
ActILab kick-off meeting CERN Contribution

Alexander Gottberg

Target Layout

Task 1: Synthesis of new actinide targets (CERN, INFN, IPNO)

Subtask 1: Sol-gel synthesis in complex fluids ("Chimie douce")

Subtask 2: Nanostructures

Task 2: Characterization of actinide targets (CERN, INFN)

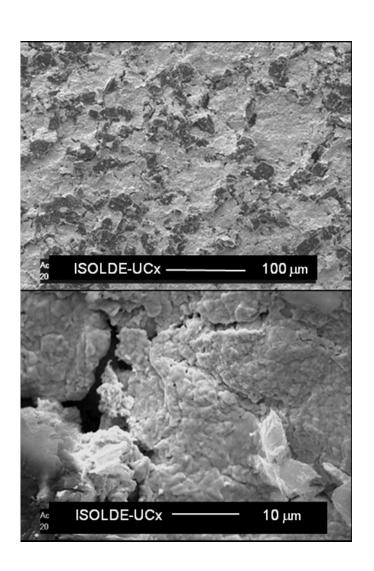
Subtask 1: Microstructure, porosity, specific surface, crystalline phase

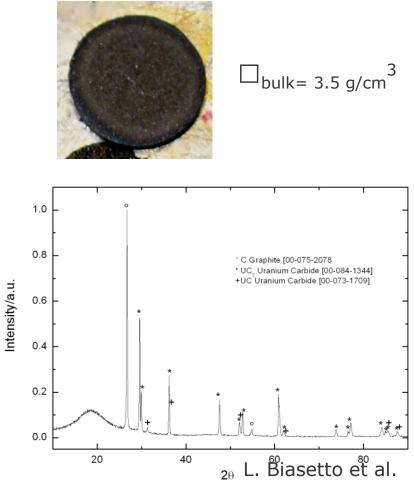
Subtask 2: Emissivity, thermal conductivity at high temperature

Task 3: Actinide targets properties after irradiation (CERN, PSI)

Subtask 1: Post-irradiation examination of target prototypes

Task 4: Online tests of actinide targets (CERN, GANIL, IPNO)


Subtask 1: Impact of pulse time structure on release and ageing properties


Subtask 2: Analysis of the results-effusion and diffusion phenomena

Cern provides infrastructure for pre-irradation analysis of micro and nano structures, for thermal conductivity and emissivity measurements.

Characterization UCx at ISOLDE

How to do release modeling from this material?

Nominal Density UC Target at CERN

Importation from Russia of HD-UC pellets to CERN:

Set 1: 100 pills

UC (U5:0.38%), 13.2mm diam., 1mm thick, 12.3g/cm³, avg. grain 10 \square m , UC2<4%

Set 2: 300 pills

UC (U5:0.38%), 13.2mm diam., 1mm thick, 12.7g/cm³, avg. grain 6 \square m , UC2<4%

Synthesis

Task 1: Synthesis of new actinide targets (CERN, INFN, IPNO)

Subtask 1: Sol-gel synthesis in complex fluids ("Chimie douce")

Subtask 2: Nanostructures

Contribution in one of the subtasks

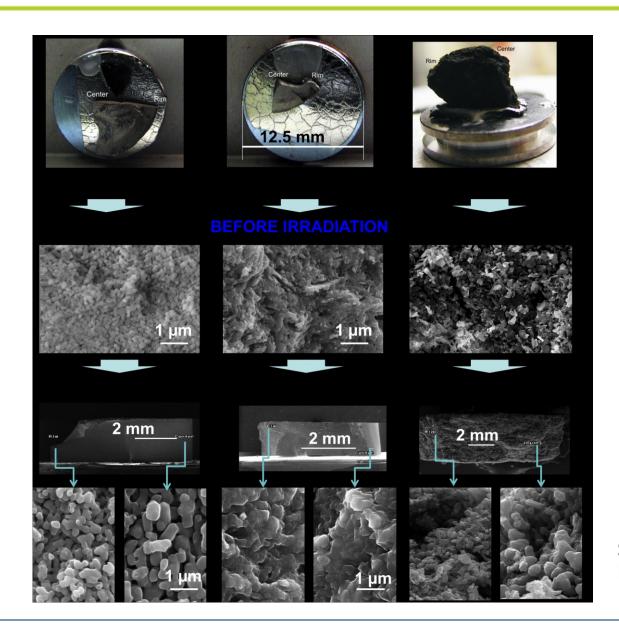
Cern provides class A laboratories

Aim: purposive synthesis of nanostructured UCx materials

Material exchange between institutes? (Task 1, 2, and 3)

Post-Irradiation Studies

Task 3: Actinide targets properties after irradiation (CERN, PSI) Subtask 1: Post-irradiation examination of target prototypes


Shipment of material to PSI (hot cell) after irradition

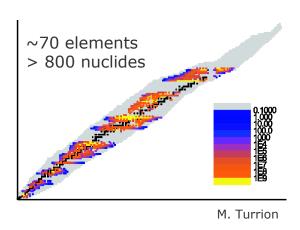
In the framework of CERN target development:

Micro-EXAFS studies at SLS before and after irradiation -> information about chemical structure in the μm regime

Studies of Microstructure

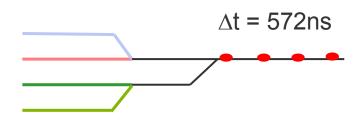
Sandrina Fernandez, PhD thesis

Online Tests


Task 4: Online tests of actinide targets (CERN, GANIL, IPNO)

Subtask 1: Impact of pulse time structure on release and ageing properties

Subtask 2: Analysis of the results-effusion and diffusion phenomena


CERN provides:

large range of isotopes

- → Series in one column of the periodic table
- → Systematic investigation of release mechanisms

well definied and variable pulsed beam structure

- → Short release time characteristics (µs) for exotic nuclei
- → Influence on ageing

Online Test

Preparation of online tests:

Shutdown for one year at CERN in 2012 or 2013, announced in June 2011 -> online tests of new target materials have to be scheduled accordingly

Beamtime application to INTC