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Outline

* Introduction
—Monte Carlo generators in WLCG computing
—Madgraph5 aMC@NLO (MG5aMC) and the madgraph4gpu project
—Monte Carlo matrix element generators and data parallelism

» Results and outlook in three main areas of development
(1) ME calculation in the 'cudacpp’ implementation (C++ with vectorization on CPU, CUDA on Nvidia GPUSs)
(2) ME calculation in C++ portability frameworks (Alpaka, Kokkos, Sycl on CPUs and on Nvidia/AMD/Intel GPUS)
(3) Integration of C++ based ME calculations into the Madevent Fortran framework

* Conclusions
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Motivation: Monte Carlo Event Generators in WLCG computing

« LHC computing needs are predicted to outpace resource growth on HL-LHC timescales
—Need aggressive R&D to improve software efficiency and port it to new architectures and resources
—GPUs increasingly important, in site clusters but also HPC centres (already used opportunistically in WLCG)
—Performance portability frameworks enable use of new systems without writing multiple software versions
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« MC generators, the essential 15 step in simulation, use 10-20% of ATLAS/CMS WLCG CPU budget
—Many ways to speed up their performance — see the HEP Software Foundation (HSF) Generator WG review
—MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and in vector CPUs (SIMD)
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Madgraph5 aMC@NLO (MG5aMC)

* One of the workhorses for event generation in ATLAS and CMS!
—SM and BSM, LO and NLO, integration with PDF and loop libraries...
—Matrix Element (ME) calculations, merging of multi-jet final states,

NLO matching of MEs and Parton Showers (PS)...
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The automated computation of tree-level and MADEVENT

5 next-to-leading order differential cross sections, and OMeNTA

BT - their matching to parton shower simulations
J. Alwall,* R. Frederix,” S. Frixione,’ V. Hirschi,© F. Maltoni,? O. Mattelaer,?
H.-S. Shao,® T. Stelzer,” P. Torrielli’ and M. Zaro""
. . . https://doi.org/10.1007/JHEPQ07(2014)079 MATRIX ELEMENTS
 MG5aMC production version in Fortran S 11T T A

— Software outer shell: Madevent

* A Fortran/Python/bash framework for phase space random sampling, integration and unweighted event generation
— Software inner core: ME calculation code, automatically generated for each physics process

* Production version in Fortran (but simpler, non optimized versions exist also in Python and C++)

» Matrix Element calculations take 95%-+ of the CPU time for complex processes (e.g. gg—ttggg )
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MG5aMC and the madgraph4gpu project

madgraph4gpu: speed up ME calculation in MG5aMC on modern hardware (GPUs and vector CPUS)
— Collaboration of theoretical/experimental physicists with software engineers — born in the HSF generator WG
— It would not be possible without Olivier Mattelaer (MG5AMC co-author and current main maintainer) !

EPJ Web of Conferences 251, 03045 (2021) https://doi.org/10.1051/epjconf/202125103045

Previous results were presented at vCHEP2021 (May 2021):
(1) Only a simple e*e™—>u* ™ process, hardcoded one-off CUDA/C-++ | Peson snd engineering of s smifed worktow executon
(2) In C++ with vectorization for CPUs, in CUDA only for Nvidia GPUs e e S Rt O Mt S et
. . . ndreua Valassi'*, Stefun Roiser', Olivier Mattelaer-, and Stephun Hage oeck!
(3) Only a standalone application (not usable by the experiments) ICERN, IT:5C group, Geneva, Switzerland

>Université Catholique de Louvain, Belgium

https://doi.org/10.1051/epjconf/202125103045

Two main goals for our current efforts in 2022
—Release MG5AMC for LO (no NLO yet!) event generation in ATLAS/CMS (CPU SIMD speedups and GPU port)
— Gain experience for the HEP software community on the usefulness of portability frameworks (PFs)

Main new progress since May 2021.:
(1) Code generation plugins instead of one-off code: performance results for complex gg—ttggg processes
(2) Additional implementations with PFs (Alpaka, Kokkos, Sycl), e.g. also for AMD and Intel GPUs
(3) Integration of CUDA/C++ ME calculation into Madevent: cross sections done, event generation almost done
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MG5aMC computational anatomy and data parallelism strategy

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)
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GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)
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LA ROULETTE DE MONTE-CARLO

Aside — Monte Carlo’s: what about branching?

 Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

* From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING MC DECISIONS
(within one channel) | INPUT a@ INPUT
Physics generators:
Physics generators: - MC sampling channel
- MC integration DECISION - MC unweighting
(cross sections) Q@ (accept/reject)
- MC generation - Parton showers (PS)
(event samples) y - Fragmentation
OUTPUT OUTPUT - Particle decays (to what?)
Lockstep processing Stochastic branching MG detector simulation
Good for SIMT/SIMD Bad for SIMT/SIMD - Particle/matter interaction

NB: the CPU-intensive ME calculation comes (whg.n? how?)
before PS, fragmentation, detector simulation - Particle decays (when?)

= UCL /3,
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Code generation: from many “epochs” to a single evolving “epoch”

MADGRAPH

OLD MODEL P';?:é’fE (1) Now using upstream MG5AMC from '_\lEW MODEL
(2020- early 2021) https://github.com/mg5amcnlo ! (since end 2021)

Code generation infrastructure
- Python framework and “cudacpp” plugin
- Fortran, C++, CUDA templates
- Post-generation patches (temporary...)

> (3) re-generate

"epoch” UPSTREAM

Automatically generated code
- Fortran framework (Madevent)
- CUDA/C++ Matrix Elements

(sta rt new INTEGRATE

PF;(]AI::jé:E (1) develop on top of auto-generated code
(2) backport immediately to code generation infrastructure

AUTO-GENERATED
CUDA/C++ CODE

N UCL /4
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https://github.com/mg5amcnlo/mg5amcnlo/tree/3.1.1_lo_vectorization

Matrix Element (ME) calculation in cudacpp: results

(1) First line of development: the “cudacpp” plugin to calculate MEs in C++ (CPUs) or CUDA (GPUs)
Single code base for C++ and CUDA (with #ifdef’s): original development, currently the most advanced
Exploit SIMD vectorization through explicit Compiler Vector Extensions (gcc, clang, icpx)

Implementation MEs/second | MEs/second | » Helicity recycling (different/faster algorithm)
(gg— ttgg) Double Fb}/
1-core MadEvent Fortran 3 0B / Implementation MEs/second | MEs/second
scalar (99— tEgg) Double Float
1-core Standalone C++ 1.84E3 1.80E3 1-core Standalone C++ 2.39E3 2.50E3
scalar (x1.00) (x0.98) scalar (x1.00) (x1.05)
1-core Stgndalone C++ 3 36E3 6.60E3 1-core Stgndalone C++ 4.50E3 9 42E3
128-bit SSE4.2 (x1.8) (x3.6) 128-bit SSE4.2 (x1.9) (x3.6)
(x2 doubles, x4 floats) ' ' (x2 doubles, x4 floats) ’ )
1-core Starjdalone C++ 6.86E3 1.31E4 1-core Stapdalone C++ 1.06E4 2 15E4
256-bit AVX2 (x3.7) (x7.1) 256-bit AVX2 (x4.4) (x9.0)
x4 doubles, x8 floats ' ' (x4 doubles, x8 floats) ' )
1-core Standalone C++ 1-core Standalone C++
“256-bit” AVX512 “256-bit” AVX512 1(':45554 2(352;1
x4 doubles, x8 floats x4 doubles, x8 floats ) )
1-core Standalone C++ 1-core Standalone C++ 4 03E4
512-bit AVX512 512-bit AVX512 (ﬁ16 9)
(x8 doubles, x16 floats) x8 doubles, x16 floats '

Standalone CUDA
NVidia V100S-PCIE-32GB

4.89E5

9.27ES

TFlops*: 7.1 FP64, 14.1 FP32)

(x270)

Intel Silver 4216 CPU (CERN)
Poor AVX512/zmm results < One FMA unit?

(x500)

Intel Gold 6148 CPU (Juwels Cluster HPC)
Better AVX512/zmm results < Two FMA units?

(one single thread)
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Main new results since vCHEP2021:

» Backport to code generation
Speedups previously reported for

ee_mumu now ~confirmed for gg_ttgg
- CPUs/SIMD: x4 double, x8 float
- GPUs/V100: x270 double, x500 float
(could do better, high register pressure)

o Extra x2 from AV X512 on Intel Gold:
Achieve theoretical limit of speedup:
X8 double, x16 float on AVX512 CPU

* New features for MadEvent integration

Argonne & (‘éf“@?




Portability Frameworks (PFs) Lkokkosd |[‘>a ka (sycL.

(2) Second line of development: MEs on PFs cudacpp example of compiler directives
o _ _ 540 ri?he cunnzc N\
» PFs allow writing algorithms once and running on many 541  [#ifndef MGONGPU_NSTGHT DEBUG
. . . g . . . 542 gProc::sigmaKin<<<gpublocks, gputhreads>>>(devMomenta.get(), devMEs.get()
architectures with some hardware-specific optimizations 543 |rerse
o CUDA Code Can Only run On NVldla GPUS, Wh||e KOkkOS, ::j #Endgiﬁrnc::sigmaKinqq-ﬂgpuhl_ncks, gputhreads, ntpbMAX+sizeof(float)=>=(devMome
Alpaka, and Sycl[Intel] codes can run on most hardware i N For GPU
checkKLudal cudabevicesyncnronlize 3
* In “cudacpp’, #ifdef directives separate code branches for 548 else
549 Proc::sigmakKin{hstMomenta.get(), hstMEs.get(), nevt);
GPU and CPU code during compilation (but these are very 550 #endif

few: only kernel launching and memory access, not MES)

» With PFs, the algorithm is typically the same, but the Kokkos example of Templating & lambda
compilation occurs once per architecture type o <

° PFS Often use templatlng tO handle data typeS and hardware 325 using member_type = typename Kokkos::TeamPolicy<Kokkos::DefaultExecut

. . . . . 326 Kokkos: :TeamPolicy<Kokkos::DefaultExecutionSpace> policy( league_size
configuration and function lambdas or pointers for passing 327 Kokkos::parallel_for(_ func__,policy,
kernels (the cudacpp plugin has many of these, too) 28 KOKKOS_LAEDA(member_type tean member)

270

» PFs still require user to think about “host” vs “device”
Kokkos example of Memory Management

262 Kokkos::Viewsfptypess+,Kokkos: :DefaultExecutionSpace> devMomenta(Kokkos::ViewAllocateWithoutInitializing("devMomenta"),nevt,npar,npd);

263 auto hstMomenta = Kokkos::create mirror_view(devMomenta);

‘ UCL
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https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

ME calculation in PFs: GPU results (Nvidia A100)

Throughput scaling (threads, blocks) for a simple e*e™—u*u™ process and a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)
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* This and the next slide show both ee_mumu and gg_ttgg for
comparison, but please focus only on the gg_ttgg results!

—The ME calculations in ee_mumu are extremely simple: the
overhead of CPU-GPU memory copies on total MEs/s is huge
(and maybe was handled differently in the 4 implementations?)

« Good news 1: for gg_ttgg, all four implementations look similar!
/' —The benefit of direct CUDA over a PF is limited, if any at all

« En passant, keep in mind this for later: you need at least 16k
“events per GPU grid” to fill up a V100 or A100 with gg_ttgg+

—Simpler processes need even more, e.g. 500k for ee_mumu
Argonne & () H2E@) 11
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ME calculation in PFs: GPU results (Nvidia, Intel, AMD)

Maximum throughput for a simple ete™—pu*u~ process and a complex gg—ttgg process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

ee_mumu
1010. I SYCL Bl Kokkos B CUDA Alpaka

107

» Again, please focus only on the gg_ttgg results!

Matrix Elements
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cuda-11.6.2
cuda-11.6.2
cuda-11.6.2

rocm-5.1.3
rocm-5.1.3

« Good news 1: for gg_ttgg, all four look similar on Nvidia!
—The benefit of direct CUDA over a PF is limited, if any at all

+ 9g_ttgg
Lo5 ] mm sc mm onos mm coa = Apeke « Good news 2: PFs also work on AMD and Intel GPUS!
27 —Out of the box, with a single implementation
% E 101 (There is no Alpaka on Intel in the plots because we use Cupla: we should move to using native Alpaka)
10°A :
-\<\°’Q>, (,)Q* V@QQ ,\\9@ &QQ O\\} & Xe-HP is a software development vehicle for functional testing only. It is currently used at
@ R N N ° Argonne and at other customer sites to prepare their code for future Intel data centre GPUs
N e S )
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ME calculation in PFs: CPU results (preliminary! need systematic study)

Maximum throughput for five processes, from simple (e*e™—u*u™) to more complex (gg—>ttggg)
(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

« CPUs have two very different parallelisms we can exploit:
—Many floats/doubles per vector register: vectorization (SIMD)
—Many physical/virtual cores: multi-threading (or many processes!)

10%; skylake 8180 ——— < NB: this plot is comparing apples to oranges and to peaches!
10°1 = ovene —Fortran: one single thread, no vectorization

—Kokkos: internal multithreading? limited auto-vectorization?

— SYCL: internal multithreading? limited auto-vectorization?
—cudacpp: OpenMP multithreading, explicit vectorization (CVE)

* The OMP multithreading in the cudacpp plugin is known to be
suboptimal and will be reengineered (probably with std::thread instead)
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On CPUs, for the moment, it seems better to use ad-hoc developments as in cudacpp, than rely on PFs
(NB: you may replace OMP by many applications in parallel, but you must do low-level coding to get a factor x4 or more from SIMD)

UCL f
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Matrix Element (ME) calculation in cudacpp and PFs: outlook

Short term (end 20227)

* (Nvidia GPUs) Further improve CUDA performance with smaller kernels
— Exploit tensor cores for color algebra in cudacpp? Would tensor cores be supported by PFs?
— Finer grained strategy for distributing work on the GPU(s)? Multi-GPU support?

* (AMD/Intel GPUs) Add direct HIP to cudacpp implementation, in parallel advance in PF implementations

» (CPUs, multithreading) Replace OpenMP by std::thread; systematic thread scaling studies in cudacpp and PFs
— Containerize the standalone application and collaborate on scaling studies with the HEPiX benchmarking WG

» (CPUs, vectorization) Systematic vectorization studies in PF implementations
» (CPUs, GPUs) Numerical precision studies: stress tests of -O3 and fast math (our default assumption...)

Medium term (2023+)

» (CPUs, GPUs) Implement helicity recycling in cudacpp (additional x2-3 algorithmic speedup, now only in Fortran)
* (CPUs, GPUs) Handle NLO: loops and matching to PS
* (CPUs, GPUs) Numerical precision studies: would float be enough? (additional x2 speedup over double)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonneﬁ N e



Matrix element integration in MadEvent: overview

(3) Third line of development: replacing Fortran by cudacpp MEs in Madevent (keep the user interface!)

Linking Fortran and C++ has been easy. As expected, the two main issues have been, instead:
—1. Moving Madevent from single-event to many-event (need 16k+ per GPU grid = huge arrays in CPU memory!)
—2. Debugging the issues caused by hidden inputs and outputs, largely coming from Fortran common blocks

FORTRAN:
RANMAR

|

FORTRAN:
MADEVENT

MOMENTA

MATRIX ELEMENTS

W

REENGINEER MADEVENT

%

ADAPT CUDACPP

SINGLE event
(momenta)

COMMON
BLOCKS
(hidden inputs
and outputs?)

Software performance and portability in Madgraph5_aMC@NLO

MANY events
(momenta)

PURE
FUNCTION
(clear inputs
and outputs)

FORTRAN:
RANMAR

|

FORTRAN:

MOMENTA

CUDA / C++:
SIGMAKIN

MATRIX ELEMENTS

HH
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Matrix element integration in MadEvent: results

» Functional results (Madevent with Fortran MEs vs CUDA/C++ MEs, using the same random seeds)
— Cross section calculation: done! (Same cross section within ~E-14 relative accuracy)
—Unweighted event generation: almost done! (Same LHE output files, except for missing color/helicity)

« Performance results = Total time = Madevent time (scalar, sequential) + ME time (vector, parallel)
—The overall speedup is limited by the incompressible scalar component (we need to reduce that too!)
—Amdahl’s law: if parallel fraction is initially p, maximum speedup is 1/(1-p)

AVX512 on Intel Silver: x4.4 speedup for MEs, x3.9 for full workflow
AVX512 on Intel Gold: x7.8 speedup for MEs, x6.4 for full workflow

CERN: Intel Silver 4216 + Nvidia V100

Juwels: Intel Gold 6148

gg — ttggg [seconds] Overall = MadEvent + MEs  [MEs/second]
FORTRAH 93 . 65 = 4,16 + B9 | 7.19e+01 [seconds] Overall = MadEvent + MEs  [MEs/second]
CPP/none |111.50 = 4.89 + 106.62 1 6.03e+01 FORTREH (.93 = 2.84 + (A.09 | 9.73e+01
6k events Cop/ssed TRITE = A B0 F STBE | hl2e+02 CPP/none| 84.01 = 3.38 + 80.63|| 7.98e+01
CPP/awvx2 33.78 = 4.26 + 29.52 | 2.1%e+02 CPP/ssed 46,29 = 7.04 + 43.25 | 1.492+02
CPP/512y 20 66 = 4 22 &+ 26 44 | 2.43e+02 CPPfavx2 22.26 = 2.85 + 19.41 | 3.31e+02
CPP/512z | 28.36 = 4.34 + 24.02]|| 2.68e+02 CPP/512y 20,49 = 2.89 + 17,60 | 3.66e+02
CUDA/32 63.77 = 5.34 + 58.38 | 1.10e+02 CPP/512z[13.11 = 2.81 + 10.30|| 6.24e+02
800k events cUDA/8192 |639.20 = 527.37 + 111.83|| 7.40e+03

= UCL /3,
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https://en.wikipedia.org/wiki/Amdahl%27s_law

Matrix element integration in MadEvent: outlook

Very short term (Q3 2022 — alpha release for the experiments)

* Implement event-by-event random choice of colors and helicities in cudacpp (goal: same LHE files!)
» Cross-check the few last details (pdfs, user parameters...)

Short to medium term (end 2022 — 2023)

« Reduce overhead from scalar Madevent framework (goal: overall speedups closer to ME speedups)
— This is currently the bottleneck preventing higher throughputs for the overall workflow using GPUs
— One possible option: heterogeneous workflow (multithreaded Madevent on CPU, parallel ME on GPU)?

« Reduce number of Fortran arrays in Madevent (goal: lower CPU memory, allow larger GPU grids beyond 8Kk)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 Argonneﬁ




Conclusions

« ALL Matrix Element Generators are perfect fits to exploit CPU vectorization/SIMD and GPUs
—Lockstep parallelism in MEGs much easier to exploit than in detector simulation (Geant4, stochastic branching)

 An alpharelease of MG5aMC for LO with GPU ports and CPU speedups from SIMD is imminent
—Cross section calculation is ready; a few details to fix for unweighted event generation (random color/helicity...)

* On Intel Gold CPUs, AVX512 C++ is x8 faster than scalar C++ for ME calculations (in double precision)
— A slightly lower speedup ~x6 holds for the full Madevent + ME workflow (Amdahl’s law, as Madevent is scalar)
—Overall speedup ~x5 compared to Fortran (comparing to the old Fortran release without helicity recycling)

—An additional x2-3 algorithmic speedup will come through helicity recycling (not yet in cudacpp)

* On GPUs, much larger O(300+) speedups may be achieved for the ME calculation
—But we must reduce the scalar component in Fortran MadEvent to see those in the full workflow (Amdahl’s law)

« Additional x2 speedups may be achieved on CPUs and GPUs by moving from double to single precision

 Portability Frameworks work well for us! Simplify development with a single code for many GPU flavors
— Similar performance to direct CUDA on Nvidia GPUs; we may also run out of the box on AMD and Intel GPUs
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CPU throughput plots — SIMD + multi-core

« Two different throughput speedup factors multiply each other: SIMD and multi-core
— SIMD: fewer instructions per processor (e.g. in AVX2 each instruction applies to 4 doubles)
— Multi-core: many cores used in parallel (e.g. multiple jobs, multi-threading, multi-processing)

check.exe scalability on pmpe04 (2x &-core 2,4GHz Haswell with 2x HT)
WARIOUS SIMD MODES WVARIOUS SIMD MODES

B0

gmo NoHT  2xHT | Overcommit || | | NoHT  2xHT | overcommit | Multiple instances of single-threaded MG5aMC
$ ' N e Combine SIMD and multi-core speedup
w | 8 ' S B : | Memory proportional to number of cores used
g_ R (4]
A ;_'50-
"] i el SIMD mode
E &0 .___-'r/// : =2 none || gw
— . : *—e ssed =
= S/ ' @ w
E 40 ,/ _ i ______?iﬂ 1 330'
5 5. il Al |
5 - o SIMD mode
O 20 = o—e none check.exe scalability on pmpe04 (2x 8-core 2.4GHz Haswell with 2x HT)
% 10 e ssed —as _WITHOUT SIMD — a0 _WITHOUT SIMD
= ' 0 L o= awa = NoHT = 2xHT @ Overcommit NoHT = 2xHT | Overcommit
— 0 10 20 30 40 50 — 0 10 20 30 40 50 o : : 70 i :
ingle-threaded Job Instances : i
#CORES USED IN PARALLEL (#single-threaded job inst MAXIMUM, MEMORY: 64 €8
I mm
5]
& ko
g S
E a0
- #thn;lla_ss B E ' #threMa}:Is b
per job |4 ' per MT jol
; 1(sT) E’” © e 1(sT)
. —e 2 " —e 2
Prototype of OpenMP multi-threaded MG5aMC g S & o —s 4
Trivial coding (one pragmal), but suboptimal/unstable |2 o " 2l o
Much lower memory (~proportional to number of jobs) |~ i . oo 32 4 o2
W.” b bl . I tth. . 'td"th d — 00 10 20 30 40 50 — 00 10 20 30 40 50
Il probably reimplement tnis using sta::tnrea | #CORES USED IN PARALLEL (#threads per job x #jobs) |
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CUDA/C++: ME code example (complex number scalar/vector)

Formally the same code for three back-ends (cxtype_sv represents three types)

- C++, no SIMD:  scalar complex —
- C++, with SIMD: vector complex —

- CUDA: scalar complex — (typedef thrust::complex<fptype> cxtype; // two doubles: RI
typedef std::complex<fptype> cxtype; // two doubles: RI
class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA

const cxtype COUP, 1. OXXXXX

cxtype_sv* vertex ) // output: amplitude

1. OXXXXX

mgDebug( ©, _ FUNCTION _ );
const cxtype cI( 6., 1. );

(FL[3] * (F2[4a] * (V3[3] - cI * (V3[4])) + F2[5] * (Vv3[2]

(*vertex) = COUP * - cI * TMP®;
mgDebug( 1, _ FUNCTION__ );

const cxtype_sv TMP@ = (F1[2] * (F2[4] * (V3[2] + V3[5]) + F2[5] * (V3[3] + cI * (V3[4]))) +
- V3[s])) +
(F1[a] * (F2[2] * (v3[2] - Vv3[5]) - F2[3] * (V3[3] + cI * (Vv3[4]))) +
Fi[s] = (F2[2] * (-v3[3][+]cr = (va[a])) + F2[3] = (v3[2] + V3[5])))));

e
—device e # || FFV1_0:
void FFV1_@( const Fl[]J {/ 1nput: -.-.'ava-uru't':onl['.?J . IXNXXX 1. IXXXXX hehc!ty ampﬁtude
const cxtype_sv F2[], // 1input: wavefunction2[6] -
const cxtype_sv Vv3[], // input: wavefunction3[6] (a) 2 FFV1PO. 3 3. FFV1_0 for the THH vertex
' N Soon to be

automatically generated

“+” is the usual sum of two
(thrust/std) scalar complex,
or the user defined sum of
two vector complex

inline

cxtype_v operator+( const cxtype v& a, const cxtype v& b )

. . #else
compiler vector extensions

#endif

typedef fptype fptype_v _ attribute__ ((vector_size (neppV*sizeof(fptype)))); // RRRR

return; {
} return cxmake( a.real() + b.real(), a.imag() + b.imag() );
b
#ifdef _ clang__
C++ SIMD- gCC/Clang typedef fptype fptype_v _ attribute__ ((ext_vector_type(neppV)}); // RRRR

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs
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CUDA: Profiling with NVidia NSight Compute — ncu

We regularly profile CUDA with ncu [both one-off studies and on-commit checks]
— Thanks to our mentors at the Sheffield GPU hackathon for getting us started!

We see no evidence of thread divergence [branch efficiency is 100%]

Our AOSOA layout ensures coalesced memory access [requests vs transactions]

O
d

We continuously monitor register pressure — decreasing it is one of our future goals
— We plan to split the ME computation into many kernels coordinated by CUDA Graphs

Pags: Detals
Current 4, 1, Cye : i v SM Frequency: 1. : 7.0 Process:

NO_DIVERGENCE 515 aKn 4, 1, /| z 120 NV 5SHM Frequency: 1 : 7.0 Process:

Example: compare baseline implementation (100% branch efficiency) to a test with artificial divergence
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Argonne’s Joint Laboratory for System Evaluation (JLSE)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes Iris Nodes AMD MI100 Nodes

AMD 7532 32c 2.4Ghz Intel Xeon E3-1585 v5 CPU w/ Intel Iris Pro Graphics P580 2x AMD EPYC 7543 32c¢ (Milan)
DDR4-3200 256GB (8x32G DIMMs) RAM 4x 16GB DDR4-2666 SODIMMs (operating at DDR4-2133) 4x AMD MI100 32GB GPUs

1x Nvidia A100 40GB PCle 4.0 1GbE Onboard Infinity Fabric

Mellanox ConnectX-6 EDR 512GB DDR4-3200

Arcticus Nodes

NVidia V100 Nodes 2x Intel development GPU card (Codename XeHP_SDV) AMD MI50 Nodes

421x :\|V|ID>|<A Tegalgtigzséga V2V/2 SzzGlBogiMz 2x Intel(R) Xeon Gold 6336Y CPU (48 physical cores total) 2.4Ghz Sigffﬁeejd'iz'zm
X Intel Xeon G0 €2.106Rz 1| 556GB: 16x 16GB DDR4 @ 3200 X ¢ Rome

192GB RAM DDR4-2666 _ o 4x AMD MI50 32GB GPUs
Mellanox ConnectX-5 EDR Mellanox ConnectX-6: EDR InfiniBand (100 Gbps) Infinity Fabric

256GB DDR-3200 RAM

Skylake Nodes

Intel S2600WF,

2x Intel Xeon Platinum 8180M CPU @
2.50GHz

768GB RAM

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022
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Build environment on JLSE (Sycl)

* We used JLSE systems to run all performance tests described here for Alpaka/Kokkos/Sycl

NVidia A100 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e2)

CUDA 11.6.2

NVidia V100 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e?)

CUDA 11.6.2

Software performance and portability in Madgraph5_aMC@NLO

Iris Nodes
Intel oneAPI DPC++ (NDA)

AMD MI100 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e2)

ROCM 4.5.2

Arcticus Nodes
Intel oneAPI DPC++ (NDA)

Skylake Nodes

Intel oneAPI DPC++ (2021.4.0)

AMD MI50 Nodes
Intel oneAPI DPC++ (commit b9cb1d1247e?2)

ROCM 4.5.2

ICHEP, Bologna, 8 July 2022
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https://www.jlse.anl.gov/hardware-under-development/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

Build environment on JLSE (Kokkos)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes Iris Nodes AMD MI100 Nodes
Kokkos 3.5.00 Intel oneAPI DPC++ (NDA) Kokkos 3.5.00
CUDA 11.6.2 Kokkos (NDA) ROCM 4.5.2
g++9.4.0

Arcticus Nodes
NVidia V100 Nodes Intel oneAPI DPC++ (NDA) AMD MI50 Nodes
Kokkos 3.5.00 Kokkos (NDA) Kokkos 3.5.00
CUDA 11.6.2 ROCM 4.5.2
g++9.4.0

Skylake Nodes
Intel oneAPI DPC++ (NDA)
Kokkos (NDA)
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https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://www.jlse.anl.gov/hardware-under-development/

Build environment on JLSE (Alpaka)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes Iris Nodes AMD MI100 Nodes
Kokkos 3.5.00 Intel oneAPI DPC++ (NDA) Kokkos 3.5.00
CUDA 11.6.2 Kokkos (NDA) ROCM 4.5.2
g++9.4.0

Arcticus Nodes
NVidia V100 Nodes Intel oneAPI DPC++ (NDA) AMD MI50 Nodes
Kokkos 3.5.00 Kokkos (NDA) Kokkos 3.5.00
CUDA 11.6.2 ROCM 4.5.2
g++9.4.0

Skylake Nodes
Intel oneAPI DPC++ (NDA)
Kokkos (NDA)
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https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://www.jlse.anl.gov/hardware-under-development/

Build environment on JLSE (Cuda and OpenMP)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes
CUDA 11.6.2
g++9.4.0

NVidia V100 Nodes
CUDA 11.6.2
g++9.4.0

Skylake Nodes
g++ 11.3.0
OMP_NUM_THREADS=56
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Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple e*e”™—u*u~ process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex gg—ttggg processes)

NVIDIA A100 — ee_mumu

1010_
® sycL ..o.o..
A  Kokkos .EDDDD
,_.109_|:|CUDA aD
%m Alpaka O A A A
o Y, A A A
g-c EA A
L S 108 ? .
X @ @ A
s0 g‘
C %
20_107_ m@
threads __
Wg b|ock_32
T T T T 3 5 3 3 P 3 P S 5 o s S5
B O e e VAN VA VA VIO VIO VI VO VIO VA VI VA VRO VG

Total Threads Launched
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Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple e*e”™—u*u~ process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex gg—ttggg processes)

NVIDIAA100 — ee_mumu

1010_
@ SYCL o®©®o0®
A Kokkos ® O ; m B B
— 109/ ™ cuDA o E =
) —
% \m Alpaka g N A A A
3 g. !
L g 10° R A
% © 2
g2 ) SN
= g
107 &
threads __
. block = 064
106

> 5 6 A D 9 O N D > D A DO O NS
R T R R AL AR
Total Threads Launched

/ UCL /&
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Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple e*e”™—u*u~ process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex gg—ttggg processes)

NVIDIAA100 — ee_mumu

1010_
® svoL e0® 00 ®e0
A  Kokkos O
B E =
m,_. 109_ D CUDA & D D
%ﬂ Alpaka A A A A A
5 2 014,
o g 10°; % A
= 5 .
=l &
S0 o
& 1074
A thread
reads
block 128
L Sy S S S S Sy iy S S A S S W S S Y-S
R A
Total Threads Launched
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Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple e*e”™—u*u~ process
(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex gg—ttggg processes)

NVIDIAA100 — ee_mumu

1010_
A Kokkos a T
o 109_ |:| CUDA g &
g » Alpaka B A A A A A
E 5 QA ASA
Qo < 8
w g 10°- g
x & ®
g5 Sl
al 107_ m
threads __
block =256
106 I 1 I T T T T T T T T T T T T T T
fﬁfgf](?f]éf]qjf]?q?grt\/rtq/rl\?rtb&q\?ft%rt/\rt%q’:’qrr]l’gfﬂ/\/q?wff
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What is a MC generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process
MANY different events (“phase space points”) ‘ 0

This can be parallelized (SIMT/SIMD and multithreading)

For each event: MATRIX
1 PSEUDO\RANDOM ELEMENT
1) NUMBERS GENERATOR
Output: random numbers i (e.g. MG5aMC)
2 > PHASE SPACE
Input: random numbers _ HADRONIZATION
Output: particle 4-momenta + optional event cuts GENERATORS
(e.g. PYTHIA)
3.
Input: particle 4-momenta : ST-I%R\;:E):S
Output: Matrix Element (ME) PHASE SPACE "
CPU BOTTLENECK SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT i, W_i} =k AND DECAY
A Ha v
i W £l earfice
“.,  MONTE CARLO MONTE CARLO i FILTERING
INTEGRATION UNWEIGHTING n ™
CROSS-SECTIONS etc...  UNWEIGHTED EVENTS :iii SIMULATION
(NB: Matrix Element is an {EVT i, W_i=1} =
element of the scattering matrix... (GEANT4)

almost no linear algebra herel!)
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Code is auto-generated = Iterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python

— The more patrticles in the collision, the more Feynman diagrams and the more lines of code

>—<’< >—<<< >—< >-<<< Process LOC functions function calls

ete > utum 776 8 16

e 3<E oo P gg — ti 839 10 2 g

1082 36 106

qgqg — tig;
el sl aad e gg — tigg 1985 222 786

» Goal: modify code-generating code (add CUDA, improve C++ backend)
— (1) Start simple: bootstrap with e*e—u* i (two diagrams, few lines of C++"cod

—(2,3) Add CUDA and improve C++, port upstream to Python meta-cod

— (4) Generate more complex LHC processes gg— tt, ttg, ttgg — N
“epoch” UPSTREAM

F— PRODUCE (a)

3. FFV2_4_0 \ SAME

AUTO-GENERATED

— Add missing functionality, fix issues, improve performance, iterate
CUDA/C-++ CODE

. IXXXXX 1. IXXXXX 1. IXXXXX

3.rrvie (b)
2. FFV1PO_3

l. OXXXXX 1. OXXXXX

2.FFV2_4_3
1. OXXXXX

(\ﬂ A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VvCHEP — 19 May 2021 7
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A complex outer shell — with a CPU-intensive core: the ME

» To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)
— A complex software infrastructure with many functionalities and a stable user interface

Flame Graph Reset Search

Python

madevent (Fortran + external libraries)

MATRIX ELEMENT
calculation (Fortran)
g

Gridpack to generate
100k gg—ttgg events
(./run.sh 100000 1)

iiiiiiii il _ (78,239 samples, 42.00%) Matched: 49.1%

» Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)
— Fraction of time spent in ME increases with number of events and process complexity-

gg — tt g9 — ttgg g9 — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T|(>99%)

(Mattelaer, Ostrolenk — https.//arxiv.org/abs/2102.00773)
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Standalone CUDA/C++ application VS. MadEvent integration

« Our main focus: the ME calculation in CUDA/C++ (sigmakin kernel/function)
— Design approach: single source code for CUDA and C++ (>90% common code + #ifdef’s)

« Our workhorse: a simplified CUDA/C++ toy framework to feed events to the ME kernel
— All 3 main components on the GPU: random (cuRAND), sampling (RAMBO), ME (sigmakin)
— Fast, same results in GPU/CPU, but not good for production (RAMBO algorithm is inefficient)
— The results | present in this talk come from this framework

cuRAND:
identical random
number sequences
on host (CPU)
and device (GPU),
allowing CUDA/C++
bitwise comparisons

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

« Our WIP: we plan to inject CUDA/C++ ME kernel into MadEvent/gridpack framework
— Fastest way to production — easier than rewriting MadEvent in CUDA/C++
— Validated code/infrastructure, same user interface — discussed with experiments at HSF WG

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 9
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CUDA (GPU) implementation

C++ (CPU) implementation

— For SIMT, event loop is “orthogonal

Event-level parallelism in practice — coding and #events
Easier to code for GPU SIMT than for CPU SIMD: CUDA code was faster to prototype

”: one thread = one event (GPU thread ID < event ID)
— For SIMT, SOA memory layouts are beneficial (coalesced access), but not strictly essential

— For SIMD, event loop must be the innermost loop (e.g. invert helicity and event loops)
— For SIMD, SOA memory layouts in the computational kernel are essential

128
" 64
« 32

Double precision W
NVidia V100 .
(2560 FP64 cores) .

ol » m

THROUGHPUT
(Matri:_: Elemgnts per seco nd)

in

ere—pu — 7E8 MEs/s

. - for 500k MEs

#EVENTS IN PARALLEL per ileralion
#Threads Per Block * #Blocks
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parallel

> A
Double precision

NVidia V100 .

(2560 FP64 cores)
'
s
1 gg—tt —5ES MEs/s
e ™ for 16k MEs in paraﬂef

» = ) e » = ®» sl w2l 2 2 A4 2 o2 B oA ow
\\\\\\\\\\\\

s § F & E|\5| £ 5 F F E £ 5 3
£ 2 & = & § I 3
N & §F ¥ 5 ¥ &8 3

- A
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To be efficient, CUDA needs O(10k)-O(1M) events in parallel — much more than C++!
— CUDA: lockstep within each warp (32 threads) + many warps in parallel to fill the GPU
— C++ lockstep within a vector register (2-8 doubles) + multi-threading or multi-processing

(plots — Andy Reepschlaeger)
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CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

« Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. ete—p*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are ( number of MEs ) / ( time for ME calculation + ME copy )

NVTX |
CUDA AP1 |

00 CudaFree (325,083 ms]

e _
| GORSORRREOE0RE ©) e

cudaFree

ZOOM (ME calculation ~ ME copy)

wnx siscost (7 S5 5055
CUDA AP gale

eteHutp

» But the time cost of data transfers is negligible in complex processes

— ME calculation on GPU is slow (e.g. gg—ttgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

T &:[]odmm[ 33 Sigmaxin (1 |hsq'\acr|]1

couws

o ool oot oo sl gt mgosso e
DeviceSy.. || cudaDeviceSy . | |ciBaBeuiceSy. || cud evicesy

_ZOOM (ME calculation >> ME copy) =
- Seame o BE BB

7. . S
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CPU throughpUt I‘eSUHS (2) Implementation MEs / second
Double, C++ — Scalar vs SIMD

« SIMD: excellent speedup from vectorization
— NB: only measuring the parallel calculation e
— Lower overall speedup (Amdahl’s law...)

(ere—urw) Double
1-core MadEvent Fortran 1.50E6
scalar (x1.15)

1-core Standalone C++

1-core Standalone C++
128-bit SSE4.2

» Best throughput: AVX512 limited to 256-bit width (x2 doubles)
— x3.7 over scalar C++ (vs x4 theoretical maximum) 1-core Standalone C++
» Estimate a x3.3 speedup over scalar Fortran ?52‘5’” ;;?!X)2
. . X oubles
— Thanks to Sebastien Ponce for the suggestion!
1-core Standalone C++
. .y . . . “256-bit” AVX512
» Disappointing: AVX512 with 512-bit width (x4 doubles)
— Slower t.han AVX2, why? Slovaer clocll(, what else? 1 -core Standalone Cat
— Can be improved? x8 theoretical maximum... 512-bit AVX512
(x8 doubles)
#Symbolsin.0 | ssg42 | Avxe | AvXx512 | AvX512
Build type (xmm) | (ymm) | (ymm) | (zmm)
Scalar 614 0 0 0
SSE4.2 3274 0 0 0
AVX2 0 2746 0 0 Ly Afew AVX512VL symbols yield a 7% improvement over pure AVX2
256-bit AVX512 0 2572 0
! Degree of vectorization checked by disassembling (objdump)
512-bit AVX512 0 1127 205 2045 Custom categorization of symbols
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A complex and heterogeneous problem

e fiod Statcﬁst;oson, ttbar,
iets, A\~ !
ogail) -k +jets..-
o N\{ Otroé btt\/ multi-iet, gamma
single top, 7

MC Physics Event Generator Software:
the application

Research in Theoreticl Physic
the foundation

» Software (and theory) diversity is good for physics
— It provides cross-checks and healthy competition

» But it complicates the definition of an R&D strategy
—Many software packages to optimize (and maintain!)
— Prioritization (“profiling”): is there a CPU “hotspot™?

https://doi.org/10.5281/zenod0.4028834
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Issue #2
Data-parallel paradigms
(GPUs and vectorization)

Generators lend themselves naturally

to exploiting event-level parallelism

via data-parallel paradigms™*

- SPMD: Single Program Multiple
Data (GPU accelerators)

- SIMD: Single Instruction Multiple
Data (CPU vectorization: AVX...)

- The computationally intensive
part, the matrix element f(x;), is
the same function for all events i
(in a given category of events)

- Unlike detector simulation (where
if/then branches are frequent and
lead to thread divergence on GPUs)

—3

— i i

(no input data)

Pseudo-random numbers

Uniform distribution in [0,1]
One event i: vector 7, (dimension d)
Draw d X N,,,o; numbers r (N, . weighted events)
00000000

JIHTI

Phase space sampling

For each event i, map 7: to physical phase space %; = H(7)
The resulting %; are distributed according to a known p.d.f. g(¥)
Compute the value of g(¥;)

Wi

Matrix element* calculation

For each event i, compute the differential cross-section f(;)
Compute the weight w;=f (%;)/g(%;)

- e e e e e e

Monte Carlo unweighting

Monte Carlo integration

For each event i, draw r; in [0,1]
Accept if r; < w; /w,,..., reject otherwise
— Output: N,,,,,, unweighted events

Average of weights [ = %Z w;
Output: I (estimator of [ x dx)

Potential interest of GPUs
- Faster (cheaper?) than on CPUs

Software performance and portability in Madgraph5_aMC@NLO

*Note for software engineers: these calculations do involve some
linear algebra, but “matrix element” does not refer to that! Here we
compute one “matrix element” in the S-matrix (scattering matrix)

- Exploit GPU-based HPCs pUs
53Mc ot s"de for the transition from the initial state to the final state
ne
or -5
V\”P L talk) **This simple event-level parallelism can also be used as the basis
(p1ann9 for task-parallel approaches (multi-threading or multi-processing)
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