
Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 1

Developments in software
performance and portability
for Madgraph5_aMC@NLO

ICHEP, Bologna, 8th July 2022

https://agenda.infn.it/event/28874/contributions/169193

Taylor Childers

Walter Hopkins

Nathan Nichols

Laurence Field

Stephan Hageboeck

Stefan Roiser

David Smith

Andrea Valassi

Olivier Mattelaer

https://agenda.infn.it/event/28874/contributions/169193

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 2

Outline

• Introduction

– Monte Carlo generators in WLCG computing

– Madgraph5_aMC@NLO (MG5aMC) and the madgraph4gpu project

– Monte Carlo matrix element generators and data parallelism

• Results and outlook in three main areas of development

(1) ME calculation in the 'cudacpp’ implementation (C++ with vectorization on CPU, CUDA on Nvidia GPUs)

(2) ME calculation in C++ portability frameworks (Alpaka, Kokkos, Sycl on CPUs and on Nvidia/AMD/Intel GPUs)

(3) Integration of C++ based ME calculations into the Madevent Fortran framework

• Conclusions

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 3

Motivation: Monte Carlo Event Generators in WLCG computing

• LHC computing needs are predicted to outpace resource growth on HL-LHC timescales

– Need aggressive R&D to improve software efficiency and port it to new architectures and resources

– GPUs increasingly important, in site clusters but also HPC centres (already used opportunistically in WLCG)

– Performance portability frameworks enable use of new systems without writing multiple software versions

• MC generators, the essential 1st step in simulation, use 10-20% of ATLAS/CMS WLCG CPU budget

– Many ways to speed up their performance – see the HEP Software Foundation (HSF) Generator WG review

– MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and in vector CPUs (SIMD)

WLCG meeting with LHCC referees, Feb. 2020

https://doi.org/10.1007/s41781-021-00055-1

https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412
https://doi.org/10.1007/s41781-021-00055-1

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 4

Madgraph5_aMC@NLO (MG5aMC)

• One of the workhorses for event generation in ATLAS and CMS!

– SM and BSM, LO and NLO, integration with PDF and loop libraries...

– Matrix Element (ME) calculations, merging of multi-jet final states,

NLO matching of MEs and Parton Showers (PS)...

• MG5aMC production version in Fortran

– Software outer shell: Madevent

• A Fortran/Python/bash framework for phase space random sampling, integration and unweighted event generation

– Software inner core: ME calculation code, automatically generated for each physics process

• Production version in Fortran (but simpler, non optimized versions exist also in Python and C++)

• Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔)

https://doi.org/10.1007/JHEP07(2014)079

https://doi.org/10.1007/JHEP07(2014)079

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 5

MG5aMC and the madgraph4gpu project

• madgraph4gpu: speed up ME calculation in MG5aMC on modern hardware (GPUs and vector CPUs)

– Collaboration of theoretical/experimental physicists with software engineers – born in the HSF generator WG

– It would not be possible without Olivier Mattelaer (MG5AMC co-author and current main maintainer) !

• Previous results were presented at vCHEP2021 (May 2021):

(1) Only a simple 𝑒+𝑒−→+− process, hardcoded one-off CUDA/C++

(2) In C++ with vectorization for CPUs, in CUDA only for Nvidia GPUs

(3) Only a standalone application (not usable by the experiments)

• Two main goals for our current efforts in 2022

– Release MG5AMC for LO (no NLO yet!) event generation in ATLAS/CMS (CPU SIMD speedups and GPU port)

– Gain experience for the HEP software community on the usefulness of portability frameworks (PFs)

• Main new progress since May 2021:

(1) Code generation plugins instead of one-off code: performance results for complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔 processes

(2) Additional implementations with PFs (Alpaka, Kokkos, Sycl), e.g. also for AMD and Intel GPUs

(3) Integration of CUDA/C++ ME calculation into Madevent: cross sections done, event generation almost done

https://doi.org/10.1051/epjconf/202125103045

https://doi.org/10.1051/epjconf/202125103045

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 6

MG5aMC computational anatomy and data parallelism strategy

• In MC generators, the same function is used to compute the Matrix Element for many different events

– ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)

– Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads)

Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data)

Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU

SIMT
CPU

SIMD

S
e
e
 t
h
e
 N

V
id

ia
 V

o
lt
a
 w

h
it
e
p
a
p
e

r

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA + optional event cuts

(will need to repack data once)

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 7

Aside – Monte Carlo’s: what about branching?

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 8

Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates

- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)

- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code

(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL

(since end 2021)
OLD MODEL

(2020- early 2021)
Now using upstream MG5AMC from

https://github.com/mg5amcnlo !

https://github.com/mg5amcnlo/mg5amcnlo/tree/3.1.1_lo_vectorization

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 9

Matrix Element (ME) calculation in cudacpp: results

(1) First line of development: the “cudacpp” plugin to calculate MEs in C++ (CPUs) or CUDA (GPUs)

Single code base for C++ and CUDA (with #ifdef’s): original development, currently the most advanced

Exploit SIMD vectorization through explicit Compiler Vector Extensions (gcc, clang, icpx)

Main new results since vCHEP2021:

• Backport to code generation
Speedups previously reported for

ee_mumu now ~confirmed for gg_ttgg
- CPUs/SIMD: x4 double, x8 float

- GPUs/V100: x270 double, x500 float

(could do better, high register pressure)

• Extra x2 from AVX512 on Intel Gold:
Achieve theoretical limit of speedup:

x8 double, x16 float on AVX512 CPU

• New features for MadEvent integration
(one single thread)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 10

Portability Frameworks (PFs)

(2) Second line of development: MEs on PFs

• PFs allow writing algorithms once and running on many

architectures with some hardware-specific optimizations

• CUDA code can only run on NVidia GPUs, while Kokkos,

Alpaka, and Sycl[Intel] codes can run on most hardware

• In “cudacpp”, #ifdef directives separate code branches for

GPU and CPU code during compilation (but these are very

few: only kernel launching and memory access, not MEs)

• With PFs, the algorithm is typically the same, but the

compilation occurs once per architecture type

• PFs often use templating to handle data types and hardware

configuration and function lambdas or pointers for passing

kernels (the cudacpp plugin has many of these, too)

• PFs still require user to think about “host” vs “device”

“cudacpp” example of compiler directives

Kokkos example of Templating & lambda

Kokkos example of Memory Management

For GPU

For CPU

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 11

ME calculation in PFs: GPU results (Nvidia A100)

Throughput scaling (threads, blocks) for a simple 𝑒+𝑒−→+− process and a complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔 process

(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

(gg_ttgg) 16k

(eemumu) 500k

• This and the next slide show both ee_mumu and gg_ttgg for

comparison, but please focus only on the gg_ttgg results!

– The ME calculations in ee_mumu are extremely simple: the

overhead of CPU-GPU memory copies on total MEs/s is huge

(and maybe was handled differently in the 4 implementations?)

• Good news 1: for gg_ttgg, all four implementations look similar!

– The benefit of direct CUDA over a PF is limited, if any at all

• En passant, keep in mind this for later: you need at least 16k

“events per GPU grid” to fill up a V100 or A100 with gg_ttgg+

– Simpler processes need even more, e.g. 500k for ee_mumu

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 12

ME calculation in PFs: GPU results (Nvidia, Intel, AMD)

Maximum throughput for a simple 𝑒+𝑒−→+− process and a complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔 process

(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

• Again, please focus only on the gg_ttgg results!

• Good news 1: for gg_ttgg, all four look similar on Nvidia!

– The benefit of direct CUDA over a PF is limited, if any at all

• Good news 2: PFs also work on AMD and Intel GPUs!

– Out of the box, with a single implementation
(There is no Alpaka on Intel in the plots because we use Cupla: we should move to using native Alpaka)

Xe-HP is a software development vehicle for functional testing only. It is currently used at

Argonne and at other customer sites to prepare their code for future Intel data centre GPUs

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 13

ME calculation in PFs: CPU results (preliminary! need systematic study)

Maximum throughput for five processes, from simple (𝑒+𝑒−→+−) to more complex (𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔)

(note: this is an older version of the code with respect to the results shown earlier for cudacpp alone)

• CPUs have two very different parallelisms we can exploit:

– Many floats/doubles per vector register: vectorization (SIMD)

– Many physical/virtual cores: multi-threading (or many processes!)

• NB: this plot is comparing apples to oranges and to peaches!

– Fortran: one single thread, no vectorization

– Kokkos: internal multithreading? limited auto-vectorization?

– SYCL: internal multithreading? limited auto-vectorization?

– cudacpp: OpenMP multithreading, explicit vectorization (CVE)

• The OMP multithreading in the cudacpp plugin is known to be

suboptimal and will be reengineered (probably with std::thread instead)

On CPUs, for the moment, it seems better to use ad-hoc developments as in cudacpp, than rely on PFs

(NB: you may replace OMP by many applications in parallel, but you must do low-level coding to get a factor x4 or more from SIMD)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 14

Matrix Element (ME) calculation in cudacpp and PFs: outlook

Short term (end 2022?)

• (Nvidia GPUs) Further improve CUDA performance with smaller kernels

– Exploit tensor cores for color algebra in cudacpp? Would tensor cores be supported by PFs?

– Finer grained strategy for distributing work on the GPU(s)? Multi-GPU support?

• (AMD/Intel GPUs) Add direct HIP to cudacpp implementation, in parallel advance in PF implementations

• (CPUs, multithreading) Replace OpenMP by std::thread; systematic thread scaling studies in cudacpp and PFs

– Containerize the standalone application and collaborate on scaling studies with the HEPiX benchmarking WG

• (CPUs, vectorization) Systematic vectorization studies in PF implementations

• (CPUs, GPUs) Numerical precision studies: stress tests of -O3 and fast math (our default assumption...)

Medium term (2023+)

• (CPUs, GPUs) Implement helicity recycling in cudacpp (additional x2-3 algorithmic speedup, now only in Fortran)

• (CPUs, GPUs) Handle NLO: loops and matching to PS

• (CPUs, GPUs) Numerical precision studies: would float be enough? (additional x2 speedup over double)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 15

Matrix element integration in MadEvent: overview

(3) Third line of development: replacing Fortran by cudacpp MEs in Madevent (keep the user interface!)

Linking Fortran and C++ has been easy. As expected, the two main issues have been, instead:
– 1. Moving Madevent from single-event to many-event (need 16k+ per GPU grid huge arrays in CPU memory!)

– 2. Debugging the issues caused by hidden inputs and outputs, largely coming from Fortran common blocks

MANY events

(momenta)

SINGLE event

(momenta)

COMMON

BLOCKS

(hidden inputs

and outputs?)

PURE

FUNCTION

(clear inputs

and outputs)

REENGINEER MADEVENT

ADAPT CUDACPP

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 16

Matrix element integration in MadEvent: results

• Functional results (Madevent with Fortran MEs vs CUDA/C++ MEs, using the same random seeds)
– Cross section calculation: done! (Same cross section within ~E-14 relative accuracy)

– Unweighted event generation: almost done! (Same LHE output files, except for missing color/helicity)

• Performance results Total time = Madevent time (scalar, sequential) + ME time (vector, parallel)
– The overall speedup is limited by the incompressible scalar component (we need to reduce that too!)

– Amdahl’s law: if parallel fraction is initially p, maximum speedup is 1/(1-p)

[seconds] Overall = MadEvent + MEs [MEs/second]

6k events

800k events

gg → ttggg

CERN: Intel Silver 4216 + Nvidia V100

[seconds] Overall = MadEvent + MEs [MEs/second]

Juwels: Intel Gold 6148

AVX512 on Intel Silver: x4.4 speedup for MEs, x3.9 for full workflow

AVX512 on Intel Gold: x7.8 speedup for MEs, x6.4 for full workflow

GPU: ~x120 speedup for MEs, only ~x20 for full workflow [Amdahl: p = 0.95 max speedup = 20]

(ME speedup would be ~x300 with 16k+ events per GPU grid, but Madevent CPU memory is limited to ~8k per grid)

https://en.wikipedia.org/wiki/Amdahl%27s_law

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 17

Matrix element integration in MadEvent: outlook

Very short term (Q3 2022 – alpha release for the experiments)

• Implement event-by-event random choice of colors and helicities in cudacpp (goal: same LHE files!)

• Cross-check the few last details (pdfs, user parameters...)

Short to medium term (end 2022 – 2023)

• Reduce overhead from scalar Madevent framework (goal: overall speedups closer to ME speedups)

– This is currently the bottleneck preventing higher throughputs for the overall workflow using GPUs

– One possible option: heterogeneous workflow (multithreaded Madevent on CPU, parallel ME on GPU)?

• Reduce number of Fortran arrays in Madevent (goal: lower CPU memory, allow larger GPU grids beyond 8k)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 18

Conclusions

• ALL Matrix Element Generators are perfect fits to exploit CPU vectorization/SIMD and GPUs
– Lockstep parallelism in MEGs much easier to exploit than in detector simulation (Geant4, stochastic branching)

• An alpha release of MG5aMC for LO with GPU ports and CPU speedups from SIMD is imminent
– Cross section calculation is ready; a few details to fix for unweighted event generation (random color/helicity...)

• On Intel Gold CPUs, AVX512 C++ is x8 faster than scalar C++ for ME calculations (in double precision)
– A slightly lower speedup ~x6 holds for the full Madevent + ME workflow (Amdahl’s law, as Madevent is scalar)

– Overall speedup ~x5 compared to Fortran (comparing to the old Fortran release without helicity recycling)

– An additional x2-3 algorithmic speedup will come through helicity recycling (not yet in cudacpp)

• On GPUs, much larger O(300+) speedups may be achieved for the ME calculation
– But we must reduce the scalar component in Fortran MadEvent to see those in the full workflow (Amdahl’s law)

• Additional x2 speedups may be achieved on CPUs and GPUs by moving from double to single precision

• Portability Frameworks work well for us! Simplify development with a single code for many GPU flavors
– Similar performance to direct CUDA on Nvidia GPUs; we may also run out of the box on AMD and Intel GPUs

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 19

BACKUP SLIDES

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 20

Acknowledgements

• We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory

for System Evaluation (JLSE) at Argonne National Laboratory. This research used resources of the

Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported

under Contract DE-AC02-06CH11357.

• We gratefully acknowledge the use (under PRACE proposal PRACE-DEV-2022D01-022) of the

JUWELS supercomputer and other computing resources provided and operated by the Jülich

Supercomputing Centre at Forschungszentrum Jülich.

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 21

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 22

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 23

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 24

EVEN MORE BACKUP SLIDES

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 25

Argonne’s Joint Laboratory for System Evaluation (JLSE)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes

AMD 7532 32c 2.4Ghz

DDR4-3200 256GB (8x32G DIMMs) RAM

1x Nvidia A100 40GB PCIe 4.0

Mellanox ConnectX-6 EDR

AMD MI50 Nodes

Gigabyte G482-Z51

2x 7742 64c Rome

4x AMD MI50 32GB GPUs

Infinity Fabric

256GB DDR-3200 RAM

AMD MI100 Nodes

2x AMD EPYC 7543 32c (Milan)

4x AMD MI100 32GB GPUs

Infinity Fabric

512GB DDR4-3200

Arcticus Nodes

2x Intel development GPU card (Codename XeHP_SDV)

2x Intel(R) Xeon Gold 6336Y CPU (48 physical cores total) 2.4Ghz

256GB: 16x 16GB DDR4 @ 3200

Mellanox ConnectX-6: EDR InfiniBand (100 Gbps)

Iris Nodes

Intel Xeon E3-1585 v5 CPU w/ Intel Iris Pro Graphics P580

4x 16GB DDR4-2666 SODIMMs (operating at DDR4-2133)

1GbE Onboard

NVidia V100 Nodes

4x NVIDIA Tesla V100 SXM2 w/32GB HBM2

2x Intel Xeon Gold 6152 CPU 22c 2.10GHz

192GB RAM DDR4-2666

Mellanox ConnectX-5 EDR

Skylake Nodes

Intel S2600WF,

2x Intel Xeon Platinum 8180M CPU @

2.50GHz

768GB RAM

https://www.jlse.anl.gov/hardware-under-development/

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 26

Build environment on JLSE (Sycl)

• We used JLSE systems to run all performance tests described here for Alpaka/Kokkos/Sycl

NVidia A100 Nodes

Intel oneAPI DPC++ (commit b9cb1d1247e2)

CUDA 11.6.2

AMD MI50 Nodes

Intel oneAPI DPC++ (commit b9cb1d1247e2)

ROCM 4.5.2

AMD MI100 Nodes

Intel oneAPI DPC++ (commit b9cb1d1247e2)

ROCM 4.5.2

Arcticus Nodes

Intel oneAPI DPC++ (NDA)

Iris Nodes

Intel oneAPI DPC++ (NDA)

NVidia V100 Nodes

Intel oneAPI DPC++ (commit b9cb1d1247e2)

CUDA 11.6.2

Skylake Nodes

Intel oneAPI DPC++ (2021.4.0)

https://www.jlse.anl.gov/hardware-under-development/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 27

Build environment on JLSE (Kokkos)

NVidia A100 Nodes

Kokkos 3.5.00

CUDA 11.6.2

g++ 9.4.0

AMD MI50 Nodes

Kokkos 3.5.00

ROCM 4.5.2

AMD MI100 Nodes

Kokkos 3.5.00

ROCM 4.5.2

Arcticus Nodes

Intel oneAPI DPC++ (NDA)

Kokkos (NDA)

Iris Nodes

Intel oneAPI DPC++ (NDA)

Kokkos (NDA)

NVidia V100 Nodes

Kokkos 3.5.00

CUDA 11.6.2

g++ 9.4.0

Skylake Nodes

Intel oneAPI DPC++ (NDA)

Kokkos (NDA)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://www.jlse.anl.gov/hardware-under-development/

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 28

Build environment on JLSE (Alpaka)

NVidia A100 Nodes

Kokkos 3.5.00

CUDA 11.6.2

g++ 9.4.0

AMD MI50 Nodes

Kokkos 3.5.00

ROCM 4.5.2

AMD MI100 Nodes

Kokkos 3.5.00

ROCM 4.5.2

Arcticus Nodes

Intel oneAPI DPC++ (NDA)

Kokkos (NDA)

Iris Nodes

Intel oneAPI DPC++ (NDA)

Kokkos (NDA)

NVidia V100 Nodes

Kokkos 3.5.00

CUDA 11.6.2

g++ 9.4.0

Skylake Nodes

Intel oneAPI DPC++ (NDA)

Kokkos (NDA)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://github.com/kokkos/kokkos/tree/3.5.00
https://www.jlse.anl.gov/hardware-under-development/

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 29

Build environment on JLSE (Cuda and OpenMP)

We used JLSE systems to run all performance tests described for Alpaka/Kokkos/Sycl vs Cuda/OpenMP

NVidia A100 Nodes

CUDA 11.6.2

g++ 9.4.0

NVidia V100 Nodes

CUDA 11.6.2

g++ 9.4.0

Skylake Nodes

g++ 11.3.0

OMP_NUM_THREADS=56

https://www.jlse.anl.gov/hardware-under-development/

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 30

Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple 𝑒+𝑒−→+− process

(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔 processes)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 31

Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple 𝑒+𝑒−→+− process

(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔 processes)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 32

Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple 𝑒+𝑒−→+− process

(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔 processes)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 33

Matrix Element (ME) calculation in PFs: GPU results

Thread and block scaling for a simple 𝑒+𝑒−→+− process

(note: this is an older version of the code with respect to the results shown earlier for cudacpp and complex 𝑔𝑔→𝑡 ҧ𝑡𝑔𝑔𝑔 processes)

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 34

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 35

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 36

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 37

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 38

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 39

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 40

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 41

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

Software performance and portability in Madgraph5_aMC@NLO ICHEP, Bologna, 8 July 2022 42

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

