
Photon Detection in Medical Imaging

Prof. Dr. Karl Ziemons 16.Feb.2011

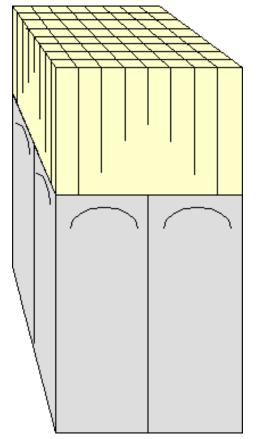
Positron-Emission-Tomography

PET quantitatively and non-destructively measures the 3-D distribution of radiolabeled biomolecules *in vivo*

Metastasis of a malignent melanoma *D.Townsend*, 1995

fundamentals:

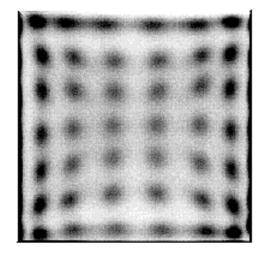
a) to obtain as many counts as possible


→ high sensitivity

- b) to localize these counts as accurately as possible
 - → high spatial resolution
 - → high temporal resolution

Scintillation Detector

- Photomultiplier tube (PMT)
- Avalanche photodiode (APD)
- Silicon photomultiplier (SiPM)
- High Density Semiconductors
 - CdTe or CZT
 - Ge
 - TIBr

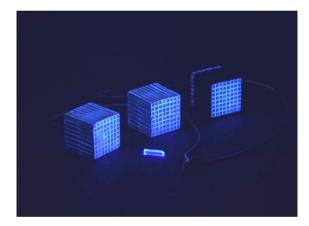

1986 - The block detector

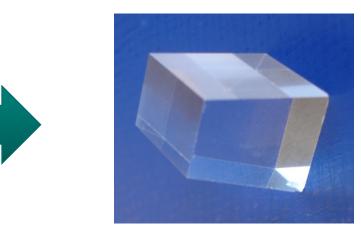
M Dahlbom, UCLA

A large number of scintillation crystals are coupled to a smaller number of PM-tubes. In the block detector, a matrix of cuts are made to define the detector elements.

The light produced in each crystal will produce a unique combination of signals, which will allow the detector to be identified.

Flood response for a block detector

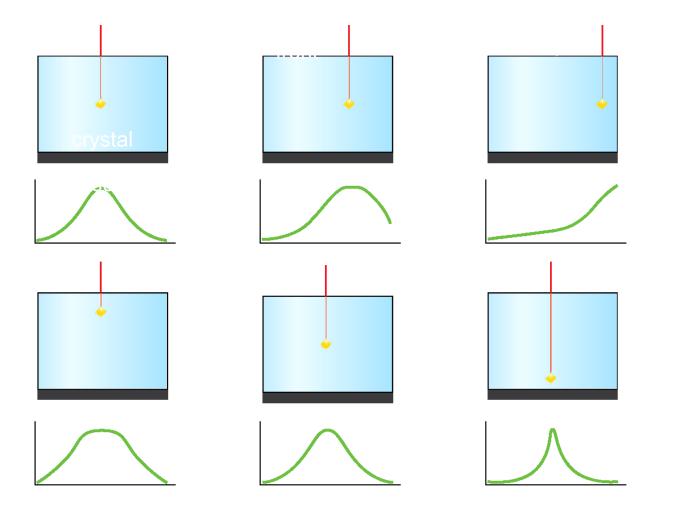

			H L L	
Scintillator	90%	Light output	Decay time	
	efficiency (cm)	(photons/MeV	(nsecs)	
)		
BGO	2.4	7,000	300	
BaF ₂	5.1	2,000	0.8	
CsF	5.4	1,900	4	
LSO, LYSO	2.6	25,000	42	
LaBr ₃	4.9	60,000	27	
Lul ₃	4.1	100,000	30	


© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

16. Februar 2011 | 7

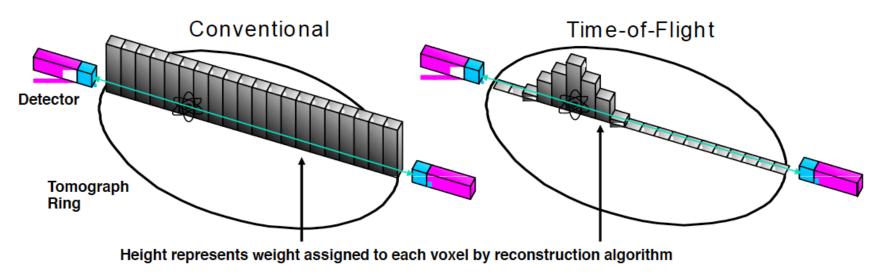
PET Scintillators

from a pixelated to a monolithic block concept



- Increase sensitivity (no inter-crystal separations, reduced dead space)
- 3D position information embedded in the light distribution
- extract parallax-corrected incidence coordinates with good accuracy
- continuous coordinates
- easy to manufacture and to assemble

Impact on the dynamic range of a photon detection system (from a few photons up to 1000ph/event)

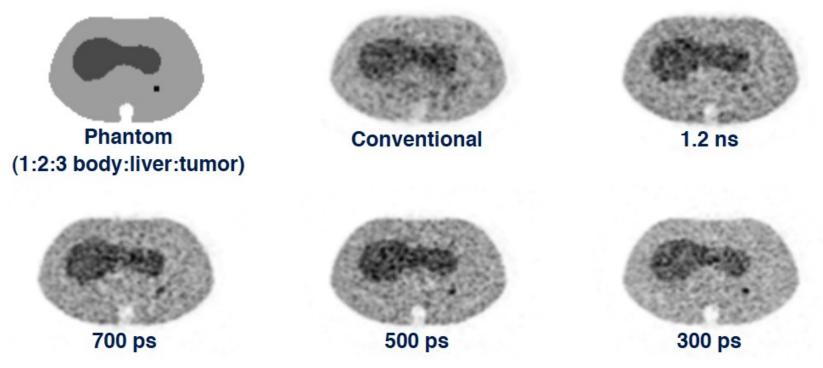

Monolithic scintillator detectors

Light distribution depends on the entry point on the front surface...

and on the depth of interaction (DOI).

Adding Time-of-Flight to Reconstruction➔ Faster Convergence

Data courtesy by W.Moses


Conventional:

- Detected event projeted to all voxels between detector pairs
- Lots of coupling between voxels
- \rightarrow Many iterations to converge

Time-of-Flight:

- Detected event projeted only to voxels consistent w measured time
- Little coupling between voxels
- \rightarrow Few iterations to converge

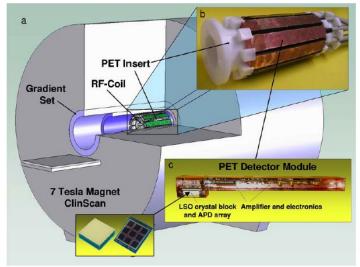
Whole Body – Time of Flight Simulation

Data courtesy by Mike Casey, CPS Innovation

Clear improvement of contrast enhancement visually!

Features

- > High gain
- > Fast response time
- > Low bias voltage (tens of volts)
- > Insensitive to magnetic field
- > Compact and rugged
- > Small nuclear counter effect
- > Non-linearity at higher light levels
- > Dark noise a problem at very low light levels
- > Less mature technology

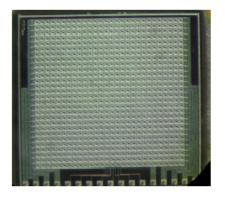

F	I			
SI>BI		1 U E T	10	
303030303030 303030303030 303030303030	30300		00000	
99999999999999 9999999999999	30300	899990 899990	0000	
000000000000000000000000000000000000000	30330	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0000	
00000000000000000000000000000000000000	30330	999990 999990	0000	
0000000000000	30300		0000	
	30330		0000	
00000000000000000000000000000000000000	30300	393990 393990	0000	
399999999999999 39999999999999	30300		0000	
999999999999999 99999999999999	30300	00000	0000	
3939393393939	30300	00000 0000	0000	
000000000000000000000000000000000000000	30300	00000	10000	

Avalanche Photodiode working in limited Geiger mode, courtesy by FK-irst, Italy

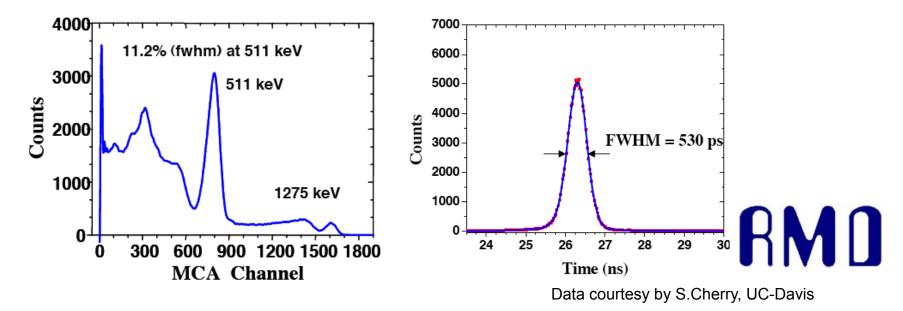
SiPM – Development Platform in Medical Imaging

Current developments

- 1. Small Animal PET Scanner
- 2. Hybrid PET/MR preclinical/clinical scanner
- 3. PEM (PET for Mammography)
- 4. Prostate scanner

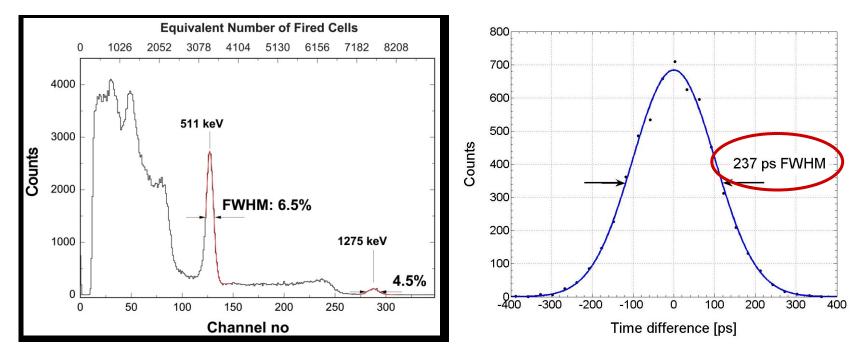


Slide Courtesy: Judenhofer


Solid State Photomultipliers (SSPMs)

CMOS process

- Lower cost for mass production
- On-chip integration with electronics possible

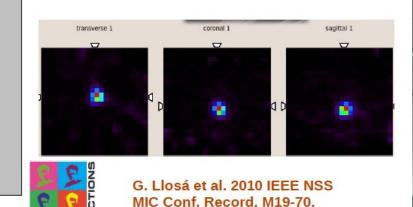

3x3 mm² SSPMs, ~800 pixels

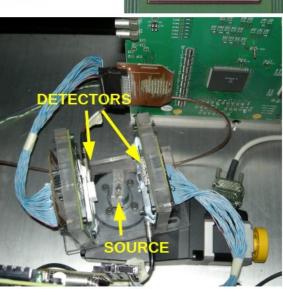
LaBr₃:Ce³⁺ with SiPMs: First results

(data from D.Schaart et al., IEEE Oct.2008)

3 x 3 x 5 mm³ LaBr₃:Ce³⁺ on 3 x 3 mm² Hamamatsu S10362-33-025C SiPM

²²Na pulse height spectrum


Coincidence timing spectrum (two LaBr₃:Ce³⁺/SiPM detectors)


SiPM – Small Animal PET Scanner

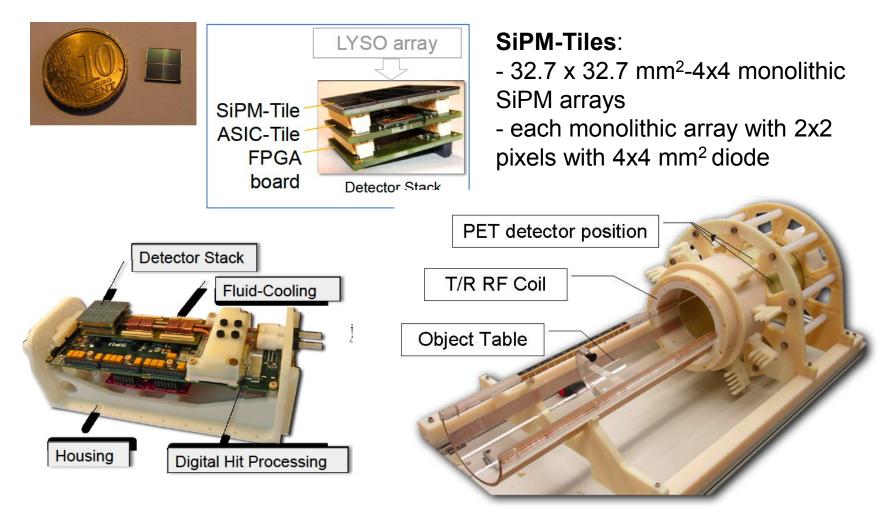
IRIS group @ IFIC, Valencia

- ASPID project: Application of Silicon Photomultipliers to Imaging Devices.
- Collaborating with University of Pisa and INFN Pisa in the development of a small animal PET scanner.
- Continuous LYSO crystals and monolithic, 64 pixel SiPM matrices from FBK-irst (AdvanSiD, Italy).
- Readout: MAROC2 ASIC from LAL, Orsay.
- First prototype developed and preliminary images reconstructed.

1.5 mm pitch

12 mm

PET/MR Electronics in Development @ Juelich


Intelligent Sensor

- Lower cost for mass production
- On-chip integration with electronics possible
- > MR compatibility
- Active quenching for fast response (~ps range)

Q2t with active threshold @ Juelich, Germany

PET Insert @ Philips Research, Digital SiPM

Slide Courtesy: V.Schulz

PET Insert @ Philips Research, Digital SiPM

- Direct digitalization to offer best ToFperformance
- Detector Stack: SiPM arrays with individual TDC/ADCs (on ASIC)
- Onboard hit processing (sorting, hit processing, gain corr., walk-corrections, ...)
- Scalable PET detector design

➔ One technology for clinical and preclinical systems

Motivation to Combine PET and MRI

Strengths

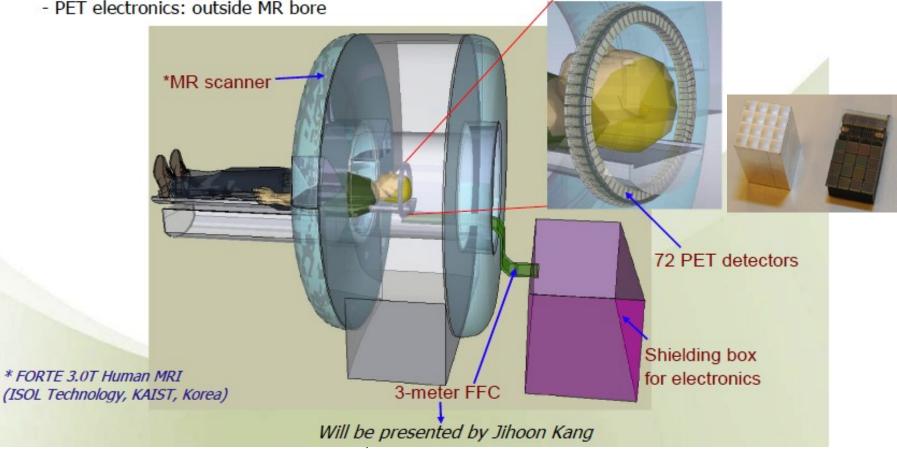
- "Near-perfect" registration of structural and molecular imaging data
- Anatomically-guided interpretation of PET data
- Anatomic priors for PET reconstruction and data modeling
- PET can be combined with advanced MRI techniques such as DWI, DCE MR, MRS, cell tracking and MR molecular imaging agents

Weaknesses

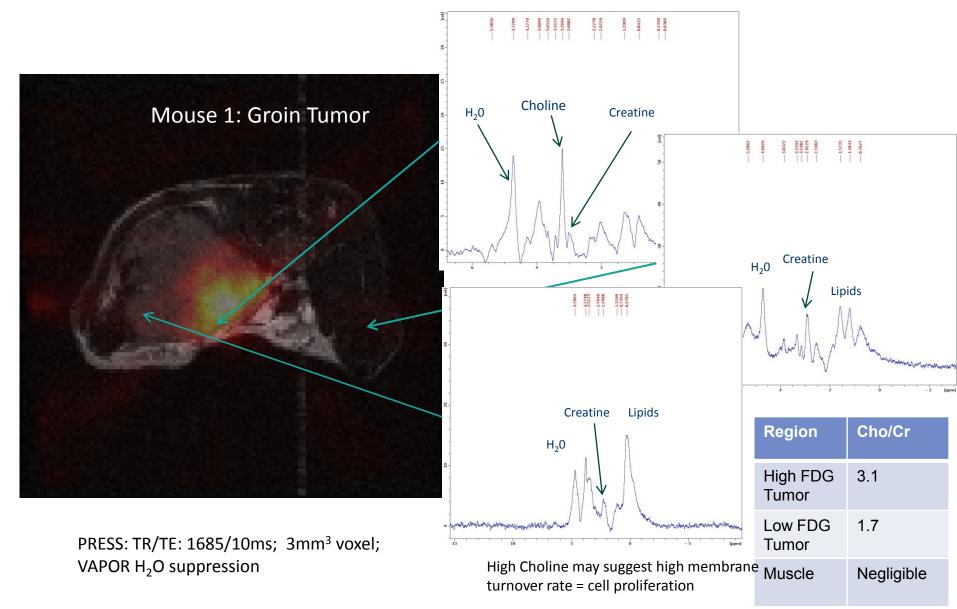
- Technically difficult and likely expensive
- Uncertainty regarding throughput, cost effectiveness and ultimate clinical role

SiPM – Small Animal PET Scanner

Based on SiPM array

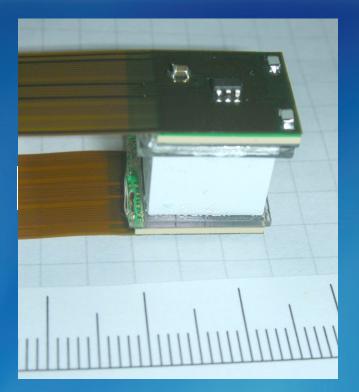


Slide Courtesy: Yamamoto, Kobe 2010, Japan

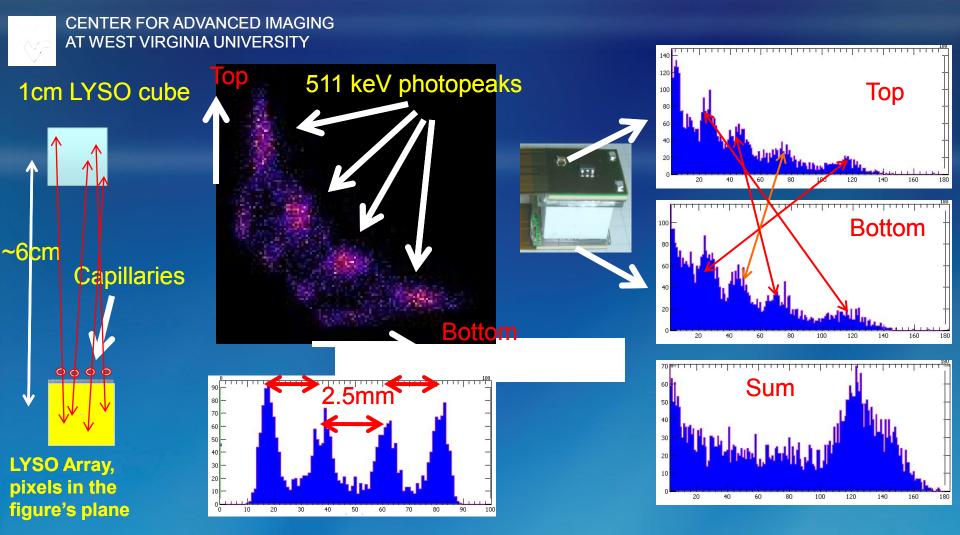

SiPM – BrainPET Scanner

PET detector ring located inside MRI

- PET detector: between RF and gradient coils
- PET electronics: outside MR bore


FDG-PET guided MRS

Slide Courtesy: S.Cherry


CENTER FOR ADVANCED IMAGING AT WEST VIRGINIA UNIVERSITY

Prostate PET DOI Probe With Monolithic MPPC Modules

DOI module during assembly (please note the still inaccurate positioning of the components). 1mm glass spreader windows used between the scintillator and the monolithic MPPC arrays. Optical grease coupling. Total thickness under 20mm, including the components visible at the back of the MPPC arrays.

The 2D plot at top displays the signal relationship between the top and bottom MPPC array outputs for the four F18-solution-filled capillaries spaced at 2.5mm center-to-center (0.5mm i.d., 1.25mm o.d.). Four 511 keV collimated beams were produced by electronic collimation in coincidence with a 1cm LYSO cube attached to a small PMT (left). The bottom center histogram shows event per event ratio of the top output vs sum of the top and bottom outputs. At right are shown energy spectra obtained for the top, bottom and sum signals. The correlations between the capillary beam peaks in both energy spectra are also shown. Estimated DOI resolution :<=1mm FWHM.

- Clinical PET instrumentation seems to be scintillator oriented also for the future
- After more than 20 years the block detector is going to be overcome by other approaches
- The development of the electronic now is mature enough to open once again the possibility for a new rise of one-to-one coupling
- TOF is growing slowly: faster scintillators and high quantum efficiency PhotoDetectors are required.
- A multimodality approach (PET/MR) will be more and more requested in the clinical practice.
- The **SiPM seems to be the choice for future systems** being MR compatible, compact and with high performance.

Acknowledgments

Thank's to:

P.Bruyndonckx and S.Tavernier @VUB, Belgium

J.Perez and P.Rato Mendes @CIEMAT, Spain

H.Larue, C.Parl, M.Streun (ZEL) N.J.Shah, H.Herzog and U.Pietrzyk (INM-4) @Forschungszentrum Jülich

D.Townsend, P. Lo Guo-Qiang, D. Ning @SBIC, Singapore

S.Majewski @West Vergina University

and to all the others, which spend some slides for this presentation

Thank you

for your attention !!

Aachen University of Applied Science Faculty of Medical Engineering and Technomathematics Prof. Dr. Karl Ziemons Heinrich-Mußmann.Str. 1 52428 Jülich T +49. 241. 6009 53960 F +49. 241. 6009 53271 K.Ziemons@fh-aachen.de www.fh-aachen.de