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Introduction (see all other talks today)
q Today, aQED(mZ) is determined from aQED(0) with the well-known running formula

u Its uncertainty is dominated by the determination of the hadronic vacuum polarization

l Rg(s) is the hadronic cross section normalized to the dimuon cross section in e+e- collisions 
è Relies on measurements at low centre-of-mass energies √s

l Most recent/precise evaluation (DHMZ’19) gives Dahad
(5) (mZ

2) = (276.10 ± 1.0)×10-4
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⟹
See presentations from B. Malaescu, A. Keshavarzi, F. Jegerlehner, H. Meyer
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Motivation for a direct measurement at √s = mZ ? 
q Systematic uncertainties are entirely different

u No running from low energy to mZ

u No need for low-energy measurements

q aQED(mZ
2) dominate the parametric uncertainties on the SM prediction for sin2qW,eff

u Today’s precision

u Direct measurement will be improved by two orders of magnitude at FCC-ee
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Direct measurement
EWPO Fit  to the SM (and nothing else)

Direct measurement

𝟎. 𝟎𝟎𝟎𝟎𝟎𝟏𝟓

Parametric uncertainties will need to drop accordingly
FCC-ee prospects for mZ, mtop, aS(mZ), mH are good
Need to improve aQED(mZ

2) as much as possible
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Spoiler alert – FCC-ee prospects
q Parametric uncertainties on other FCC-ee observables
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A. Blondel, 07/22

Must measure aQED(mZ) with
the best possible precision

For the other EW observables,
use sin2qW,eff as alternative input,
much better measured at FCC-ee

FCC note in preparation
Uploaded to the agenda
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First attempt: the e+e-→ µ+µ- process
q Production cross section (improved Born approx.)
q

u Z exchange proportional to GF
2

u g exchange proportional to a2(s)
u Interference term proportional to a(s) GF 

l Largest sensitivity below the Z pole with the g exchange term
è Extrapolation issue, not a “direct” measurement, not (yet) in the baseline programme

l Absolute cross section measurements challenging to the required precision
è Absolute luminosity determination, absolute selection efficiency / acceptance simulation 
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determination of the vacuum polarization �↵
(5)

had
. Here, the point is not to extrapolate

↵QED(m2

Z
) from ↵QED(0), but to provide a direct evaluation of ↵QED at

p
s ' mZ, hence

with totally different theoretical and experimental uncertainties. This measurement would
in turn be combined with other determinations for an even smaller uncertainty.

This letter is organized as follows. In Section 2, the reasons for the choice of Aµµ
FB

as
an observable sensitive to ↵QED are given, and the sensitivity is determined as a function
of the centre-of-mass energy. The optimal centre-of-mass energies, as well as the integrated
luminosities and running time needed to achieve a statistical uncertainty of a few 10�5 are
determined in Section 3. Possible systematic uncertainties are discussed and evaluated in
Section 4.

2 The muon forward-backward asymmetry and the electromagnetic cou-
pling constant

At the FCC-ee, the muon pair production proceeds via the graph depicted in Fig. 1 through
either a Z or a � exchange.
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Figure 1. Tree-level Feynmann graph for µ
+
µ
� production at the FCC-ee

At tree level, the cross section �µµ therefore contains three terms: (i) the �-exchange
term squared, proportional to ↵

2

QED
(s); (ii) the Z-exchange term squared, proportional to

G
2

F
(where GF is the Fermi constant); and (iii) the �-Z interference term, proportional

to ↵QED(s) ⇥ GF. These three terms are denoted G, Z, and I in the following. Their
expressions as a function of the centre-of-mass energy

p
s can be found in Ref. [10] and

reported below.
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with the following definitions:
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r
4⇡
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↵QED(s), cZ =

r
4⇡
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m
2

Z

2⇡

GF
p
2
, a = �

1

2
, v = a ⇥ (1� 4 sin2 ✓W), (2.4)

and where ✓W is the effective Weinberg angle (sin2 ✓W ' 0.2315).
An absolute measurement of the µ

+
µ
� production cross section �µµ = Z + I + G is

therefore a priori sensitive to ↵QED through the interference term and the �-exchange term.
The cross section and the three contributing terms are displayed in Fig. 2 as a function of the
centre-of-mass energy

p
s, with the inclusion of initial state radiation (ISR). In this figure,

the effective collision energy after ISR, denoted
p
s0, is required to satisfy s

0 > 0.99s. The
importance of such a requirement on s

0, together with the way to control it experimentally,
is discussed in Section 4.3.2.

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates

to a variation ��µµ of the cross section :

��µµ =
�↵

↵
(I + 2G). (2.5)

As is well visible in Fig. 2, the interference term can be neglected in the above equation.
As a consequence, if the cross section can be measured with a precision ��µµ, the relative
precision on the electromagnetic coupling constant amounts to

�↵

↵
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Z
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◆
. (2.6)

The target statistical precision of 2 ⇥ 10�5 on ↵QED can therefore be achieved with
more than 109 µ

+
µ
� events and at centre-of-mass energy where the Z contribution to the

cross section is much smaller than the photon contribution. These two conditions call for
a centre-of-mass energy smaller than 70 GeV, where the cross section is both large and
dominated by the photon contribution. Beside the fact that this centre-of-mass energy is
not in the current core programme of the FCC-ee and that the needed integrated luminosity
of 50 ab�1 would require at least a year of running at this energy in the most favourable
conditions, the measurement itself poses a number of intrinsic difficulties. Indeed, the
absolute measurement of a cross section with a precision of a few 10�5 requires the selection
efficiency, the detector acceptance, and the integrated luminosity to be known with this
precision or better. Even if not impossible to meet, these requirements are exceedingly
challenging in the extraction of ↵QED from this method with the needed precision.

The muon forward-backward asymmetry, Aµµ
FB

, defined as

A
µµ
FB

=
�
F
µµ � �

B
µµ

�F
µµ + �B

µµ
, (2.7)

where �
F(B)

µµ is the µ
+
µ
� cross section for events with the µ

� direction in the forward
(backward) hemisphere with respect to the e�-beam direction, hence with �

F
µµ+�

B
µµ = �µµ,

solves most of these obstacles. Indeed, it is a self-normalized quantity, which thus does not
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(~ -0.037)

Sensitivity to aQED(s)
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First attempt: the e+e-→ µ+µ- process
q Angular distribution and forward-backward asymmetry

u In the vicinity of the Z pole, the slope of AFB is proportional to aQED(mZ)
l Direct measurement of aQED(mZ)
l AFB is a self-normalizing quantity (no uncertainty from luminosity measurement)
l If properly handled, the selection efficiency also disappears in the ratio (see later) 
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Figure 2. Cross section for the e+e� ! µ
+
µ
� process (red curve) and the three contributions,

calculated from the analytical expressions of Ref.[10]: pure �-exchange term (blue curve); pure
Z-exchange term (green curve); and the absolute value of the �-Z interference term (black curve).
The initial-state radiation is included, and s

0
/s is required to exceed 0.99.

need the measurement of the integrated luminosity. Moreover, most uncertainties on the
selection efficiency and the detector acceptance simply cancel in the ratio. This observable
is therefore a good candidate for a measurement with an exquisite precision.

At lowest order, and if the terms proportional to m
2
µ/m

2

Z
⇠ 10�6 are neglected, the

angular distribution of the µ
� from the e+e� ! µ

+
µ
� production can be written in the

following way [11]:

d�µµ

d cos ✓
(s) / G1(s)⇥ (1 + cos2 ✓) +G3(s)⇥ 2 cos ✓, (2.8)

where G1(s) and G3(s) can be expressed as a function of G, Z and I as follows:

G1(s) = G + I + Z and G3(s) =
a2

v2
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I +

4v4
/a

4

(1 + v2/a2)2
Z

�
. (2.9)

After integration over the muon polar angle ✓, the forward-backward asymmetry therefore
amounts to:

A
µµ
FB

(s) =
3

4

G3(s)

G1(s)
. (2.10)
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The target statistical precision of 2 ⇥ 10�5 on ↵QED can therefore be achieved with
more than 109 µ

+
µ
� events and at centre-of-mass energy where the Z contribution to the

cross section is much smaller than the photon contribution. These two conditions call for
a centre-of-mass energy smaller than 70 GeV, where the cross section is both large and
dominated by the photon contribution. Beside the fact that this centre-of-mass energy is
not in the current core programme of the FCC-ee and that the needed integrated luminosity
of 50 ab�1 would require at least a year of running at this energy in the most favourable
conditions, the measurement itself poses a number of intrinsic difficulties. Indeed, the
absolute measurement of a cross section with a precision of a few 10�5 requires the selection
efficiency, the detector acceptance, and the integrated luminosity to be known with this
precision or better. Even if not impossible to meet, these requirements are exceedingly
challenging in the extraction of ↵QED from this method with the needed precision.
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⟹

The variation of A
µµ
FB

as a function of the centre-of-mass energy, as obtained from
Eq. 2.10, is shown in Fig. 3. In the above expressions, the photon-exchange term is totally
symmetric, hence is absent from the numerator. Because v4

/a
4
' 3⇥10�5, the Z-exchange

term contribution to the asymmetry is minute, except at the Z pole where the interference
term vanishes and the asymmetry is small: A

µµ
FB,0 = (3/4) ⇥ 4v2

a
2
/(a2 + v

2)2 ' 0.016.
The interference term, on the other hand, is almost 100% anti-symmetric and contributes
mostly to the numerator. (The contribution of the interference term to the denominator,
i.e., to the total cross section, can be neglected as shown in Fig. 2.)
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Figure 3. The muon forward-backward asymmetry in e+e� ! µ
+
µ
� as a function of the centre-

of-mass energy.

The off-peak muon forward-backward asymmetry can therefore be expressed as follows:

A
µµ
FB

= A
µµ
FB,0 +

3

4

a2

v2

I

G + Z
. (2.11)

At a given
p
s, a small variation �↵ of the electromagnetic coupling constant translates to

a variation �A
µµ
FB of the muon forward-backward asymmetry:
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⌘
⇥
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⇥

�↵

↵
. (2.12)

In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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Tree level: 

Maximal close to the Z pole
Proportional to aQED(s)
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to
�↵

↵
=

�A
µµ
FB

A
µµ
FB

�A
µµ
FB,0

⇥
Z + G

Z � G
'

�A
µµ
FB

A
µµ
FB

⇥
Z + G

Z � G
, (2.13)

where the approximation in the last term of the equality is valid off the Z peak.

3 Statistical power of the method

The optimal centre-of-mass energies are those which minimize the statistical uncertainty on
↵QED(s). For a given integrated luminosity L, the statistical uncertainty on the forward-
backward asymmetry amounts to

�
�
A

µµ
FB

�
=

s
1�A

µµ
FB

2

L�µµ
. (3.1)

The target luminosities for the FCC-ee in a configuration with four interaction points are
215⇥1034cm�2s�1 per interaction point at the Z pole and 38⇥1034cm�2s�1 per interaction
point at the WW pair production threshold [12]. With 107 effective seconds per year,
the total integrated luminosity is therefore expected to be 86 ab�1/ year at the Z pole
and 15.2 ab�1/ year at the WW threshold. Between these two points, the variation of
the luminosity with the centre-of-mass energy is assumed to follow a simple power law:
L(

p
s) = L(mZ) ⇥ s

a. The very large Z pole luminosity is achieved by colliding about
60,000 bunches of electrons and positrons, which fill the entirety of the 400 MHz RF buckets
available over 100 km. It also corresponds to a time between two bunch crossings of 5 ns,
which is close to the minimum value acceptable today for the experiments. With a constant
number of bunches, the luminosity was therefore conservatively assumed to linearly decrease
with the centre-of-mass energy (and reach 0. for

p
s = 0.), leading to the profile of Fig. 5.

With the cross section of Fig. 2, the asymmetry of Fig. 3, and the integrated luminosity
of Fig. 5, Eq. 3.1 leads to the statistical uncertainty on A

µµ
FB

displayed as the blue area in
Fig. 4, for a one-year running at any given centre-of-mass energy. An improvement on the
determination of ↵QED(s) is possible wherever the red curve lies outside the blue area, and
is largest when the absolute value of the ratio between the red and blue curves is maximum.

The corresponding relative accuracy for the ↵QED(s) determination is shown in Fig. 6.
The best accuracy of ⇠ 3 ⇥ 10�5 is obtained for one year of running either just below or
just above the Z pole, specifically at p

s� ⇠ 87.9GeV and p
s+ ⇠ 94.3GeV.

The value of the electromagnetic coupling constant extracted from the muon forward-
backward asymmetry measured at either energy, ↵� ⌘ ↵QED(s�) and ↵+ ⌘ ↵QED(s+), are
then extrapolated towards a determination of ↵0 ⌘ ↵QED(m2

Z
) with the running coupling

constant expression around the Z pole, valid at all orders in the leading-log approximation:

1

↵0

=
1

↵±
+ � log

s±
m2

Z

, (3.2)

where � is proportional to the well-known QED �-function. In the standard model and at
the lowest QED/QCD order, it reads �0 =

P
f
Q

2

f
/3⇡, where the sum runs over all active

fermions at the Z pole (f = e, µ, ⌧ , d, u, s, c b) and Qf is the fermion electric charge in
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In first approximation, the asymmetry is therefore not sensitive to ↵QED when the Z-
and photon-exchange terms are equal, i.e., at

p
s = 78 and 112GeV (Fig. 2), where the
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where the approximation in the last term of the equality is valid off the Z peak.

3 Statistical power of the method

The optimal centre-of-mass energies are those which minimize the statistical uncertainty on
↵QED(s). For a given integrated luminosity L, the statistical uncertainty on the forward-
backward asymmetry amounts to
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The target luminosities for the FCC-ee in a configuration with four interaction points are
215⇥1034cm�2s�1 per interaction point at the Z pole and 38⇥1034cm�2s�1 per interaction
point at the WW pair production threshold [12]. With 107 effective seconds per year,
the total integrated luminosity is therefore expected to be 86 ab�1/ year at the Z pole
and 15.2 ab�1/ year at the WW threshold. Between these two points, the variation of
the luminosity with the centre-of-mass energy is assumed to follow a simple power law:
L(

p
s) = L(mZ) ⇥ s

a. The very large Z pole luminosity is achieved by colliding about
60,000 bunches of electrons and positrons, which fill the entirety of the 400 MHz RF buckets
available over 100 km. It also corresponds to a time between two bunch crossings of 5 ns,
which is close to the minimum value acceptable today for the experiments. With a constant
number of bunches, the luminosity was therefore conservatively assumed to linearly decrease
with the centre-of-mass energy (and reach 0. for

p
s = 0.), leading to the profile of Fig. 5.

With the cross section of Fig. 2, the asymmetry of Fig. 3, and the integrated luminosity
of Fig. 5, Eq. 3.1 leads to the statistical uncertainty on A

µµ
FB

displayed as the blue area in
Fig. 4, for a one-year running at any given centre-of-mass energy. An improvement on the
determination of ↵QED(s) is possible wherever the red curve lies outside the blue area, and
is largest when the absolute value of the ratio between the red and blue curves is maximum.

The corresponding relative accuracy for the ↵QED(s) determination is shown in Fig. 6.
The best accuracy of ⇠ 3 ⇥ 10�5 is obtained for one year of running either just below or
just above the Z pole, specifically at p

s� ⇠ 87.9GeV and p
s+ ⇠ 94.3GeV.

The value of the electromagnetic coupling constant extracted from the muon forward-
backward asymmetry measured at either energy, ↵� ⌘ ↵QED(s�) and ↵+ ⌘ ↵QED(s+), are
then extrapolated towards a determination of ↵0 ⌘ ↵QED(m2

Z
) with the running coupling

constant expression around the Z pole, valid at all orders in the leading-log approximation:
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Z

, (3.2)

where � is proportional to the well-known QED �-function. In the standard model and at
the lowest QED/QCD order, it reads �0 =

P
f
Q

2

f
/3⇡, where the sum runs over all active

fermions at the Z pole (f = e, µ, ⌧ , d, u, s, c b) and Qf is the fermion electric charge in
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Extracting a(mZ) from AFB: two methods
q From two measurements AFB(s-) and AFB(s+)

u Extract two values of a

u Run from s± to mZ : two determinations of a0

u Solve for a0 = a(mZ) exactly

q Solve directly for a0 from DAFB = AFB(s-) - AFB(s+)
u Quasi-linear dependence, solve iteratively (exactly)

q In both cases, almost exact cancellations for correlated effects at s±
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Figure 5. Target integrated luminosities for the FCC-ee, in a scheme with four interaction points,
for centre-of-mass energies between 50 and 150GeV.

unit of e. The standard model extrapolation correction from ↵± to ↵0 therefore amounts to
�0.033 from the measurement below the Z pole, and +0.030 from the measurement above
the Z pole, corresponding to a relative correction of ±2.5⇥10�4 in both cases, i.e., an order
of magnitude larger than the targeted uncertainty on ↵0. While this correction is known
with an excellent precision in the standard model – the QED �-function is now known with
QED corrections up to five loops and QCD corrections up to four loops [13, 14] –, it is
certainly preferable to remove this model dependence (and the residual theory uncertainty)
from the determination of ↵0.

The dual measurements of ↵� and of ↵+ solve this issue and yields the straightforward
combination:

1

↵0

=
1

2

✓
1� ⇠

↵�
+

1 + ⇠

↵+

◆
, where ⇠ =

log s�s+/m4

Z

log s�/s+
' 0.045, (3.3)

without any model dependence related to the running of the electromagnetic constant. This
combination of a measurement below the Z peak and a measurement above the Z peak has
other advantages, the most important of which is the cancellation to a large extent of many
systematic uncertainties, as explained in the next section. With this weighted average, the
targeted precision of 2 ⇥ 10�5 can be obtained from one year at 87.9GeV and one year
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Parametric uncertainties
q At (improved) born level, the asymmetry depends on mZ, GZ, sin2qW,eff , GF (and √s)

u These parameters will be measured precisely at FCC-ee
l Except GF, which is already very precisely measured  

u The corresponding parametric uncertainties are negligible wrt the statistical error (3×10-5)
l The Z mass is entirely correlated with the absolute √s determination (next slide)

è Negligible effect

14 July 2022
Direct aQED(mZ) measurement at FCC-ee 9

Observables Present value FCC-ee stat.
FCC-ee

exp. syst. Da/a

mZ (keV) 91 187 500 ± 2100 4 100 –

GZ (keV) 2 495 500 ± 2300 [*] 4 25 5×10-7

sin2qW,eff (×106) 231 530 ± 160 1.5 ? 10-6

GF (×106) 1 166 378. 76 ± 0.51 – – 5×10-7
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Experimental uncertainties
q Centre-of-mass energy calibration (with resonant depolarisation)

u At s = s± , the energy dependence of AFB can be approximated as

l Error propagation

l Dominant term : point-to-point calibration uncertainty D

u Related uncertainty :  6×10-6

14 July 2022
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Experimental uncertainties
q Centre-of-mass energy spread (~0.12% around the Z pole)

u On average, modify the asymmetry as follows

l The steep slope of sµµ tends to increase (decrease) the average √s above √s- (below √s+)

u The energy spread tends to decrease the difference AFB(s+) - AFB(s-) by about 10-3 (relative)
l With a similar relative effect on a(mZ)

u This effect is two orders of magnitude larger than the statistical uncertainty
l It must be corrected for, e.g., by a measurement of the centre-of-mass energy spread

è Typically with a precision better than 1% to reduce the uncertainty on a(mZ) to 10-5

14 July 2022
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γ
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With ISR
 0.1%±Asymmetry = 

One million dimuon events

Experimental uncertainties
q In-situ measurement of the centre-of-mass energy spread with the same events !

u Energy spread = relative longitudinal boost xg = pz
miss/ √s

u Full spectrum obtained from µ directions and E,p conservation

l Method also provides absolute directions wrt the beams
l Requires ~0.1 mrad angular resolution or better
l Good ISR description needed: to be checked

u Even better: it is an event-by-event measurement of √s
l Automatic self-calibrated energy scan

è Gives the possibility of measuring AFB(s) around s+ and s- without √s-spread-related uncertainty

14 July 2022
Direct aQED(mZ) measurement at FCC-ee 12

1% precision 
every 10-20 seconds

at √s+ and √s-
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Experimental uncertainties
q Selection efficiency and acceptance : getting rid of it experimentally

u At tree level, the angular distribution of µ± reads

u The selection efficiency ℇ(c) is eliminated in the charge asymmetry AQ(c)

l Average over all c values returns the optimal statistical precision on A(s)
è Singularity at c = 0 can be avoided by rejecting these events, which carry no information on A(s)

l Electric-charge-dependent efficiency can be measured in situ with T&P method (e.g. at the Z) 

q Other experimental uncertainties are found to be negligible
u Charge inversion, tau background, angular resolution (at tree level), etc.

14 July 2022
Direct aQED(mZ) measurement at FCC-ee 13

• c = cosq in the µµ cm frame
• A(s) = asymmetry parameter (=AFB)
• ℇ(c) = event selection efficiency

⟹
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Theoretical uncertainties
q Impact of missing higher orders on AFB prediction from A. Freitas (2016)

u Two- and three-loop calculations needed to match missing orders with statistics
l These are estimates only – need to perform the actual calculation to know for sure

è In particular to evaluate the level of cancellations in A(s+) – A(s-)  

14 July 2022
Direct aQED(mZ) measurement at FCC-ee 14



P. Janot

Theoretical uncertainties
q Initial state radiation : several consequences on AFB measurement

u Smear the centre-of-mass energy spread distribution
l Will need to check if the current knowledge of ISR suffices for this purpose

u Reduces the centre-of-mass energy to s* = s (1-2xg)
l Modifies in turn A(s) to A(s*) ; Solution: measure A as a function of s* (self-calibrated scan)

u Modifies the angular distributions from the two muons with longitudinal boost xg
l Solution: Boost back to the centre-of-mass energy frame (with the knowledge of xg)

u Result : [ AFB-AFB(SM) ] / AFB as a function of  1-s*/s exhibits large measurement biases
l Biases originate from

è ISR angular distribution
è Several ISR photons
è Muon angular resolution
è Beam energy spread

(not shown here)

l Effects common to s+ and s-

14 July 2022
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Theoretical uncertainties
q Initial state radiation (ISR): consequences mitigated for a(mZ)

u Biases on AFB are two orders of magnitude larger than statistical target
l They appear to be universal at both centre-of-mass energies

è With perfect cancelation in the difference A(s+) – A(s-) 
IFF muon angular resolution better than 0.1 mrad

14 July 2022
Direct aQED(mZ) measurement at FCC-ee 16
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Theoretical uncertainties
q Final state radiation (FSR)

u Mostly collinear
l Effect on the muon direction (and the determination of s*) very much suppressed

u Symmetric around the muon directions at all orders in a
l Effect on AFB expected to be unmeasurably small on average

u Residual tiny biases on the asymmetry parameter independent of √s
l Expect exact cancellation anyway in the difference DA = A(s+)-A(s-) 
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Theoretical uncertainties
q Initial-final state radiation interference (IFI)

u Angular distribution modified with another totally asymmetric function

l Here, f is supposed to be an odd function of  c*, without any loss of generality
è The even part, if any, can safely be absorbed in the normalization factor, which disappears in the ratio

14 July 2022
Direct aQED(mZ) measurement at FCC-ee 18

IFI ≈ Qµ-×Qe- or Qµ+×Qe+ > 0 IFI ≈ Qµ+×Qe- or Qµ-×Qe+ < 0

S. Jadach
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Theoretical uncertainties
q Angular distributions and charge asymmetry distributions (here for 1-s*/s < 10-4)

14 July 2022
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Theoretical uncertainties
q Is it possible to fit the IFI function f away from the data ?

u Fit to the function
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Theoretical uncertainties
q Re-inject the function f as obtained from the hypothetical A value

u Determine (iteratively) a new value of the asymmetry parameter A with

l Biases due to the imperfections of the functional form for f(c*)
è Cancellation in A(s+)-A(s-)  at the level of 10-5 or less 
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1-s*/s < 10-9

log10(1-s*/s)
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Theoretical uncertainties
q Absorbing biases in the difference DA = A(s+)-A(s-)
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log10(1-s*/s)

log10(1-s*/s)From MC only

DA compatible with input value
(would need more statistics)

DA with IFI on = DA with IFI off
= DA with ISR off

(within statistical target)

= (5.2 ± 8.7)×10-6
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Theoretical uncertainties
q Does it mean that no theoretical effort is needed for IFI prediction ?

u The previous plots about IFI (slides 16 – 19) were produced at generator level
l No √s spread 
l No muon angular resolution

u These two experimental realities affect the calculation of s* and mix with IFI (also ISR)
l Which in turn will create more biases on the determination of f(s*,c*) and A(s*)

è Though we might still expect cancellations in the difference DA = A(s+)-A(s-) 
TO BE CHECKED THOROUGHLY !

u The determination of sin2qW,eff  relies only on the asymmetry parameter at √s = mZ
l No difference is at play in that case to cancel the ISR and IFI biases

è ISR/IFI need to be predicted with a precision suited to match the 1.5×10-6 statistical target on sin2qW,eff

14 July 2022
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Summary after this first feasibility study
q A direct measurement of aQED(mZ) with dimuon events at FCC-ee is statistics limited

u Negligible exp’tal errors

u Negligible parametric errors

u ISR and IFI seem under control
l To be checked in full detail

u Bottleneck today is ASM prediction
l Full NNNLO needed ?

q A full analysis is now needed with all effects (and correlations) studied together
u Until now, effects have been studied either in isolation or in pairs 
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Outlook – Shopping list for newcomers
q Implement a full analysis beyond this feasibility study

u And publish a paper !

q Check with full simulation / reconstruction 

q Go to the full statistics to unveil other issues
u 1011 dimuon events !

q Measure asymmetry parameter off-peak with more channels
u Repeat with di-tau events 

l t direction from the decay vertex position ? (check t angular resolution)

u What can be done with di-electron events ? 

q Study indirect measurements with low-angle Bhabha events (Lumical)
u Measure Dahad (t) 
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See, e.g., arXiv:1504.0228, arXiv:hep-ex/0505072 (OPAL), arXiv:hep-ex/0002035 (L3) 

https://arxiv.org/abs/1504.02228
https://arxiv.org/abs/hep-ex/0505072
https://arxiv.org/abs/hep-ex/0002035

