

CERN LHC Seminar

Single parton scattering

VS on today's agenda!

What? Why? How? Which?

Introduction

- Hadrons are "composite" --> possibility to have "n" multiple hard partonparton interactions (MPI) in a single hadron-hadron collision
- σ^{MPI} for a given interaction scale increases with \sqrt{s}

- First experimental evidence from CERN ISR
 - several measurements at Tevatron & LHC
- MPI sensitive to interplay between non-perturbative & perturbative QCD effects ---> models need to be "tuned" using data

Hadron colliders such as LHC ideal to study MPI

Double & triple parton scatterings

Leading order in MPI: double parton scattering (DPS) can also have triple parton scattering (TPS)

- Two (three) distinct hard scatters in a single pp collision DPS (TPS)
- Cross section for a "nPS" process is suppressed as compared to SPS

In certain phase space regions, contributions from DPS can't be neglected!!

- Multiple studies using various final states with different energy scales (quark/gluon/quark-gluon mediated) at different √s
- DPS probed at LHC even with the hardest possible scale for DPS at 13TeV
- TPS is relevant for final states with quarkonia production at LHC energies

Why study DPS (nPS)?

Cross section comparable with SPS

- Probes the internal structure of a proton …+role of partonic correlations (in space, momentum, flavour, colour, spin,...) in hadronic wave functions
- Background for rare standard model (SM) and new physics processes
- Provides input for the tuning of Monte Carlo (MC) event generators

Populates phase space in a

Cross section formula for DPS

 σ^{SPS} = partonic cross section \otimes parton distribution functions

- double PDFs (dPDFs) with an additional "b" dependence

DPS pocket formula

Strategy: assume that the two hard interactions are independent

$$\sigma_{AB}^{\text{DPS}} = \frac{m}{2} \sum_{i,j,k,l} \int \underbrace{f^{ij}(x_1, x_2; b; Q_A^2, Q_B^2)}_{(ijk,1, x_1, x_2; b; Q_A^2, Q_B^2)} \times \underbrace{\hat{\sigma}_A^{ik}(x_1, x_1', Q_A^2) \hat{\sigma}_B^{ij}(x_2, x_2', Q_B^2)}_{(ijk,1, x_1', x_2'; b; Q_A^2, Q_B^2)} \times \underbrace{f^{ij}(x_1, x_2; b; Q_A^2, Q_B^2)}_{(ijk,1, x_2'; b; Q_A^2, Q_B^2)} dx_1 dx_2 dx_1' dx_2' dx_2$$

 $\sigma_{e\!f\!f}$: effective cross section for DPS

Eur.Phys.J.C 69(2010)53

Effective cross section parameter

- Proxy to mean inter-parton transverse separation squared \rightarrow sort of an impact parameter; smaller σ_{eff} implies a larger σ^{DPS} & vice-versa
- Expected to be process, scale & c.o.m. energy independent "in the assumed simplest model" <u>CMS Supplementary</u>

- Pythia8: 20-30 mb
 (large tune dependence)
- Measurements: 5-20 mb
- Inter-parton correlations?
- Parton-flavor dependence (quark/gluon)?
- Flaws in DPS factorization?

Beyond the factorization approach

- Factorization can't be the complete picture; dPDFs \neq pdf x pdf \forall x
 - Subtle hints from measurements
 - dPDFs must obey "sum" rules $x_1 + x_2 \le 1$, $\int_0^1 f_{u_v}(x, \mu^2) dx = 2$, $\int_0^1 f_{d_v}(x, \mu^2) dx = 1$.
- Lots of progress towards a more complete description of DPS
- Can we probe parton correlations using some kinematic variables?

η product of leptons in W[±]W[±]

9

DPS simulation models

- LO samples from Pythia/Herwig..., based on "Eikonal" model
 - SPS nPS, where N per event follows a Poisson distribution
 - Some differences between Herwig & Pythia as how the two interactions are correlated and to what extent
- Latest dPDF-based simulations (dShower) for W[±]W[±] production
 - Includes transverse parton correlations & parton splitting effects

 $\mathscr{A} = \frac{\sigma(\eta_{l1} \times \eta_{l1} < 0) - \sigma(\eta_{l1} \times \eta_{l1} > 0)}{\sigma(\eta_{l1} \times \eta_{l1} < 0) + \sigma(\eta_{l1} \times \eta_{l1} > 0)}$ $\mathscr{A} = 0 \implies \text{uncorrelated}$ $\mathscr{A} > 0 \implies \text{correlated}$

Anatomy of a DPS analysis

- Target a final state
 - depends on the physics objective
 - either a process with high production cross section (multijets) or one with experimentally clean final state (W/Z/J/ψ)
- Signal modelling: data or simulation-based
- Background estimations: mostly similar to any SPS analysis
- Signal & background discrimination: single variables or MVA-based
- Extract production cross section for DPS by means of fit to data
- $\sigma_{\rm eff}$ computed using pocket formula
- Differential cross section measurements, if data sample is large enough

DPS with W±W±

- Golden channel for DPS production since SPS W[±]W[±] production suppressed at matrix element level due to presence of (two) extra jets
- Pythia8 predicts cross section for W±W± ··· → 2l2v ~ 86 fb @13TeV

- Sensitive to inter-parton correlations (theoretically very "famed")
- Experimentally clean final state with leptonic W decays
 - Negligible contributions from leptons from adjacent bunch crossings

Analysis strategy

- Analysis performed using pp collisions data at 13TeV + 138 fb⁻¹
- Signal: W[±]W[±] ··· + eµ or µµ final states with moderate p^{miss} ··· + modelled using Pythia8 & dShower with model uncertainties from Herwig
- Background contributions from prompt & nonprompt lepton productions
 - Prompt contributions …, from MC simulations at NLO order in pQCD
 - Nonprompt contributions --> estimated using data __
- BDT-based signal & background discrimination
- Signal cross section extracted using binned maximum likelihood fit to the shape of the BDT classifier

two leptons $e^{\pm}\mu^{\pm}$ or $\mu^{\pm}\mu^{\pm}$ $p_{T}^{\ell_{1}} > 25 \text{ GeV}, p_{T}^{\ell_{2}} > 20 \text{ GeV}$ $|\eta_{e}| < 2.5, |\eta_{\mu}| < 2.4$ $p_{T}^{\text{miss}} > 15 \text{ GeV}$ $m_{\ell\ell} > 12 \text{ GeV}$ $N_{\text{jets}} < 2$ $N_{\text{b-jets}} == 0$ veto on additional leptons veto on hadronic τ leptons $p_{T}^{\ell\ell} > 20 \text{ GeV}$ for $e^{\pm}\mu^{\pm}$ channel

Background processes

- Dominant contribution from WZ--+3lv; one lepton from Z is lost
 - Kinematically very similar to the signal process
- Nonprompt lepton contributions (W+jets, QCD multijets, and semi-leptonic decays of $t\bar{t}$)
- Prompt lepton contributions also from:
 - Wγ*, ZZ, SPS W±W±, VVV, $t\bar{t}$ V
 - Photon conversions (W/Zγ) Only in eµ channel
 - Lepton charge misidentification ($t\bar{t}$, DY, WW) (data-driven estimation)

Two separate BDT classifiers for WZ & nonprompt

BDT classifiers

 Training variables …, kinematic differences between (uncorrelated) signal & (correlated) backgrounds

Statistical analysis

high purity bins

Results

Inclusive W±W± ...+ 2l2v cross section

 80.7 ± 11.2 (stat) $^{+9.5}_{-8.6}$ (syst) \pm 12.1 (model) fb

Fiducial cross section

 6.28 ± 0.81 (stat) ± 0.69 (syst) ± 0.37 (model) fb

Using pocket formula

 $\sigma_{\rm eff} = 12.2^{+2.9}_{-2.2}\,{\rm mb}$

- Consistent with previous measurement from the same channel and with the ones involving W bosons
- Improved precision

First observation of W[±]W[±] via DPS with 6.2 s.d. (obs.)

from Herwig: difference in

- reconstruction
- Efficiencies for leptons & generator acceptance

CMS Supplementary

DPS with Z+jets

- Z+jets production excellent testing ground for theoretical predictions
 - Next-to-leading order matrix element generators interfaced to parton shower models …, plenty of room for theoretical development, tuning etc
- Constitutes a non-negligible background for many SM measurements and new physics searches

Z+jets events to explore observables sensitive to the presence of DPS

Differential cross
 sections in Z+≥1 jet &
 Z+≥2 jets categories as
 function of DPS sensitive observables

Analysis strategy

- 35.9 fb⁻¹ of pp collisions data at 13TeV
- Clean experimental signature with Z[…]+µµ
- Events triggered using single muon triggers with pT > 24 GeV
 - Offline selection:
 - dimuon pair with pT > 27 GeV & $|\eta| < 2.4$ within a Z mass window \checkmark
 - at least one jet with pT > 20 GeV and $|\eta| < 2.4$
- Signal modelled using LO & NLO simulation models
- Minor background contribution from $t\overline{t}$

DPS sensitive observables $\begin{array}{l} \textbf{Z+\geq 1 jet} \\ \Delta \varphi(\textbf{Z},\textbf{j1}) \quad \Delta_{rel} p_{T}(\textbf{Z}, \textbf{j}_{1}) = \frac{|\vec{p_{T}}(\textbf{Z}) + \vec{p_{T}}(\textbf{j}_{1})|}{|\vec{p_{T}}(\textbf{Z})| + |\vec{p_{T}}(\textbf{j}_{1})|} \end{array}$

$$\Delta \varphi(Z, dijet) \ Z+\geq 2jets$$
$$\Delta_{rel} p_{T}(j_1, j_2) = \frac{|\vec{p}_{T}(j_1) + \vec{p}_{T}(j_2)|}{|\vec{p}_{T}(j_1)| + |\vec{p}_{T}(j_2)|}$$
$$\Delta_{rel} p_{T}(Z, dijet) = \frac{|\vec{p}_{T}(Z) + \vec{p}_{T}(dijet)|}{|\vec{p}_{T}(Z)| + |\vec{p}_{T}(dijet)|}$$

Fiducial cross section

Fiducial cross section measurement compared with different predictions

Cross section (pb)	anna ann an Aonaichtean a' fainn airtean tha ann ann a' ann a' tha Aonaichtean a' fainn ann a' tha Aonaichtean	$Z+ \ge 1$ Jets	$Z+ \ge 2$ Jets
Measured in data		158.5 ± 0.3 (stat)	$44.8\pm0.4(\mathrm{stat})$
		\pm 7.0 (syst)	± 3.7 (syst)
		± 1.2 (theo)	± 0.5 (theo)
	ni stoleti v okoz, z k k o stano stoleti v okoz, z k k o stalo čelu je oso provi stoleti v okoz, z k k o stal	± 4.0 (lumi) pb	±1.1 (lumi) pb
Predicted by MC	ande en en antier de la construction de la construction de la construction de la construction de la construction La construction de la construction d	and see in the strand length in the second second	art an t-2014 Court Star Private Party Star Court and Court
MG5_aMC (NLO)	PYTHIA8, CP5 tune	167.4 ± 9.7	47.0 ± 3.9
	PYTHIA8, CP5 tune MPIOFF	143.8 ± 0.3	37.7 ± 0.2
	PYTHIA8, CDPSTP8S1-WJ tune	178.4 ± 0.3	50.5 ± 0.2
	HERWIG7, CH3 tune	158.3 ± 1.1	44.4 ± 0.6
MG5_aMC (LO) + PYTHIA8, CP5 tune		161.2 ± 0.1	45.3 ± 0.1
sherpa (NLO+LO)		149.8 ± 0.2	41.6 ± 0.1

- CP5 tune with MPIoff underestimates the measurement ~10(16)% for Z+ ≥1(2) jet events
- DPS-specific tune over predicts the cross section by 10%
- Well described by Sherpa, MG+Py8 (CP5) & MG+Hw7

Differential cross section

Normalized differential cross section

- MG+Py8 with MPI-off underestimates the measurement by ~ 50% in the MPIdominated region
- MG+Py8 (CP5) overestimates (up to 20%) in the SPS-dominated region
- MG+Py8 with DPS-specific tune describes the measurement well
- MG+Hw7 and Sherpa describe the distribution well within uncertainties

DPS with 4jets

- Jet production is one of the most abundant processes at LHC
- Low transverse momentum and forward/backward jets allow for the low-x region to be probed …, important information for MC tuning

Four jets production via SPS vs two independent dijets via DPS

 Multiple simulation setups compared with data using DPS-sensitive variables

- DPS cross section is extracted using template fit method
- $\sigma_{\rm eff}$ extraction using pocket formula

Analysis strategy

- 42 nb⁻¹ of low-pileup (<µ> = 1.3) pp collisions data at 13 TeV selected using single-jet triggers
- Offline selection:
 - Exactly one primary vertex
 - 4 jets with asymmetric pT cuts going down to 20 GeV
- SPS template from MC, DPS from random mixing of single jet data events

angular observables tested for DPS-sensitivity

Azimuthal angle of the soft jet pair: $\Delta \phi_{soft} = |\phi_3 - \phi_4|$ Combined minimum angle of 3 jets: $\Delta \phi_{3j}^{min} = min_{ijk} \{ |\phi_i - \phi_j| + |\phi_j - \phi_k| \}$ Transversal momentum balance of the soft jet pair: $\Delta p_{T,soft} = \frac{|\vec{p}_{T,3}| + |\vec{p}_{T,4}|}{|\vec{p}_{T,3} + \vec{p}_{T,4}|}$ Maximum difference in pseudorapidity: $\Delta Y = max_{ij} \{ |\eta_i - \eta_j| \}$

Azimuthal angle of the most remote jets: $\phi_{ij} = |\phi_i - \phi_j|$ for $\Delta Y = max_{ij} \{|\eta_i - \eta_j|\}$

Azimuthal angle between the hardest and the softest jet pair $\Delta S = \arccos\left(\frac{(\vec{p}_{T,1} + \vec{p}_{T,2}) \cdot (\vec{p}_{T,3} + \vec{p}_{T,4})}{|\vec{p}_{T,1} + \vec{p}_{T,2}| \cdot |\vec{p}_{T,3} + \vec{p}_{T,4}|}\right)$

most sensitive to DPS

Results

- Distribution normalized to the last bin (having lowest DPS contribution)
- Py8 with CDPSTP8S1-4j tune describes the data well

$$\sigma^{\text{data}}(\Delta S) = f_{\text{DPS}} \sigma^{\text{data}}_{\text{DPS}}(\Delta S) + (1 - f_{\text{DPS}}) \sigma^{\text{MC}}_{\text{SPS}}(\Delta S)$$

 $\sigma_{A,B}^{DPS} = f_{DPS} \int \sigma^{data}(\Delta S) d(\Delta S).$

Effective cross section

Excellent sensitivity to different models used to model SPS

- Extracted σ_{eff} agrees with UA2, CDF, and ATLAS experiments
- Models using a 2→2 ME with older UE tunes …→ need the smallest DPS contribution
- NLO models yield lowest values of $\sigma_{\text{eff}} \rightarrow$ need even more DPS

σ_{eff} measurements

(BOOOD

ليحوق

Triple J/ ψ production

- First study of inclusive triple J/ψ production & TPS
- Measured cross section ... + contributions from DPS (dominated contribution) + TPS + SPS (minor contribution)
- Novel approach to extract DPS effective cross section

 $\sigma_{\rm eff,N}$

Generalised cross section and pocket formulae

Triple J/ψ production

- Prompt + non-prompt J/ ψ production in pp collisions
- SPS negligible ----> Golden channel for DPS and TPS studies

Event selection

- pp collisions at 13 TeV with integrated luminosity 133 fb⁻¹
- Experimentally clean and pure final states with (six) muons

- Triple muon trigger (84% efficient):
 - $p_T > 3.5$ GeV (barrel), $p_T > 2.5$ GeV (endcaps)
 - at least one µ∓µ± with 2.8 < m_{µµ} < 3.35 GeV from same vertex
- Offline selection (efficiency = 78%):
 - $\mu^{\mp}\mu^{\pm}$ pairs from same primary vertex with 2.9 < $m_{\mu\mu}$ < 3.3 GeV
 - J/ ψ candidates: p_T > 6.5 GeV & |y| < 2.4

- Background: semi-leptonic decays of heavy flavour & DY
- 6 events in data after selection

Signal extraction

- 3D un-binned extended maximum likelihood fit to m_{µµ} within 2.9-3.3 GeV
- Signal modelled using Gaussian with resolution fixed to MC & mean to PDG J/ψ mass
- Exponential background

- N(signal) = $5.0^{+2.6}_{-1.9}$, N(background) = $1.0^{+1.4}_{-0.8}$
- Extended mass region, down to 2.3 GeV to confirm background estimation

Fiducial cross section

$$\sigma(\mathrm{pp} \rightarrow \mathrm{J}/\psi \,\mathrm{J}/\psi \,\mathrm{J}/\psi \,\mathrm{X}) = N_{\mathrm{sig}}^{3\mathrm{J}/\psi} / (\epsilon \,\mathcal{L}_{\mathrm{int}} \,\mathcal{B}_{\mathrm{J}/\psi \rightarrow \mu^{+}\mu^{-}}^{3})$$

 $\sigma(\mathrm{pp} \rightarrow \mathrm{J}/\psi\mathrm{J}/\psi\mathrm{J}/\psi\mathrm{X}) = 272^{+141}_{-104}$ (stat) \pm 17 (syst) fb

Signal significance: 6.7 s.d. (obs.) 5.5 s.d. (exp.)

```
First observation of triple J/\psi
```

- Identify prompt & nonprompt components in a narrower mass window
 - Using proper decay length of J/ ψ candidate (60 μ m)

- 5 signal events:
- 2 events: 2 nonprompt + 1 prompt

- 1 event: 1 nonprompt + 2 prompt
- 1 event: 3 nonprompt
- 1 event: 3 prompt

SPS, DPS, & TPS contributions

Measured cross section = predicted cross section for SPS+DPS+TPS

$$\begin{aligned} \sigma_{\text{tot}}^{3J/\psi} &= \sigma_{\text{SPS}}^{3J/\psi} + \sigma_{\text{DPS}}^{3J/\psi} + \sigma_{\text{TPS}}^{3J/\psi} = \\ &= \left(\sigma_{\text{SPS}}^{3\,p} + \sigma_{\text{SPS}}^{2p1np} + \sigma_{\text{SPS}}^{1p2np} + \sigma_{\text{SPS}}^{3\,np}\right) + \\ &+ \left(\sigma_{\text{DPS}}^{3\,p} + \sigma_{\text{DPS}}^{2p1np} + \sigma_{\text{DPS}}^{1p2np} + \sigma_{\text{DPS}}^{3\,np}\right) + \left(\sigma_{\text{TPS}}^{3\,p} + \sigma_{\text{TPS}}^{2p1np} + \sigma_{\text{TPS}}^{3\,np}\right) \end{aligned}$$

factorize DPS & TPS cross sections

$$\begin{split} \sigma_{\rm DPS}^{3J/\psi} = & \frac{m_1 \left(\sigma_{\rm SPS}^{2p} \sigma_{\rm SPS}^{1p} + \sigma_{\rm SPS}^{2p} \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{1p} \sigma_{\rm SPS}^{1p1np} + \sigma_{\rm SPS}^{1p1np} \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{2np} \sigma_{\rm SPS}^{2np} + \sigma_{\rm SPS}^{2np} \sigma_{\rm SPS}^{1np}\right)}{\sigma_{\rm eff, DPS}} \\ \sigma_{\rm SPS}^{3J/\psi} = & \frac{m_3 \left(\left(\sigma_{\rm SPS}^{1p}\right)^3 + \left(\sigma_{\rm SPS}^{1np}\right)^3\right) + m_2 \left(\left(\sigma_{\rm SPS}^{1p}\right)^2 \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{1p} \left(\sigma_{\rm SPS}^{1np}\right)^2\right)}{\sigma_{\rm eff, TPS}^2}, \end{split}$$

- Predictions for SPS cross sections from HELAC-ONIA & MG
- In the absence of parton correlations: $\sigma_{\text{eff,TPS}} = (0.82 \pm 0.11) \times \sigma_{\text{eff,DPS}}$

Phys. Rev. Lett. 118, 122001 (2017)

$$\sigma_{
m eff,DPS}\,=\,2.7^{+1.4}_{-1.0}\,(
m exp)^{+1.5}_{-1.0}$$
 (theo) mb

Effective cross section

- σ_{eff} consistent with existing quarkonia measurements
 from DPS events
- σ_{eff} obtained from quarkonia
 measurements (x~ 0.005) favor
 a smaller value compared to
 the final states with W/Z
 (x~0.01)

and the second sec			
		CMS , √ s=13 TeV, J/ψ+J/ψ+J/	Ψ
—		CMS , √ s=8 TeV, J/ψ+J/ψ	Phys. Rept. 889 (2020) 1
H H H		ATLAS , √ s=8 TeV, J/ψ+J/ψ	Eur. Phys. J. C 77 (2017) 76
		D0 , √s=1.96 TeV, J/ψ+J/ψ	Phys. Rev. D 90 (2014) 111101
—		D0 , √s=1.96 TeV, J/ψ+Υ	Phys. Rev. Lett. 117 (2016) 062001
		ATLAS , √s=8 TeV, Z+b→J/ψ	Nucl. Phys. B 916 (2017) 1312
		ATLAS , √s=8 TeV, Z+J/ψ	Phys. Rept. 889 (2020) 1
		ATLAS , √s=8 TeV, W+J/ψ	Phys. Lett. B 781 (2018) 485
		D0 , √ s=1.8 TeV, γ+3-jet	Phys. Rev. D 81 (2010) 052012
		CDF , √ s=1.8 TeV, γ+3-jet	Phys. Rev. D 56 (1997) 3811
		UA2 , v s=640 GeV, 4-jet	Phys. Lett. B 268 (1991) 145
		CDF , √ s=1.8 TeV, 4-jet	Phys. Rev. D4 7 (1993) 4857
r		ATLAS, vs=7 TeV, 4-jet	JHEP 11 (2016) 110
		CMS, √s=7 TeV, 4-jet	Eur. Phys. J. C 76 (2016) 155
· · · · · · · · · · · · · · · · · · ·		CMS , √ s=13 TeV, 4-jet	arXiv:2109.13822
		CMS, √s=7 TeV, W+2-jet	JHEP 03 (2014) 032
⊢_ ▲−−−1		ATLAS, vs=7 TeV, W+2-jet	New J. Phys. 15 (2013) 033038
		CMS , v s=13 TeV, WW	Eur. Phys. J. C 80 (2020) 41
0 20	40		
•			
$\sigma_{\rm eff,DPS}$	_s [mb]		

x-dependence of parton profiles?

Conclusions

- Presented a selection of DPS studies based on 13TeV collision data
 - First ever study of triple J/ ψ production, TPS and it's observation
 - First observation of W[±]W[±]
 - Important information for tuning of MC event generators from jets-based analyses
- For a given scale of process, different measurements from different experiments agree within uncertainties
- Differences in measured σ^{eff} for gluon & quarks induced processes \rightarrow can we improve factorisation approach?
 - Inclusion of parton correlations in MC event generators
 - dShower is just the first step!
 - Many theoretical advancements but need experimental verification

thanks for your attention!!

We made it to the headlines ;)

Particles and Fields

🖉 Springer

30/03/20

observation of WW from double parton scattering at CMS

<u>https://cms.cern/news/trio-jps-particles</u>-one-go#

https://cms.cern/news/two-collisions-price-one

Systematic uncertainties: Z+jets

Observable/Uncertainty	$\Delta \phi(\mathbf{Z}, j_1)$	$\Delta_{\rm rel} p_{\rm T}({\rm Z}, j_1)$	$\Delta \phi(\mathbf{Z}, \mathrm{dijet})$	$\Delta_{\rm rel} p_{\rm T}({\rm Z},{\rm dijet})$	$\Delta_{\rm rel} p_{\rm T}(j_1, j_2)$
JES	2.7–7.5%	2.4–7.4%	4.9–7.9%	4.5-8.4%	4.4–7.3%
JER	0.9–6.6%	1.4–5.8%	1.2–7.2%	2.1–5.1%	1.1–4.2%
Pileup jet identification	1.3–1.7%	0.9–1.6%	1.7–2.1%	1.6-2.1%	1.7-2.3%
Integrated luminosity	2.5%	2.5%	2.5%	2.5%	2.5%
Pileup modelling	0.1–0.7%	0.2–1.0%	0.2–1.4%	0.4–1.4%	0.8–1.4%
Closure uncertainty	0.6–4.0%	0.8–5.1%	2.7-6.1%	2.2-8.7%	2.2-8.7%
Muon selection	< 1.0%	<1.0%	<1.0%	<1.0%	<1.0%
Background modelling	<0.2%	<0.2%	<0.6%	<0.6%	$<\!0.4\%$
Total	4–11%	4–10%	8–14%	8–14%	7–11%

Table 3: Uncertainty sources and their effect on the differential cross section distributions.

Table 4: Uncertainty sources and their effect on the area-normalized distributions.

Observable/Uncertainty	$\Delta \phi(\mathbf{Z}, j_1)$	$\Delta_{\rm rel} p_{\rm T}({\rm Z}, j_1)$	$\Delta \phi(\mathbf{Z}, \mathrm{dijet})$	$\Delta_{\rm rel} p_{\rm T}(Z,{\rm dijet})$	$\Delta_{\rm rel} p_{\rm T}(j_1, j_2)$
JES	0.1–3.8%	0.7–3.7%	0.6-4.0%	0.3–2.6%	0.3–1.5%
JER	0.3–4.6%	0.4–4.4%	1.3-4.4%	0.2–4.8%	0.2–1.7%
Pileup jet identification	0.1–0.2%	0.1–0.2%	0.1–0.2%	0.1–0.2%	0.1–0.4%
Pileup modelling	0.1–0.5%	0.1–0.5%	0.1–1%	0.1–0.8%	0.2–0.4%
Closure uncertainty	0.8–2.5%	0.9–3.6%	0.3–5.0%	0.4–6.7%	0.5-3.7%
Muon selection	<1.0%	<1.0%	$<\!\!1.0\%$	<1.0%	<1.0%
Background modelling	<0.1%	<0.1%	<0.2%	<0.2%	<0.2%
Total	1–6%	1–6%	2–7%	1–7%	1–4%