{s}}}{\int \sigma_{\mu\mu}(s)\exp{-\frac{\left(\sqrt{s}-\sqrt{s_{\pm}}\right)^{2}}{2s_{\pm}\delta^{2}}d\sqrt{s}}} - A_{\rm FB}^{\mu\mu}(s_{\pm})$$

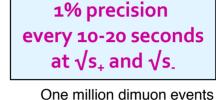
- The steep slope of $\sigma_{\mu\mu}$ tends to increase (decrease) the average \sqrt{s} above \sqrt{s}_{-} (below \sqrt{s}_{+})
- The energy spread tends to decrease the difference $A_{FB}(s_+) A_{FB}(s_-)$ by about 10⁻³ (relative)
 - With a similar relative effect on $\alpha(m_z)$
- This effect is two orders of magnitude larger than the statistical uncertainty
 - It must be corrected for, e.g., by a measurement of the centre-of-mass energy spread
 - → Typically with a precision better than 1% to reduce the uncertainty on α (m_z) to 10⁻⁵ NEW

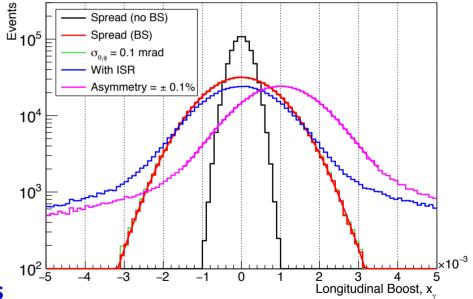
- In-situ measurement of the centre-of-mass energy spread with the same events !
 - Energy spread = relative longitudinal boost $x_{\gamma} = p_z \frac{\text{miss}}{\sqrt{s}}$
 - Full spectrum obtained from μ directions and E,p conservation

$$x_{\gamma} = -\frac{x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}}{\cos(\alpha/2) + |x_{+}\cos\theta^{+} + x_{-}\cos\theta^{-}|}$$

$$x_{\pm} = \frac{\mp \sin \theta^{\mp} \sin \varphi^{\mp}}{\sin \theta^{+} \sin \varphi^{+} - \sin \theta^{-} \sin \varphi^{-}} \qquad \alpha = 2 \arcsin \left[\frac{\sin (\varphi^{-} - \varphi^{+}) \sin \theta^{+} \sin \theta^{-}}{\sin \varphi^{-} \sin \theta^{-} - \sin \varphi^{+} \sin \theta^{+}} \right]$$

- Method also provides absolute directions wrt the beams
- Requires ~0.1 mrad angular resolution or better
- Good ISR description needed: to be checked
- Even better: it is an event-by-event measurement of \sqrt{s}
 - Automatic self-calibrated energy scan
 - → Gives the possibility of measuring $A_{FB}(s)$ around s_+ and s_- without \sqrt{s} -spread-related uncertainty





- Selection efficiency and acceptance : getting rid of it experimentally
 - At tree level, the angular distribution of μ^{\pm} reads

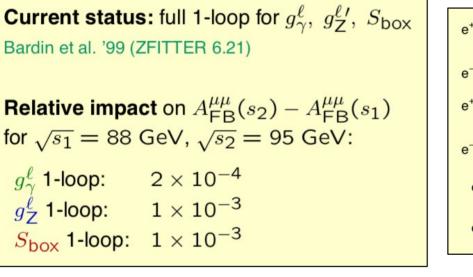
$$\frac{\mathrm{d}N^{\pm}}{\mathrm{d}c} \propto \left\{ \frac{3}{8} \left(1 + c^2 \right) \pm A(s)c \right\} \times \varepsilon(c)$$

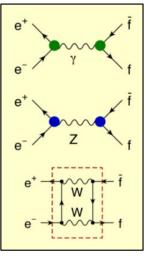
- $c = cos\theta$ in the $\mu\mu$ cm frame
- A(s) = asymmetry parameter (=A_{FB})
- $\mathcal{E}(c) = event selection efficiency$
- The selection efficiency $\mathcal{E}(c)$ is eliminated in the charge asymmetry $A_Q(c)$

$$A_Q(c) = \frac{N^+(c) - N^-(c)}{N^+(c) + N^-(c)} \implies A(s) = \kappa(c)A_Q(c), \text{ with } \kappa(c) = \frac{3}{8}\frac{1 + c^2}{c}$$

- Average over all c values returns the optimal statistical precision on A(s)
 - → Singularity at c = o can be avoided by rejecting these events, which carry no information on A(s)
- Electric-charge-dependent efficiency can be measured in situ with T&P method (e.g. at the Z)
- Other experimental uncertainties are found to be negligible
 - Charge inversion, tau background, angular resolution (at tree level), etc.

Impact of missing higher orders on A_{FB} prediction from A. Freitas (2016)



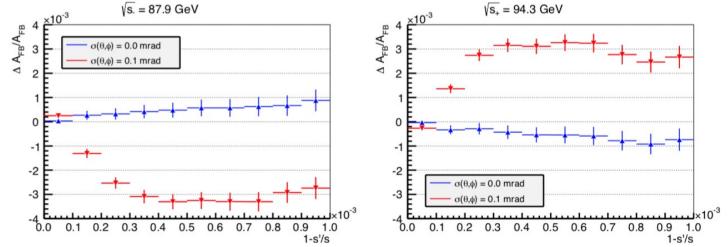


Expected impact of future corrections (order of magnitude):

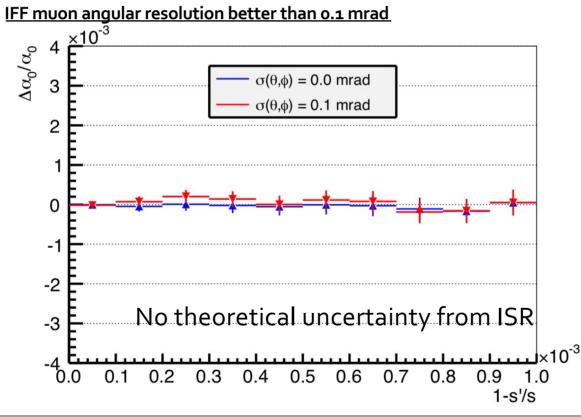
$ \begin{array}{c} \mathcal{O}(\alpha\alpha_{\rm s}) & & \\ \mathcal{O}(\alpha\alpha_{\rm s}^2) & & \\ \mathcal{O}(N_f\alpha^2) & & \\ \mathcal{O}(\alpha_{\rm bos}^2) & & \\ \mathcal{O}(\alpha^2\alpha_{\rm s}) & & \\ \mathcal{O}(N_f^2\alpha^3) & & \\ \mathcal{O}(N_f\alpha^3) & & \\ \end{array} $	$\sim 2 \times 10^{-3} \\ \sim 7 \times 10^{-4} \\ \sim 2 \times 10^{-4} \\ \sim 2 \times 10^{-4} \\ \sim 10^{-4} \\ \sim 7 \times 10^{-5} \\ \sim 2 \times 10^{-5} \\ \sim 10^{-5} \\ \sim 10^{-5}$	(known) (current techniques) (current techniques) (current techniques) (new methods) (new methods) (new methods) (speculative)
$\mathcal{O}(N_f \alpha^2 \alpha_s^2)$ ~	$\sim 10^{-5}$	(speculative)

- Two- and three-loop calculations needed to match missing orders with statistics
 - These are estimates only need to perform the actual calculation to know for sure
 - → In particular to evaluate the level of cancellations in $A(s_+) A(s_-)$

- **Initial state radiation : several consequences on A_{FB} measurement**
 - Smear the centre-of-mass energy spread distribution
 - Will need to check if the current knowledge of ISR suffices for this purpose
 - Reduces the centre-of-mass energy to $s^* = s (1-2x_{\gamma})$
 - Modifies in turn A(s) to A(s*); Solution: measure A as a function of s* (self-calibrated scan)
 - Modifies the angular distributions from the two muons with longitudinal boost x_γ
 - Solution: Boost back to the centre-of-mass energy frame (with the knowledge of x_{γ})
 - Result : [A_{FB}-A_{FB}(SM)] / A_{FB} as a function of 1-s*/s exhibits large measurement biases
 - Biases originate from
 - → ISR angular distribution
 - → Several ISR photons
 - → Muon angular resolution
 - → Beam energy spread (not shown here)
 - Effects common to s₊ and s₋

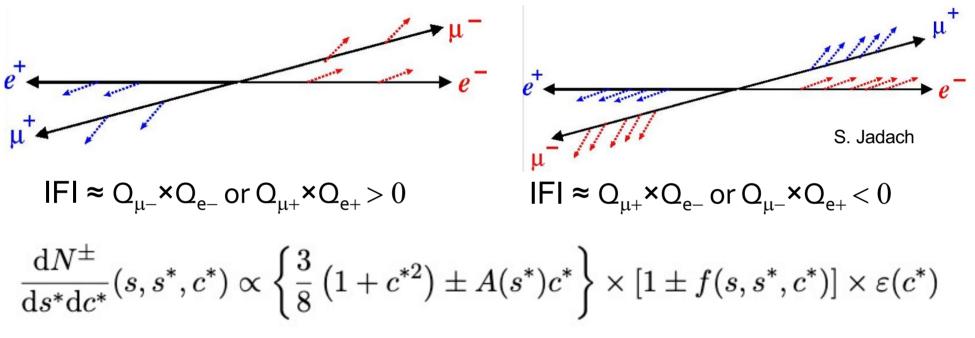


- Initial state radiation (ISR): consequences mitigated for $\alpha(m_z)$
 - Biases on A_{FB} are two orders of magnitude larger than statistical target
 - They appear to be universal at both centre-of-mass energies
 - → With perfect cancelation in the difference $A(s_+) A(s_-)$

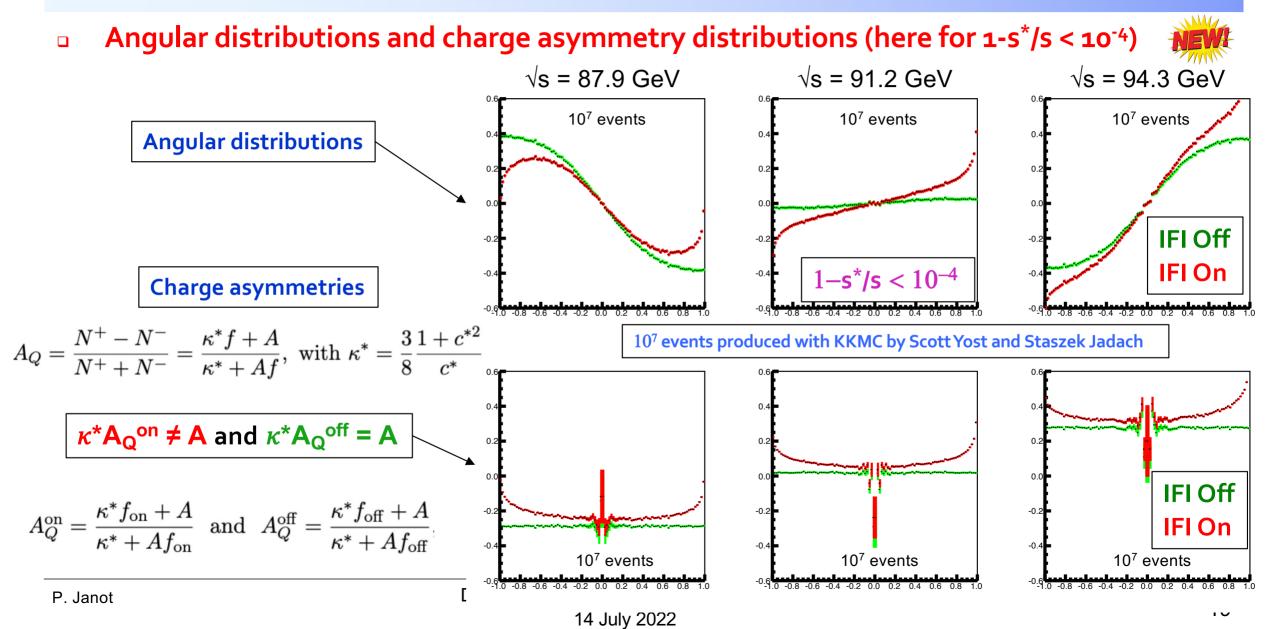


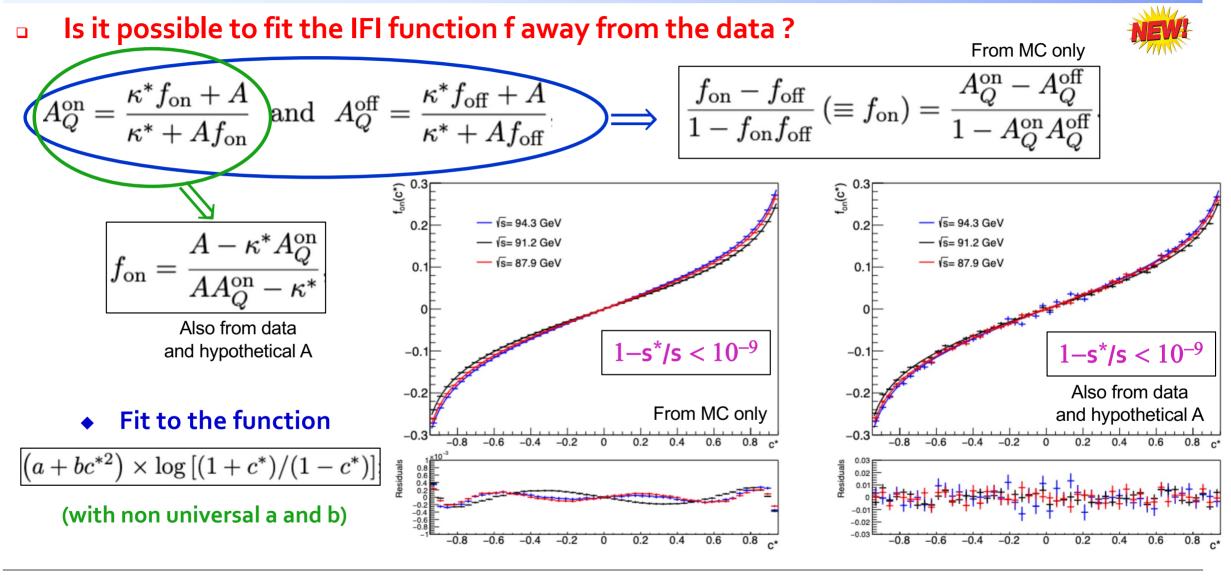
- Final state radiation (FSR)
 - Mostly collinear
 - Effect on the muon direction (and the determination of s*) very much suppressed
 - $\bullet \quad \text{Symmetric around the muon directions at all orders in } \alpha$
 - Effect on A_{FB} expected to be unmeasurably small on average
 - Residual tiny biases on the asymmetry parameter independent of \sqrt{s}
 - Expect exact cancellation anyway in the difference $\Delta A = A(s_+)-A(s_-)$

- Initial-final state radiation interference (IFI)
 - Angular distribution modified with another totally asymmetric function



- Here, f is supposed to be an odd function of c*, without any loss of generality
 - → The even part, if any, can safely be absorbed in the normalization factor, which disappears in the ratio





Direct $\alpha_{\text{QED}}(m_Z)$ measurement at FCC-ee

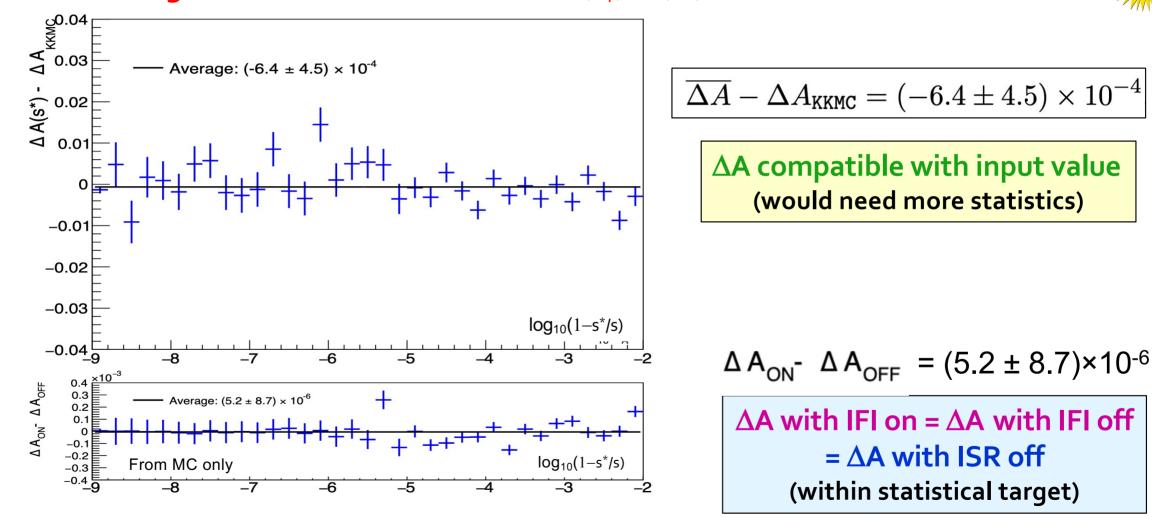
- Re-inject the function f as obtained from the hypothetical A value Determine (iteratively) a new value of the asymmetry parameter A with $A=\kappa$ (*^{0.5} (*^{0.5}) (*^{0.5}) A(s*)-A_{KKN} **1−s*/s** < 10^{−9} —____√s= 94.3 GeV 0.3 0.2 0.1 √s= 91.2 GeV -0.01 -0.1 -0.02 √s= 94.3 GeV -0.2 √s= 87.9 GeV — √s= 87.9 GeV -0.3-0.03 -0.4log₁₀(v_A) $log_{10}(1-s^*/s)$ -0.04<u></u> -0.5 -3 -0.8 -0.6 -0.4 -0.2Ω 0.2 0.4 0.6 0.8 0.1 Aon-Aoff Aon-Aoff 0.8 0.6 0.4 0.2 0. 0.05 -0.2 -0.4 -0.6 -0.8 -0.05 From MC only -0.1 From MC only $\log_{10}(v_A)$ $\log_{10}(1-s^*/s)$ -0.15**_0** 0.8 _* -0.6 -0.4 -0.2 0.2 0.4 0.6 -0.8 0
 - Biases due to the imperfections of the functional form for f(c*)
 - → Cancellation in $A(s_+)-A(s_-)$ at the level of 10⁻⁵ or less

P. Janot

Direct $\alpha_{QED}(m_Z)$ measurement at FCC-ee 14 July 2022

Theoretical uncertainties

• Absorbing biases in the difference $\Delta A = A(s_+)-A(s_-)$



Does it mean that no theoretical effort is needed for IFI prediction ?

The previous plots about IFI (slides 16 – 19) were produced at generator level

NOT AT ALL !

- No √s spread
- No muon angular resolution
- These two experimental realities affect the calculation of s* and mix with IFI (also ISR)
 - Which in turn will create more biases on the determination of f(s*,c*) and A(s*)
 - → Though we might still expect cancellations in the difference △A = A(s₊)-A(s_) TO BE CHECKED THOROUGHLY !
- The determination of $sin^2\theta_{W,eff}$ relies only on the asymmetry parameter at $\sqrt{s} = mZ$
 - No difference is at play in that case to cancel the ISR and IFI biases
 - → ISR/IFI need to be predicted with a precision suited to match the 1.5×10⁻⁶ statistical target on $sin^2\theta_{W,eff}$

Summary after this first feasibility study

- A direct measurement of $\alpha_{QED}(m_z)$ with dimuon events at FCC-ee is statistics limited
 - Negligible exp'tal errors
 - Negligible parametric errors
 - ISR and IFI seem under control
 - To be checked in full detail
 - Bottleneck today is A_{SM} prediction
 - Full NNNLO needed ?

Туре	Source	Uncertainty
	$E_{\rm beam}$ calibration	6×10^{-6}
Experimental UPDATED	$E_{\rm beam}$ spread	$< 10^{-5}$
	Acceptance and efficiency	negl.
	Charge inversion	
	Backgrounds	negl.
UPDATED Parametric	$m_{ m Z} { m and} \Gamma_{ m Z}$	5×10^{-7}
	$\sin^2 heta_{ m W}$	1×10^{-6}
	$G_{ m F}$	$5 imes 10^{-7}$
UPDATED Theoretical	QED (ISR, FSR, IFI)	$< 10^{-6}$
	Missing EW higher orders	few 10^{-4}
	New physics in the running	0.0
Total	Systematics	$< 10^{-5}$
(except missing EW higher orders)	Statistics (1 year, 4 IP)	$3 imes 10^{-5}$

- A full analysis is now needed with all effects (and correlations) studied together
 - Until now, effects have been studied either in isolation or in pairs

Outlook – Shopping list for newcomers

- Implement a full analysis beyond this feasibility study
 - And publish a paper !
- Check with full simulation / reconstruction

- **Go to the full statistics to unveil other issues**
 - 10¹¹ dimuon events !
- Measure asymmetry parameter off-peak with more channels
 - Repeat with di-tau events
 - τ direction from the decay vertex position ? (check τ angular resolution)
 - What can be done with di-electron events ?
- Study indirect measurements with low-angle Bhabha events (Lumical)
 - Measure $\Delta \alpha_{had}$ (t) See, e.g., <u>arXiv:1504.0228</u>, <u>arXiv:hep-ex/0505072</u> (OPAL), <u>arXiv:hep-ex/0002035</u> (L3)