

Measuring the Dark Matter environments of black hole binaries with gravitational waves

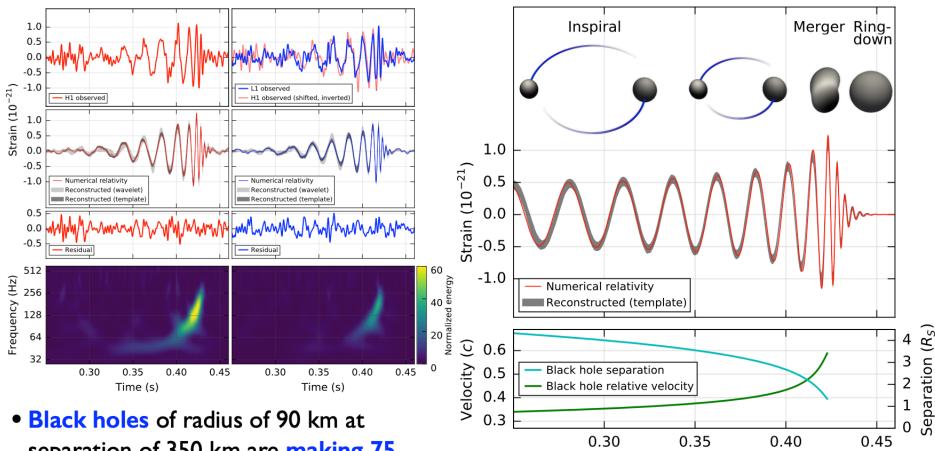
Alessandro Parisi

with Gianfranco Bertone, Philippa Cole, Adam Coogan, Bradley Kavanagh, Daniele Gaggero, Elena Cuoco, Alberto Iess

Scuola Normale Superiore di Pisa 21 July 2022

First LIGO detection during O1: GW150914

(Abbott et al. PRL 116 (2016) 061102)



- separation of 350 km are making 75 orbits per second before merging.
- Black holes collide at (almost) speed of light, like fundamental particles.

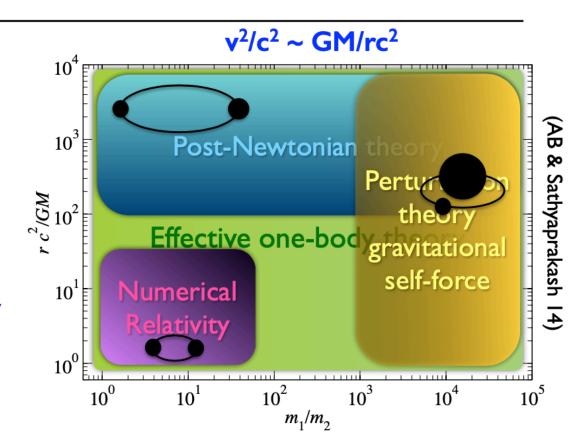
• Gravitational waves carry fingerprints of source.

Time (s)

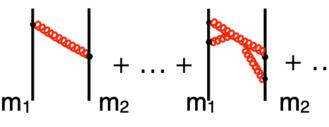
Solving two-body problem in General Relativity (including radiation)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

- GR is non-linear theory. Complexity similar to QCD.
- Einstein's field equations can be solved:
 - approximately, but analytically (fast way)
 - exactly, but numerically on supercomputers (slow way)



- Analytical methods: post-Newtonian/post-Minkowskian/post-Test-Body expansions effective-one-body theory
 - effective field-theory, dimensional regularization, etc.
 - diagrammatic approach to organize expansions



Tidal effects in the gravitational wave signal emitted in NS-NS binary coalescence

$$h(f) = \mathcal{A}(f)e^{i\psi(f)} \qquad \qquad \psi(f) = \psi_{PP} + \psi_{\bar{Q}} + \psi_{\bar{\lambda}}$$

point-particle contribution

 $x=(m\pi f)^{5/3}~$ PN expansion parameter

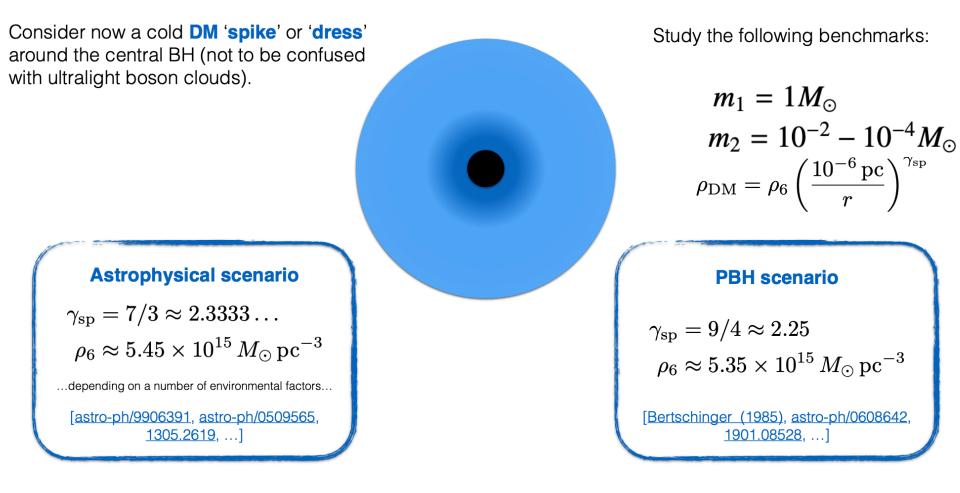
$$\begin{split} \psi_{PP}(f) &= 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ 1 + \left(\frac{3715}{756} + \frac{55}{9}\eta\right) x - (16\pi - 4\beta) x^{3/2} \right. \\ &+ \left(\frac{15293365}{508032} + \frac{27145}{504}\eta + \frac{3085}{72}\eta^2 - 10\sigma\right) x^2 + \mathcal{O}(x^{5/2}) \right\} \end{split}$$

σ contains spin-spin and spin-orbit terms. Note that it appears in the 2-PN term (x²) Quadrupole contribution:

$$\begin{split} \psi_Q &= \frac{3}{128} (\mathcal{M}\pi f)^{-5/3} \left\{ -50 \left[\left(\frac{m_1^2}{m^2} \chi_1^2 + \frac{m_2^2}{m^2} \chi_2^2 \right) (Q_S - 1) + \left(\frac{m_1^2}{m^2} \chi_1^2 - \frac{m_2^2}{m^2} \chi_2^2 \right) Q_a \right] \underline{x}^2 \right\} \\ Q_S &= \frac{\bar{Q}_1 + \bar{Q}_2}{2}, \quad Q_a = \frac{\bar{Q}_1 - \bar{Q}_2}{2} \end{split}$$
both the quadrupole moments a

both the quadrupole moments and the spin terms appear at the 2-PN order and cannot be measured independently : in this sense we say that there is complete degeracy

Dark Matter Spikes



Gondolo, P. & Silk, J. 1999, Phys. Rev. Lett., 83, 1719.

Bertone, G. & Merritt, D. 2005, Phys. Rev. D, 72, 103502.

Ullio, P., Zhao, H., & Kamionkowski, M. 2001, Phys. Rev. D, 64, 043504. Feng, W.-X., Parisi, A., Chen, C.-S., et al. 2021, arXiv:2112.05160 Eroshenko, Y. N. 2016, Astronomy Letters, 42, 347.

Boucenna, S. M., Kühnel, F., Ohlsson, T., et al. 2018, J. Cosmology Astropart. Phys., 2018, 003.

Phase space distribution

Follow semi-analytically the phase space distribution of DM:

$$f = \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{r} \,\mathrm{d}^3 \mathbf{v}} \equiv f(\mathcal{E}$$
$$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$$

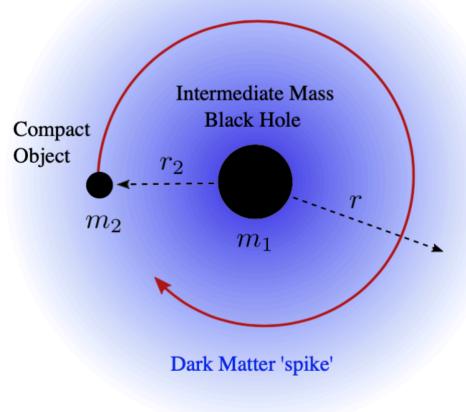
Each particle receives a 'kick'

 $\mathcal{E} \to \mathcal{E} + \Delta \mathcal{E}$

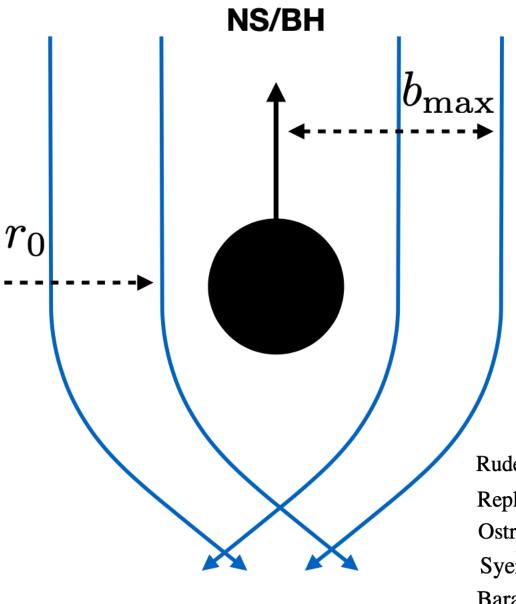
through gravitational scattering

Reconstruct density from distribution function:

$$\rho(r) = \int \mathrm{d}^3 \mathbf{v} f(\mathcal{E})$$



Dynamical Friction



$$\frac{\mathrm{d}E_{\mathrm{DF}}}{\mathrm{d}t} = 4\pi (Gm_2)^2 \rho_{\mathrm{DM}}(r_2)\xi(v)v^{-1}\log\Lambda$$

$$\Lambda = \sqrt{rac{b_{
m max}^2 + b_{90}^2}{b_{
m min}^2 + b_{90}^2}},$$

Chandrasekhar, S. 1943, ApJ, 97, 255. Lee, E. P. 1969, ApJ, 155, 687.

Ruderman, M. A. & Spiegel, E. A. 1971, ApJ, 165, 1.
Rephaeli, Y. & Salpeter, E. E. 1980, ApJ, 240, 20.
Ostriker, E. C. 1999, ApJ, 513, 252.
Syer, D. 1994, MNRAS, 270, 205.
Barausse, E. 2007, MNRAS, 382, 826.

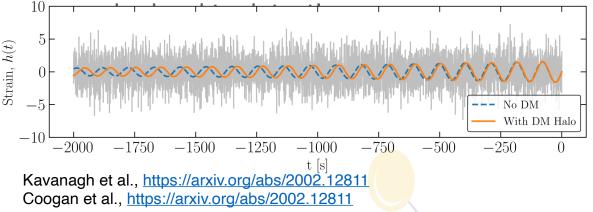
Gravitational Wave

 $\frac{\mathrm{d}E_{\mathrm{orb}}}{\mathrm{d}t} = -\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}t} - \frac{\mathrm{d}E_{\mathrm{DF}}}{\mathrm{d}t}.$ $\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}t} = \frac{32G^4M(m_1m_2)^2}{5(cr_2)^5}. \qquad \qquad \frac{\mathrm{d}E_{\mathrm{DF}}}{\mathrm{d}t} = 4\pi(Gm_2)^2\rho_{\mathrm{DM}}(r_2)\xi(v)v^{-1}\log\Lambda.$ $\dot{r}_{2} = -\frac{64G^{3}Mm_{1}m_{2}}{5c^{5}(r_{2})^{3}} - \frac{8\pi G^{1/2}m_{2}\rho_{\rm sp}\xi\log\Lambda r_{\rm sp}^{\gamma_{\rm sp}}}{\sqrt{M}m_{1}r_{2}^{\gamma_{\rm sp}-5/2}}$ $h_{+}(t) = \frac{4G_{N}\mu}{c^{4}D_{L}} \frac{1 + \cos^{2}\iota}{2} (\omega r_{2})^{2} \cos[2\Phi_{\rm orb}(t) + 2\phi],$ $h_{\times}(t) = \frac{4G_N\mu}{c^4 D_{\star}} \cos \iota(\omega r_2)^2 \sin[2\Phi_{\rm orb}(t) + 2\phi],$ $E(v) = -\frac{1}{2}\eta Mv^{2} \left(1 + \#(\eta)v^{2} + \#(\eta)v^{4} + \ldots\right)$ $P(v) \equiv -\frac{dE}{dt} = \frac{32}{5Gw}v^{10} \left(1 + \#(\eta)v^{2} + \#(\eta)v^{3} + \ldots\right)$ E(v)(P(v)) known up to 3(3.5)PN

$$\frac{1}{2\pi}\phi(T) = \frac{1}{2\pi}\int^T \omega(t)dt = -\int^{\nu(T)}\frac{\omega(v)dE/dv}{P(v)}dv$$
$$\sim \int \left(1 + \#(\eta)v^2 + \ldots + \#(\eta)v^6 + \ldots\right)\frac{dv}{v^6}$$

Detecting DM with Einstein Telescope

- Presence of DM 'spikes' around BHs can alter inspiral dynamics
- GW waveform gradually goes out of phase with the corresponding vacuum-only waveform
- Possibility to detect and constrain dense DM 'spikes' with just a few cycles of GW 'dephasing' → but these subtle differences

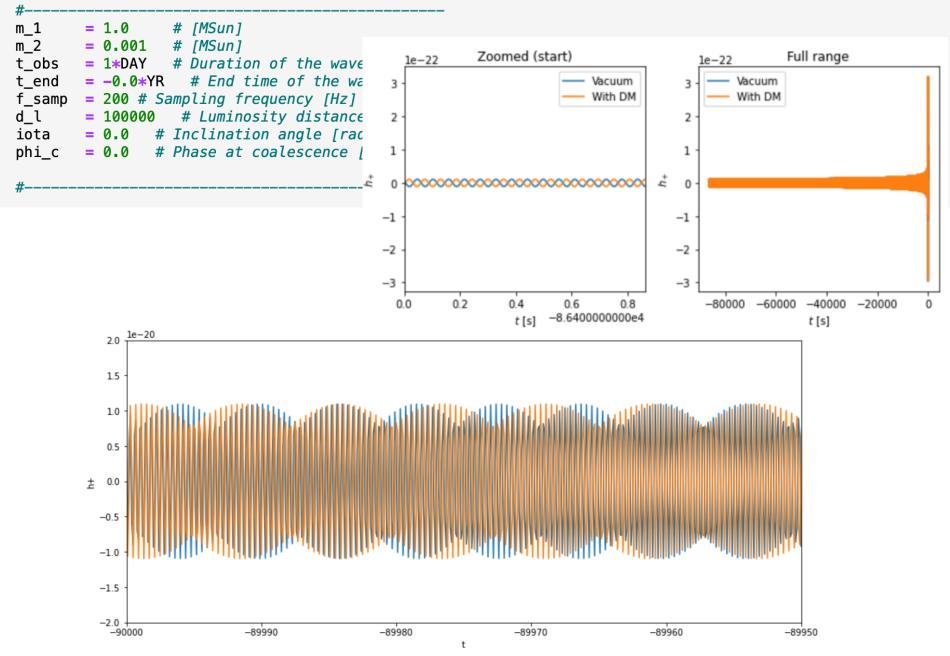


Ideal case for Machine learning!

Funded by the European Union's Horizon 2020 - Grant N° 824064

DM

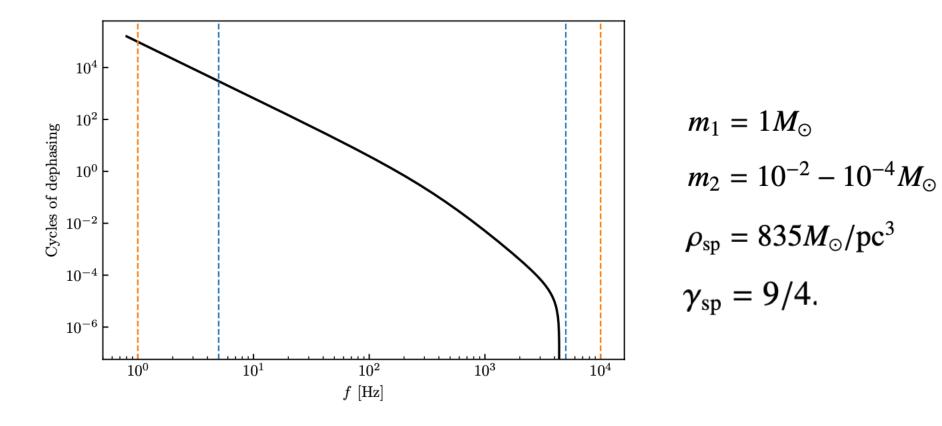
#EDIT WAVEFORM PARAMETERS BELOW:



Dephasing

$$N_{\text{cycles}}(t_{\text{max}}, t_{\text{min}}) = \int_{t_{\text{min}}}^{t_{\text{max}}} f_{\text{gw}}(t) dt = \int_{f_{\text{min}}}^{f_{\text{max}}} df_{\text{gw}} \frac{f_{\text{gw}}}{\dot{f}_{\text{gw}}}$$

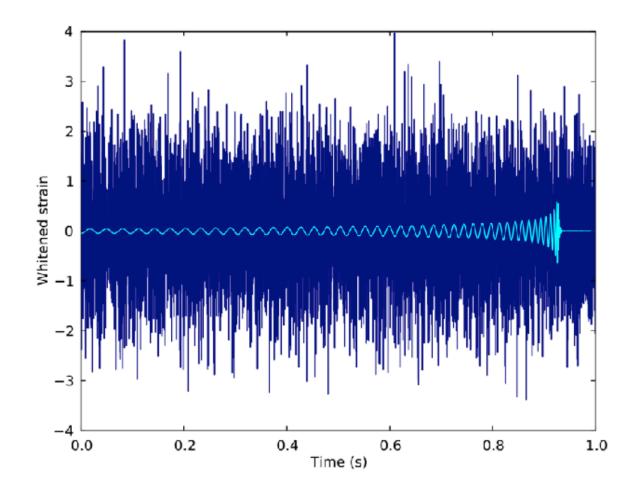
$$\Delta N_{\text{cycles}} = N_{\text{cycles}}^{\text{vac}}(f_{\text{max}}, f_{\text{min}}) - N_{\text{cycles}}^{\text{DM}}(f_{\text{max}}, f_{\text{min}})$$

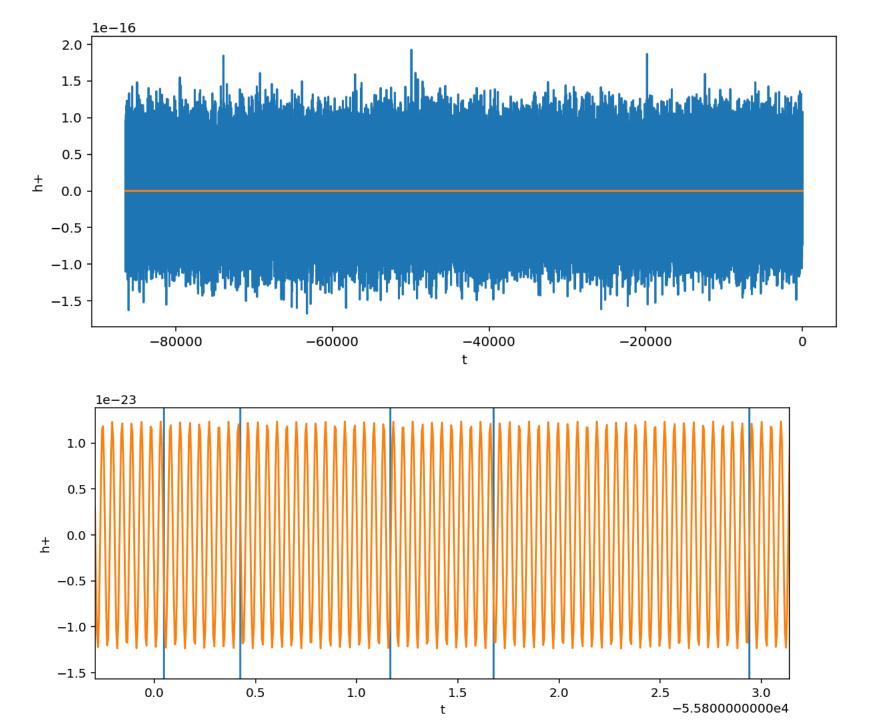


Matched Filtering

Naively, one might think that we can only make confident detections when |h(t)| > |n(t)|However, the **majority of signals are expected to be** $|h(t)| \ll |n(t)|$

Therefore, we need a method to detect signals from noise-dominated data If we know the possible forms of h(t), we can "filter" out things that are non-signal-like





Detector Antenna Sensitivity

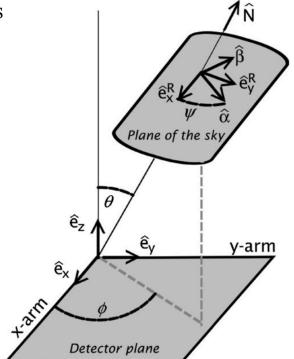
Antenna patterns

$$F = \begin{bmatrix} \cos(2\psi) & \sin(2\psi) \\ -\sin(2\psi) & \cos(2\psi) \end{bmatrix} \begin{bmatrix} F_{+}[\theta,\phi] \\ F_{-}[\theta,\phi] \end{bmatrix} = \frac{1}{2}(1+\cos^{2}\theta)\cos \theta$$
$$F_{-}[\theta,\phi] = \cos\theta\sin 2\phi$$

Sampled GW signal

 $h[i] = \begin{bmatrix} \cos(2\psi) & \sin(2\psi) \\ -\sin(2\psi) & \cos(2\psi) \end{bmatrix} \begin{bmatrix} h_{+}[i] \\ h_{x}[i] \end{bmatrix}$

• Sampled detector response $\xi[i] = F_{+} h_{+}[i] + F_{\times} h_{\times}[i] = F^{T} \cdot h[i]$



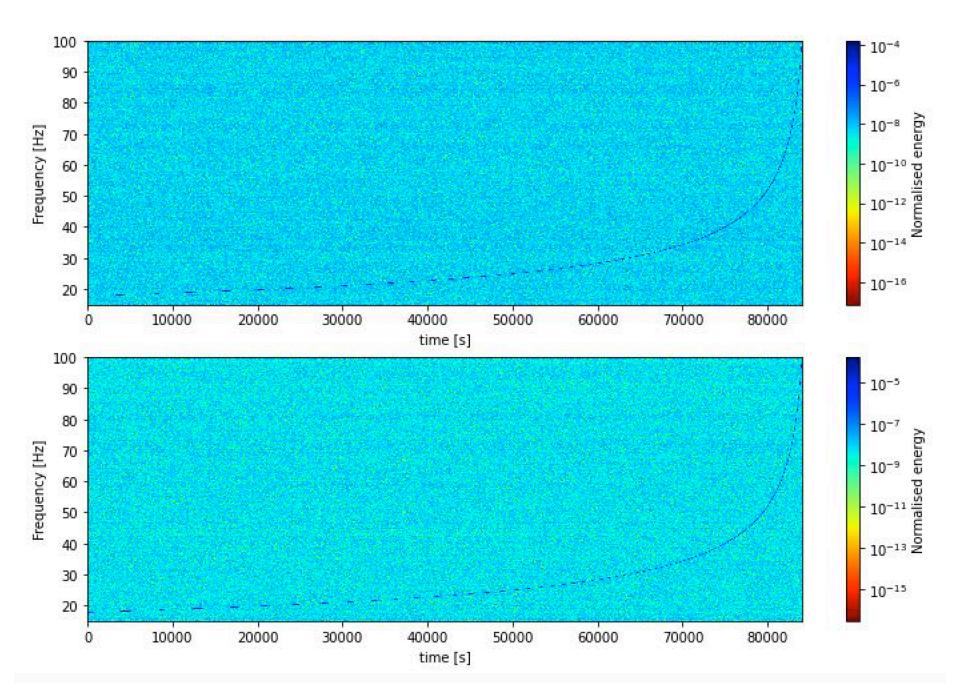
- Direction to the source θ, ϕ and polarization angle Ψ define relative orientation of the detector and wave frames.
- Rotation of the wave frame R_z(2 Ψ) induces transformations both for F and h, but ξ is INVARIANT

Waveform Dataset

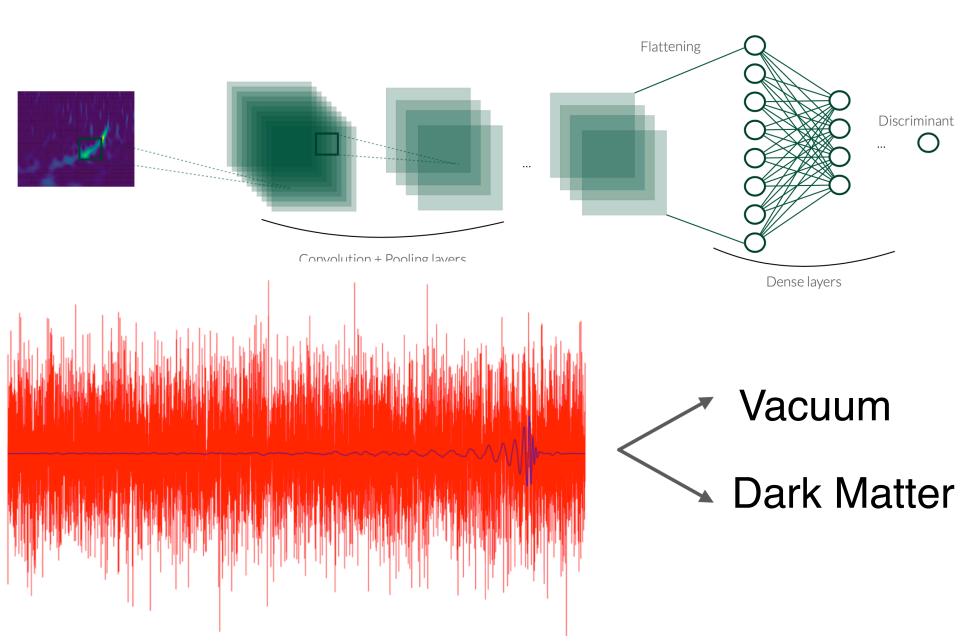
- Develop a catalog of waveforms for different luminosity distances and masses
- Luminosity distance d=10kpc, 100kpc, 1Mpc, 10Mpc, 100Mpc
- Mass $m_1 = 1M_{\odot}$ $m_2 = 10^{-2} 10^{-4}M_{\odot}$ $\Delta m_2 = 0.001M_{\odot}$
- Antenna Sensitivity 100 different directions

We have 9500 GW for the vacuum and 9500 GW with dark matter

Total: 19000 waveform



Machine Learning for GW Classification



Pipeline Structure

Input GW data

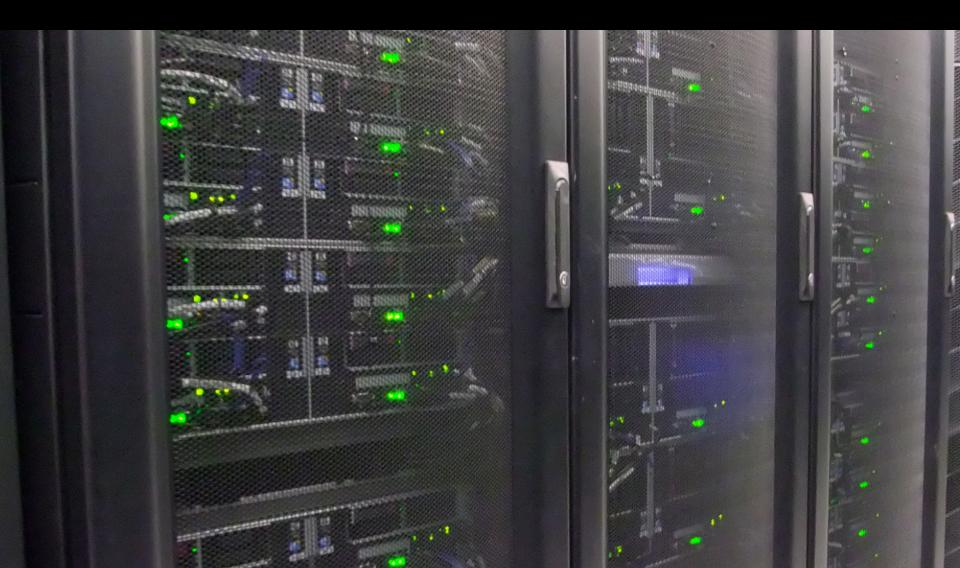
- Basic GW wavedorm
- Add a noise
- Antenna Sensitivity 100 different directions
- Whitened strain

Classification

- Basic GW Image creation from time frequency (spectrograms)
- Tested various networks, including a 4-block layers

High Performance Computing Center

Scuola Normale Superiore



Conclusions

- We can measure the properties of dark matter spike around binaries with Einstein Telescope
- We can distinguish between vacuum and dark matter for distance up to 100kpc

Futuro work:

- Eccentric waveforms
- Post-Newtonian corrections

Thank you for your attention