
Extreme Universe TSP

ESCAPE science project for EOSC-Future

Why Extreme Universe?

- Extreme astrophysical phenomena bring information through different messengers: Gravitational Waves, GRB, Electromagnetic radiation, Neutrino...
- New facilities running in few years and other under construction
- Big astroparticle data to analyze
- Collaboration, cooperation efforts to maximize the scientific knowledge
- Interaction between theoreticians, data analysts and computer scientists
- New paradigm towards EOSC

Example of MMA: GW170817 detection and EM follow up

Pilot projects

Main Research Area	Objects/source s	Messengers	ESF/RI involved	ESCAPE services EOSC-Future integrations	Data Analysis tools (AI,ML)	Pilot project(s)	Computing resources required	Partner PM involved
Compact objects	Pulsars, FRBs, Off-nuclear AGN	radio, optical, X-ray,	LOFAR	Multiwavelengt h platform/Softwa re catalogue,VO tools	Data science, Machine Learning	1) Radio astronomy: FRBs, pulsars, plerions, off-nuclear AGN	Compute cluster, Jupyter hub, Rucio Data lake	42 PM Astron/UvA
High energy Astrophysics	GRBs, jets, AGN, BNS, CCSN	neutrinos, gamma-ray, radio,X-ray, GW,	CTA, Virgo, KM3NET, SKA,LSST	Multimessenger platform/Softwa re catalogue, Virtual Observatory tools	Model compariso n, Machine Learning	1)GRB/neutri no/GW analysis, 2) Blazar MWL/neutrin o	GPU cluster Jupyter hub	12 PM UvA, 6 PM FAU. 4 PM CNRS, 24 PM SNS
Fundamental physics	Dark matter, GR, Primordial Universe	GW,	Virgo, Einstein Telescope	Template banks, generation software,	Machine learning approach	1) DM template bank and ML analysis pipeline	GPU cluster Jupyter hub	10 PM INFN,12 PM UvA, 12 PM SNS, 2 PM FAU

On going projects

- High Energy astrophysics: Multi-messenger platform (SNS, A. less)
- Compact objects: a multi-wavelength search cloud platform (ASTRON, Dany)
- Detecting DM with Einstein Telescope (UvA and SNS, A. Parisi)
- IRF from KM3NeT for DM and EU purposes (FAU, Mikhail Smirnov)
- Study of angular correlation signatures induced on GW stochastic background by lensing effects (INFN, G.Cella giancarlo.cella@pi.infn.it)
- GRB and AGN (UvA) (S. Merkoff, S.B.Markoff@uva.nl)

Link to living slides