Improving strong coupling determinations from hadronic tau decays

Miguel Benitez-Rathgeb

Strong coupling determinations

- Extraction of α_{s} from inclusive τ decays one of the most precise determinations of QCD coupling
- Weighted integrals over exp. spectral functions tested against theory predictions

$$
R_{V+A}^{(w)}\left(s_{0}\right) \sim 12 \pi^{2} \int_{0}^{s_{0}} \frac{d s}{s_{0}} w\left(s / s_{0}\right) \rho_{V+A}(s) \quad \rho(s)=\frac{1}{\pi} \operatorname{Im}[\Pi(s+i \epsilon)]
$$

- For $w(x)=(1-x)^{2}(1+2 x)$

$$
R_{V+A}^{(w)}\left(m_{\tau}^{2}\right) \simeq \Gamma\left(\tau \rightarrow \nu_{\tau}+\text { hadrons }\right)
$$

Hadronic tau decays: Theory

Massless correlation function: $\Pi_{\mu \nu}(p) \equiv i \int \mathrm{~d} x e^{i p x}\langle\Omega| T\left\{j_{\mu}(x) j_{\nu}(0)^{\dagger}\right\}|\Omega\rangle$
(Only consider vector correlator)

Use Finite Energy Sum Rule (FESR) to relate experiment and theory (Cauchy's theorem)

$$
\frac{1}{s_{0}} \int_{0}^{s_{0}} d s w(s) \rho(s)=-\frac{1}{2 \pi i} \oint_{|s|=s_{0}} d s w(s) \Pi(s) \sim \delta_{W}^{\text {tree }}+\delta_{W}^{(0)}\left(s_{0}\right)+\sum_{d \geq 4} \delta_{W, V / A}^{(d)}\left(s_{0}\right)+\delta_{W, V / A}^{(\mathrm{DV})}\left(s_{0}\right)
$$

Perturbative contribution:
(Coefficients known up to $\mathcal{O}\left(\alpha_{s}^{4}\right)$)

$$
\Pi^{(0)}(s) \sim \sum_{n=0}^{\infty}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n} \sum_{k=0}^{n+1} c_{n, k} \ln ^{k}\left(\frac{-s}{\mu^{2}}\right)
$$

$$
\begin{aligned}
& c_{0,1}=c_{1,1}=1, \quad c_{2,1}=1.640 \\
& c_{3,1}=6.371 \quad \text { Gorishnii, Kataev, Larin, ‘9। Surguladze\&Samuel, ‘9। } \\
& c_{4,1}=49.076 \quad \text { Baikov, Chetyrkin, Kühn,‘08 } \\
& c_{5,1}=280 \pm 140 \quad \text { Beneke, Jamin, ‘08 Boito, Masjuan, Oliani, ‘‘8 Caprini, ‘19 }
\end{aligned}
$$

OPE contribution: $\quad \Pi^{\mathrm{OPE}} \sim \sum_{d=4}^{\infty} \frac{\left\langle\mathcal{O}_{d}\right\rangle}{s^{d / 2}} \quad$ Shifman, Vainshtein, Zakharov, ${ }^{\prime} 78$

FOPT and CIPT

Fixed-Order Pt. Th. (FOPT): Fixed ren. scale

$$
\left(x=s / s_{0}\right)
$$

$$
\delta_{W}^{(0), \mathrm{FO}}\left(s_{0}\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{s}\left(s_{0}\right)}{\pi}\right)^{n} \sum_{k=1}^{n} k c_{n, k} \frac{1}{2 \pi i} \oint_{|x|=1} \frac{\mathrm{~d} x}{x} W(x) \ln ^{k}(-x)
$$

Contour-Improved Pt. Th. (CIPT): Running ren. scale $\delta_{W}^{(0), \mathrm{CI}}\left(s_{0}\right)=\sum_{n=1}^{\infty} c_{n, 1} \frac{1}{2 \pi i} \oint_{|x|=1} \frac{\mathrm{~d} x}{x} W(x)\left(\frac{\alpha_{s}\left(-x s_{0}\right)}{\pi}\right)^{n}$

One of the dominant sources of theoretical uncertainty: prescription for setting ren. scale, FOPT/CIPT predictions not compatible

CIPT consistently higher than FOPT

	Pich et al. ‘16	Boito et al. ‘21
FOPT $\left[\alpha_{s}\left(m_{\tau}^{2}\right)\right]$	$0.317(14)$	$0.308(7)$
CIPT $\left[\alpha_{s}\left(m_{\tau}^{2}\right)\right]$	$0.336(17)$	$0.324(9)$

Motivation for a new scheme

Hoang, Regner '20'21

Conclusions from Hoang, Regner:

1. CIPT/FOPT have different IR sensitivity \Rightarrow NP corrections differ
2. CIPT inconsistent with standard OPE in presence of IR renormalons in Π (or D) \square

Asymptotic separation \equiv Discrepancy of CIPT to FOPT at asymptotically large orders

$$
\sim\left(\frac{\Lambda_{\mathrm{QCD}}^{d}}{s_{0}^{d / 2}}\right) \text { for an } \mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{d}\right) \text { IR renormalon }
$$

3. Effect dominated by GC renormalon

- Starting Point of this work:

CIPT can be (largely) cured when the GC renormalon is subtracted
Analogy: quark pole mass \rightarrow short-distance mass (MSR, PS, RS,1S)

Renormalon-Free Gluon Condensate Scheme

MBR, Boito, Hoang, Jamin, JHEP 07 (2022) 016
Original OPE approach (' $\overline{\mathrm{MS}}$ ' OPE):
Barred quantities $\equiv C$-scheme coupling (Boito, Jamin, Miravtllas, '16)

$$
\frac{1}{4 \pi^{2}}[1+D(s)] \equiv-s \frac{\mathrm{~d}}{\mathrm{~d} s} \Pi(s)
$$

$$
\left\langle\bar{G}^{2}\right\rangle=\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle
$$

$$
D(s) \sim \sum_{\ell} c_{\ell} \bar{a}^{\ell}(s) \quad+\# \frac{\left\langle\bar{G}^{2}\right\rangle}{s^{2}}+\ldots
$$

$$
\bar{a}_{Q} \equiv \frac{\beta_{0} \bar{\alpha}_{s}\left(Q^{2}\right)}{4 \pi}
$$

GC renormalon contribution
Cancellation of renormalon numerically by renormalon behavior of GC

GC renormalon in QCD

$$
\left.B[\hat{D}](u) \sim \frac{N_{g}}{(2-u)^{1+4 \hat{b}_{1}}} \xrightarrow{\begin{array}{c}
\text { GC renormalon } \\
\text { contr. to pert. series }
\end{array}} c_{\ell} \sim r_{\ell}^{(4,0)} \bar{a}_{Q}^{\ell} \sim N_{g} \frac{(\ell-1)!}{2^{\ell}} \bar{a}_{Q}^{\ell} \quad \hat{b}_{\ell}^{(4,0)}=\left(\frac{1}{2}\right)^{\ell+4 \hat{b}_{1}} \frac{\Gamma\left(\ell+4 \hat{b}_{1}\right)}{\Gamma\left(1+4 \hat{b}_{1}\right)}\right) \frac{\beta_{1}}{2 \beta_{0}^{2}}
$$

Renormalon-Free Gluon Condensate Scheme

MBR, Boito, Hoang, Jamin, JHEP 07 (2022) 016

Define IR-subtracted scheme for GC
In analogy to RS scheme for quark mass advocated in Pineda '01

$$
\begin{aligned}
& \left\langle\bar{G}^{2}\right\rangle \equiv\left\langle G^{2}\right\rangle\left(R^{2}\right)-\left(R^{4}\right) \sum_{\ell=1} N_{g} r_{\ell}^{(4,0)} \bar{a}_{R}^{\ell} \\
& \text { IR factorization scale }
\end{aligned}
$$

Leads to modified GC contribution $\longrightarrow B\left[\hat{D}^{\mathrm{RF}}\left(-Q^{2}\right)\right](u) \sim N_{g} \int_{0}^{\infty} d u\left[\frac{e^{-\frac{u}{a_{Q}}}}{(2-u)^{1+4 \hat{b}_{1}}}-\frac{R^{4}}{Q^{4}} \frac{e^{-\frac{u}{a_{R}}}}{(2-u)^{1+4 \hat{b}_{1}}}\right]$ Ambiguity free!

More convenient to work with scale invariant GC

$$
\begin{array}{cc}
\left\langle\bar{G}^{2}\right\rangle \equiv\left\langle G^{2}\right\rangle^{\mathrm{RF}}-R^{4} \sum_{\ell=1}^{n} N_{g} r_{\ell}^{(4,0)} \bar{a}_{R}^{\ell}+N_{g} \bar{c}_{0}\left(R^{2}\right) & \bar{c}_{0}\left(R^{2}\right) \equiv R^{4} \mathrm{PV} \int_{0}^{\infty} \frac{\mathrm{d} u e^{-\frac{u}{a_{R}}}}{(2-u)^{1+4 \bar{b}_{1}}} \\
R \text {-dependence cancels } & \text { Treated as 'tree level' contribution }
\end{array}
$$

Expand consistently in $\alpha_{s}\left(\mu^{2}\right)$ at a common renormalization scale μ

Borel model study

MBR, Boito, Hoang, Jamin, JHEP 07 (2022) 016
Take pure GC renormalon model

$$
\begin{array}{rlr}
B(u) & \sim \frac{1}{(2-u)^{1+4 \hat{b}_{1}}} \\
\longrightarrow \hat{D}^{\operatorname{model}}(s) & =\sum_{\ell=1}^{\infty} r_{\ell}^{(4,0)} \bar{a}^{\ell}(-s) & N_{g}=1
\end{array}
$$

Use GC suppressed moment

Renormalon-Free Gluon Condensate Scheme

MBR, Boito, Hoang, Jamin, JHEP 07 (2022) 016
Use Multi-Renormalon model (MRM) ($\left.N_{g}=0.64\right)$
Beneke, Jamin ‘08

Observations:

- Discrepancy between CIPT/FOPT removed in RF GC scheme
- CIPT/FOPT consistent within ren. scale variation errors already at $\mathcal{O}\left(\alpha_{s}^{5}\right)$

Renormalon-Free Gluon Condensate Scheme

MBR, Boito, Hoang, Jamin, JHEP 07 (2022) 016
Use Multi-Renormalon model (MRM) ($\left.N_{g}=0.64\right)$
Beneke, Jamin ‘08

Observations:

- Discrepancy between CIPT/FOPT removed in RF GC scheme
- CIPT/FOPT consistent within ren. scale variation errors already at $\mathcal{O}\left(\alpha_{s}^{5}\right)$

Determination of the norm of the GC

MBR, Boito, Hoang, Jamin, 2207.01116

Determine norm in three different ways:
Varying the Borel Model
Beneke, Jamin '08
Use conformal mapping methods
Lee '12 Caprini, Fischer '09
Optimal subtraction approach

Borel Model approach:

Beneke, Jamin '08

$$
\begin{array}{ll}
\qquad B[\hat{D}(s)]_{\mathrm{mr}}(u)=b^{(0)}+b^{(1)} u+\frac{2 \pi^{2}}{3} \frac{N_{g}\left[1-\frac{22}{81} \bar{a}(-s)\right]}{(2-u)^{1+4 \hat{b}_{1}}}+\frac{N_{6}}{(3-u)^{1+6 \hat{b}_{1}}}+\frac{N_{-2}}{(1+u)^{2-2 \hat{b}_{1}}} \\
c_{0,1}=c_{1,1}=1, \quad c_{2,1}=1.640 & \\
c_{3,1}=6.371 & \quad \text { Result we obtain using this method: } \\
c_{4,1}=49.076 & \\
c_{5,1}=280 \pm 140 & \\
& N_{g}=0.64 \pm 0.27
\end{array}
$$

Determination of the norm of the GC

MBR, Boito, Hoang, Jamin, 2207.01116

Determine norm in three different ways:

Varying the Borel Model
Beneke, Jamin '08
Use conformal mapping methods
Lee '12 Caprini, Fischer "09

Optimal subtraction approach

Conformal mapping method:

Lee '12 Caprini, Fischer '09
Consider the function

$$
\tilde{B}(u) \equiv \frac{3(2-u)^{1+4 \hat{b}_{1}}}{2 \pi^{2}} B[\hat{D}(s)](u)
$$

Idea: Apply conformal transformations such that
$\mathrm{u}=2$ closest singularity to the origin in the w-plane

$$
w(u, p)=\frac{\sqrt{1+u}-\sqrt{1-\frac{u}{p}}}{\sqrt{1+u}+\sqrt{1-\frac{u}{p}}} \quad \longrightarrow \quad N_{g}=\tilde{B}(w(2, p))
$$

Results for N_{g} we obtain using this method:

	$w(u, 5)$	$w(u, 10)$	$w(u, 15)$
$\mathcal{O}\left(\alpha_{s}^{4}\right)$	0.57	0.47	0.45
$\mathcal{O}\left(\alpha_{s}^{5}\right)$	0.72 ± 0.24	0.63 ± 0.17	0.60 ± 0.15

Determination of the norm of the GC

Determine norm in three different ways:

$$
\xi=2, \sqrt{s_{0}}=m_{\tau}
$$

Varying the Borel Model
Beneke, Jamin '08
Use conformal mapping methods
Lee '12 Caprini, Fischer '09
Optimal subtraction approach

Optimal subtraction approach:

- Construct a suitable χ^{2} - type function
- Improvements from RF GC scheme provide quantitative measure for χ^{2} - function

The RF GC scheme in strong coupling determinations
 MBR, Boito, Hoang, Jamin, 2207.01116

Strategy:

Repeat in detail two state-of-the-art determination methods in the RF GC scheme:

- Truncated OPE approach Pich, Rodriguez-Sanchez '16
\Rightarrow Duality violation model approach Boito, Golterman, Maltman, Peris, Rodrigues, Schaaf ‘21

Observations:

- In contrast to original $\overline{\mathrm{MS}} \mathrm{GC}$ scheme determinations we obtain consistent results in the RG GC scheme
- CIPT becomes consistent with FOPT
- Additional errors from IR factorization scale variation as well as uncertainty related to norm of GC have minor impact on error of the strong coupling

Summary:

- Introduction of RF GC scheme
- In RF GC scheme, size of discrepancy between FOPT and CIPT strongly reduced
- In original ' $\overline{\mathrm{MS}}$ ' GC scheme, CIPT not compatible with standard OPE
- In RF GC scheme, inconsistency of CIPT w.r.t. standard OPE largely 'cured'
- Strong coupling extractions based on FOPT/CIPT in RF GC scheme lead to compatible results in contrast to using original MS GC scheme

Back-up

IR factorization scale variation in the RF GC scheme

MBR, Boito, Hoang, Jamin, JHEP 07 (2022) 016
Use MRM ($N_{g}=0.64$)
Beneke, Jamin ‘08

Results for GC norm from Optimal subtraction approach

MBR, Boito, Hoang, Jamin, 2207.01116

Conformal mapping approach:

	$w(u, 5)$	$w(u, 10)$	$w(u, 15)$
$\mathcal{O}\left(\alpha_{s}^{4}\right)$	0.57	0.47	0.45
$\mathcal{O}\left(\alpha_{s}^{5}\right)$	0.72 ± 0.24	0.63 ± 0.17	0.60 ± 0.15

$$
w(u, p)=\frac{\sqrt{1+u}-\sqrt{1-\frac{u}{p}}}{\sqrt{1+u}+\sqrt{1-\frac{u}{p}}}
$$

Optimal subtraction approach:

	$\sqrt{s_{0}}=m_{\tau}$	$\sqrt{s_{0}}=3 \mathrm{GeV}$
$m=4(\xi=1)$	0.60 ± 0.20	0.51 ± 0.17
$m=4(\xi=2)$	0.54 ± 0.21	0.55 ± 0.11
$m=5(\xi=1)$	0.64 ± 0.16	0.50 ± 0.19
$m=5(\xi=2)$	0.59 ± 0.18	0.52 ± 0.15

Envelope of $\mathcal{O}\left(\alpha_{s}^{4}\right)$ results our final result

$$
N_{g}=0.57 \pm 0.23
$$

Construction of the Optimal subtraction approach

MBR, Boito, Hoang, Jamin, 2207.01116
Perturbative series in RF GC scheme

$$
\delta_{w, m}^{(0), \mathrm{FO} / \mathrm{CI}}\left(N_{g}, s_{0} ; \alpha_{s}\left(s_{0}\right)\right)=\sum_{n=0}^{m} r_{w, n}^{\mathrm{FO} / \mathrm{CI}}\left(N_{g}, R^{2}, \xi ; s_{0}, \alpha_{s}\left(s_{0}\right)\right)
$$

Consider five GC suppressing (GCS) and enhancing (GCE) moments separately

$$
\begin{aligned}
& \chi_{m, \mathrm{GCS}}^{2}\left(N_{g}\right)=\sum_{i}\left(\delta_{w_{i}, m}^{(0), \mathrm{CI}}\left(N_{g}\right)-\delta_{w_{i}, m}^{(0), \mathrm{FO}}\left(N_{g}\right)\right)^{2} \\
& \chi_{m, \mathrm{GCE}}^{2}\left(N_{g}\right)=\sum_{i}\left(r_{w_{i}, m}^{\mathrm{FO}}\left(N_{g}\right)-r_{w_{i}, m-1}^{\mathrm{FO}}\left(N_{g}\right)\right)^{2}
\end{aligned}
$$

Vary IR factorization scale between

$$
\begin{aligned}
& w_{1}(x)=1-3 x^{2}+2 x^{3} \\
& w_{2}(x)=1-4 x^{3}+3 x^{4} \\
& w_{3}(x)=1-5 x^{4}+4 x^{5} \\
& w_{4}(x)=1-6 x^{5}+5 x^{6} \\
& w_{5}(x)=1-7 x^{6}+6 x^{7}
\end{aligned}
$$

GCS
$0.7 \sqrt{s_{0}} \leq R \leq \sqrt{s_{0}}$ to obtain error estimate for norm of GC

$$
\begin{gathered}
w_{6}(x)=\frac{3}{2}(1-x)^{2}=\frac{3}{2}-3 x+\frac{3 x^{2}}{2} \\
w_{7}(x)=(1-x)^{2}\left(\frac{13}{12}+\frac{5 x}{3}\right)=\frac{13}{12}-\frac{x}{2}-\frac{9 x^{2}}{4}+\frac{5 x^{3}}{3} \\
w_{8}(x)=\frac{1}{2}(1-x)^{2}(5-8 x)=\frac{5}{2}-9 x+\frac{21 x^{2}}{2}-4 x^{3} \\
w_{9}(x)=(1-x)^{2}\left(\frac{3}{2}+x-3 x^{2}+x^{3}\right)=\frac{3}{2}-2 x-\frac{7 x^{2}}{2}+8 x^{3}-5 x^{4}+x^{5} \\
w_{10}(x)=(1-x)\left(1-\frac{x^{3}}{2}+\frac{3 x^{4}}{4}\right)=1-x-\frac{x^{3}}{2}+\frac{5 x^{4}}{4}-\frac{3 x^{5}}{4} \\
\text { GCE }
\end{gathered}
$$

Final χ^{2} - type function: $\quad \chi_{m}^{2}\left(N_{g}\right)=\chi_{m, \mathrm{GCS}}^{2}\left(N_{g}\right)+\chi_{m, \mathrm{GCE}}^{2}\left(N_{g}\right)$
Sum GCS and GCE χ^{2} - type functions and average over results \rightarrow final value at each m

