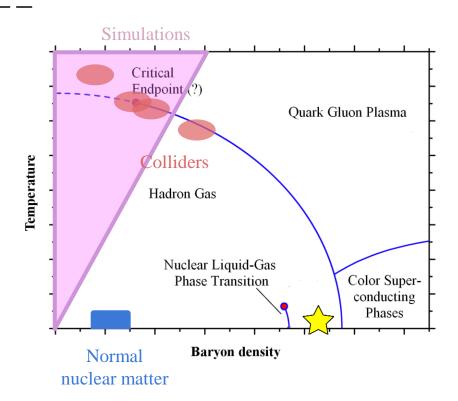
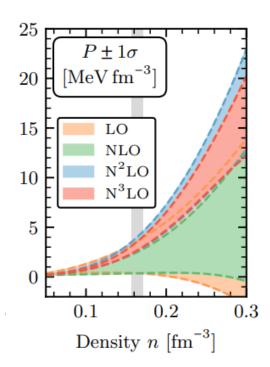
What neutron stars tell about phase transitions in QCD

János Takátsy QCD Master Class, 2023.06.08.

Why study neutron stars?





Basic properties of neutron stars

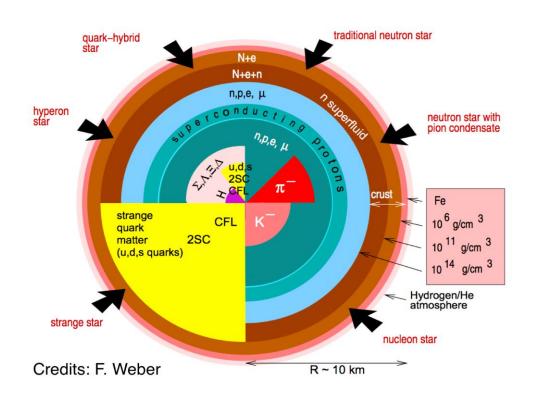
Size: $R \sim 10 \text{ km}$

Mass: $M = 1.2 M_{\odot} - 2.3 M_{\odot}$

$$\rightarrow \rho \cong 5 \cdot 10^{17} \text{ kg/m}^3$$

Strong magnetic field: 10⁴ - 10¹¹ T (16 T in laboratory)

Fast rotation (rotational period can be as low as several ms)



Tolman-Oppenheimer-Volkoff equation

Spherically symmetric metric: $ds^2 = e^{2\nu(r)}dt^2 - e^{2\lambda(r)}dr^2 - r^2(d\theta^2 + \sin^2\theta d\phi^2)$

Einstein's equations (ideal fluid): $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}$

$$T_{\mu
u}=(p+arepsilon)u_{\mu}u_{
u}-pg_{\mu
u}$$

After fiddling with the equations one can get:

$$\left[rac{\mathrm{d}p}{\mathrm{d}r} = -[arepsilon(r)+p(r)]rac{M(r)+4\pi r^3p(r)}{r^2-2M(r)r}
ight]$$

$$e^{-2\lambda}=1+rac{2M(r)}{r}\equiv 1+rac{2}{r}\int\limits_{0}^{r}4\pi r^{2}arepsilon(r)\mathrm{d}r$$

The mass-radius relation

$$\left[rac{\mathrm{d}p}{\mathrm{d}r} = -[arepsilon(r)+p(r)]rac{M(r)+4\pi r^3p(r)}{r^2-2M(r)r}
ight]$$

How to get a mass radius relation:

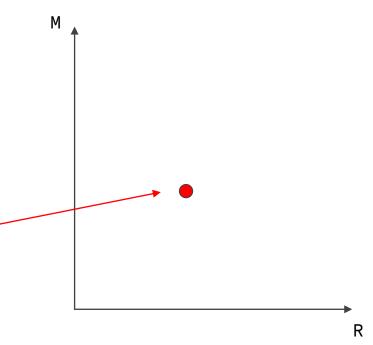
- \rightarrow get an equation of state p(ϵ)
- \rightarrow start with a specific central density: ε_c , p_c , M(0) = 0
- \rightarrow integrate the TOV equations until p(R) = 0 \rightarrow R is the radius of the NS
- \rightarrow M(R) is the mass of the NS
- \rightarrow change ε_c and repeat \rightarrow M-R relation

The mass-radius relation

$$\left[rac{\mathrm{d}p}{\mathrm{d}r} = -[arepsilon(r)+p(r)]rac{M(r)+4\pi r^3p(r)}{r^2-2M(r)r}
ight]$$

How to get a mass radius relation:

- \rightarrow get an equation of state p(ϵ)
- \rightarrow start with a specific central density: ε_c , p_c , M(0) = 0
- \rightarrow integrate the TOV equations until p(R) = 0 \rightarrow R is the radius of the NS
- \rightarrow M(R) is the mass of the NS
- \rightarrow change ε_c and repeat \rightarrow M-R relation

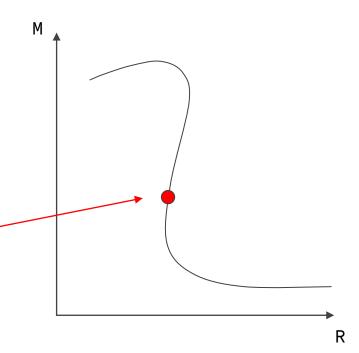


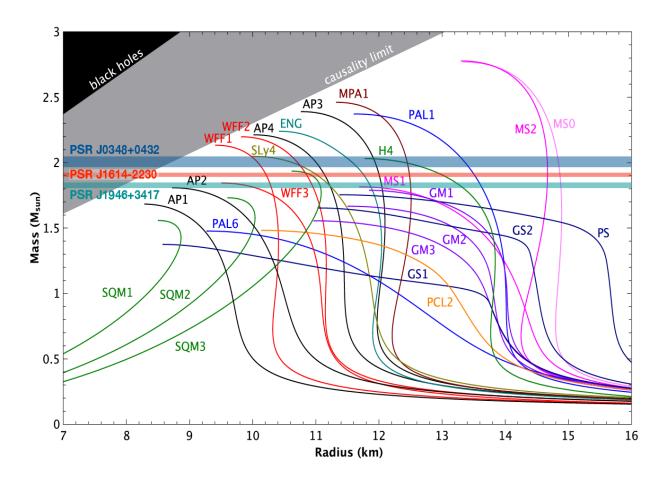
The mass-radius relation

$$oxed{rac{\mathrm{d}p}{\mathrm{d}r} = -[arepsilon(r) + p(r)]rac{M(r) + 4\pi r^3 p(r)}{r^2 - 2M(r)r}}$$

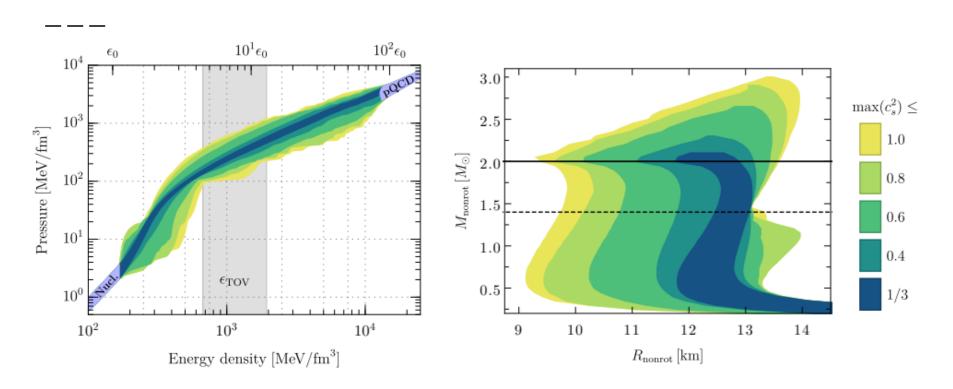
How to get a mass radius relation:

- \rightarrow get an equation of state p(ϵ)
- \rightarrow start with a specific central density: ε_c , p_c , M(0) = 0
- \rightarrow integrate the TOV equations until p(R) = 0 \rightarrow R is the radius of the NS
- \rightarrow M(R) is the mass of the NS
- \rightarrow change ε_c and repeat \rightarrow M-R relation





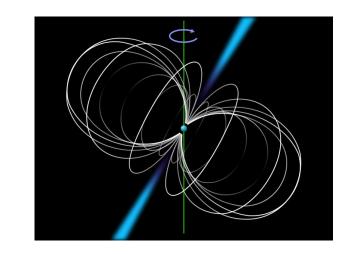
Neutron star EoS constraints

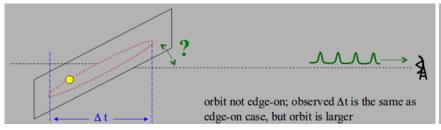


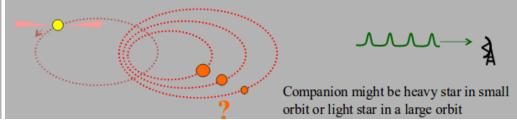
Source: E. Annala, et al., Phys.Rev.X 12 (2022) 1, 011058

Mass measurement

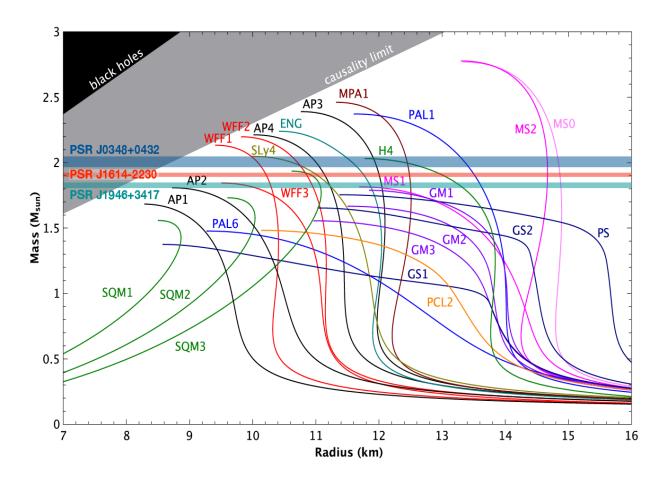
- ____
- → Pulsars in binary systems + Doppler shift
- → Degeneracies → only projected semi-major axis



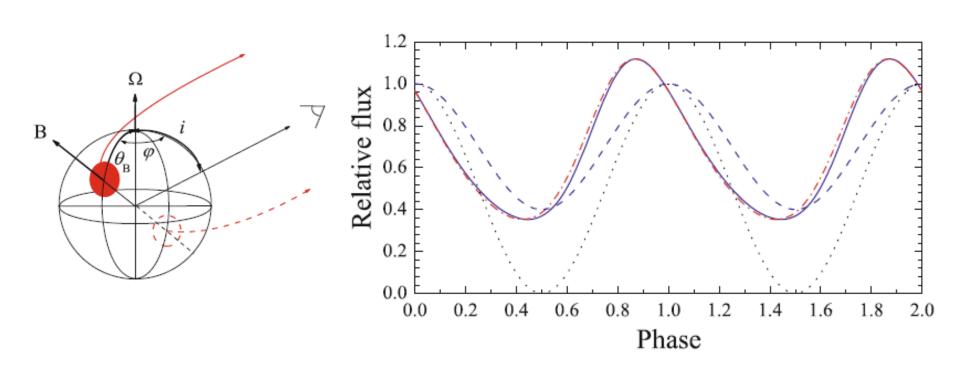




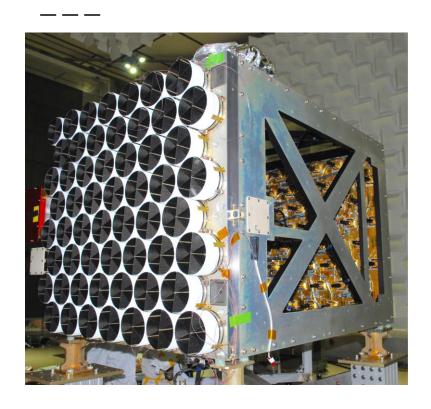
 \rightarrow Observation of the companion object: another pulsar, white dwarf (+X-ray binaries)

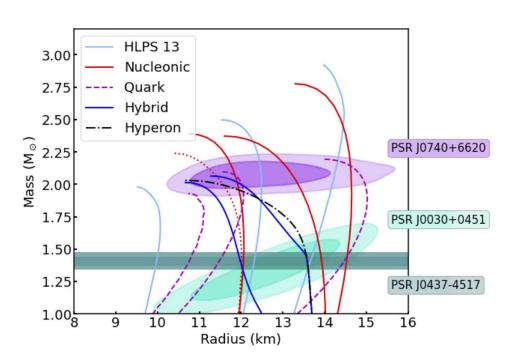


Radius measurement: pulse profile modeling

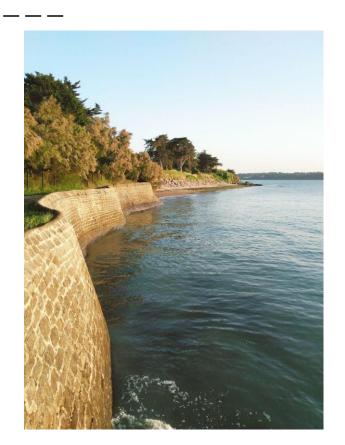


NICER measurements





Tidal deformability

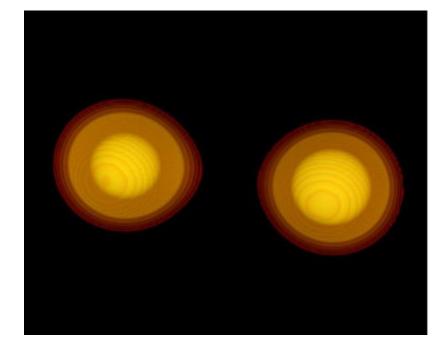


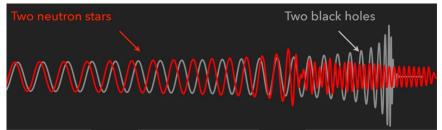
Tidal deformability

- → neutron stars have physical extension
- → they can be deformed by external tidal fields

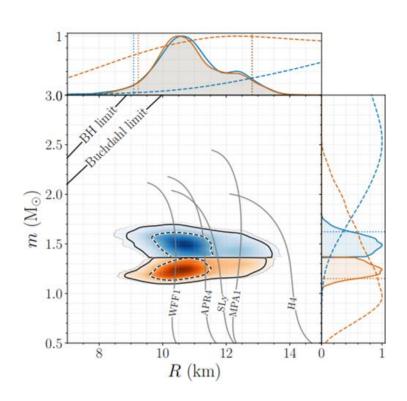
In the inspiral phase, far from the merger tidal effects cause a phase shift in the gravitational wave signal:

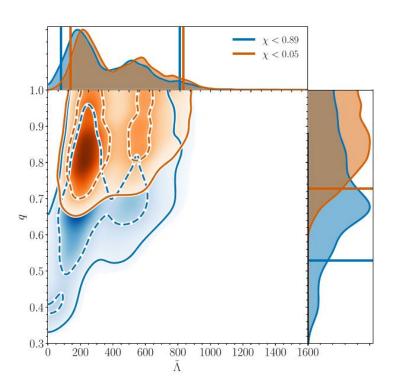
$$\delta\Psi \propto ilde{\Lambda} f^{\,5/3}$$





GW170817



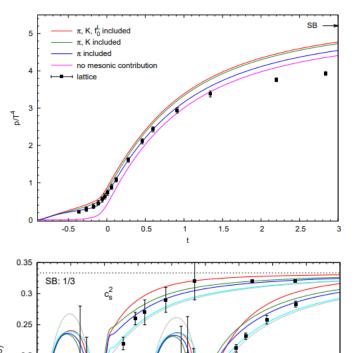


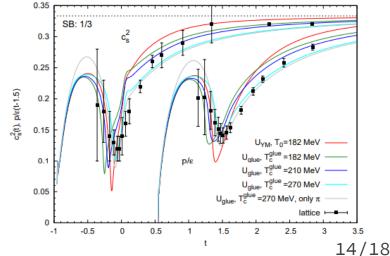
The constituent quark model

We use the (axial)vector meson extended linear sigma model

→ SU(3) constituent quark-meson model
with the complete (pseudo)scalar and
(axial)vector meson nonets

→ parameterized with meson vacuum
masses and decay widths



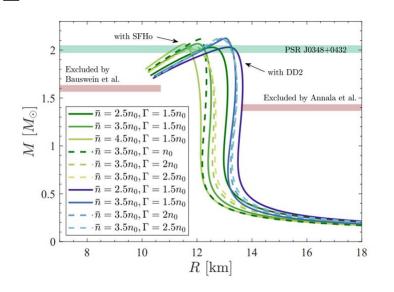


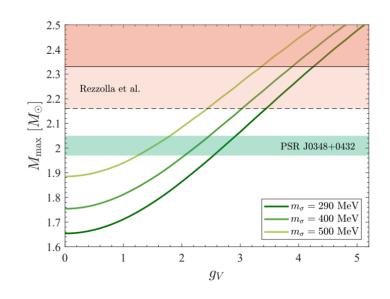
Hybrid equation of state

Hybrid stars also have a hadronic crust and outer core:

- > we apply a smooth connection between the two phases: $\hookrightarrow \varepsilon(n_B)$ interpolation with polynomial
- ▶ we have 4 tunable parameters: \hookrightarrow 2 from the constituent quark model: m_σ , g_V \hookrightarrow 2 describing the concatenation: \tilde{n} , Γ

Constraint from maximum mass of neutron stars

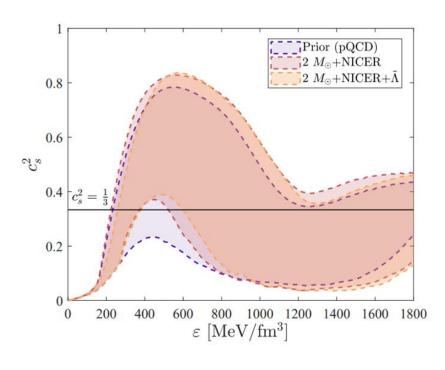


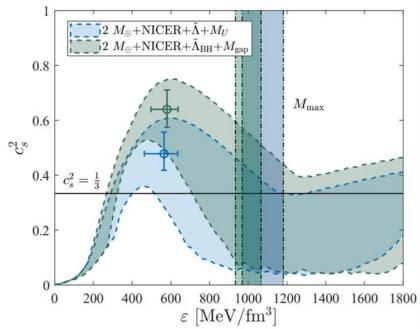


- → maximum mass mostly depend on quark model parameters
- \hookrightarrow with m_{σ}=290 MeV g_V is constrained to 2.5 < g_V < 4.3

Speed of sound peak

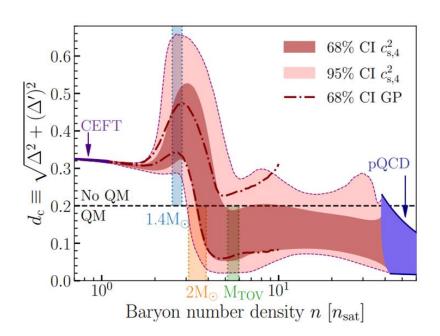
$$c_s^2=rac{\mathrm{d}p}{\mathrm{d}arepsilon}$$



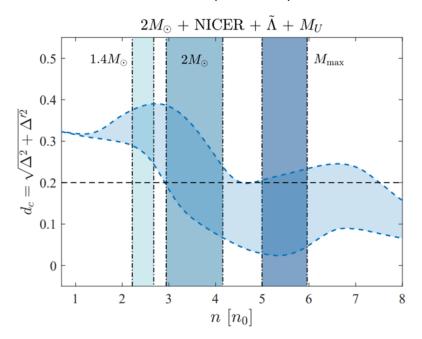


Conformality

$$\Delta = \frac{1}{3} - \frac{p}{\varepsilon}$$



$$\Delta' = rac{\mathrm{d}\Delta}{\mathrm{d}\,\lnarepsilon} = c_s^2\left(rac{1}{\gamma}-1
ight)$$



Source: E. Annala, et al., arXiv:2303.11356

Thank you for your attention!

Some references

- [1] T. Hinderer, The Astrophysical Journal 677, 1216 (2008)
- [2] S. Postnikov, M. Prakash, Phys. Rev. D 82, 024016 (2010)
- [3] K. Yagi, N. Yunes, Physics Reports 681, 1 (2017)
- [4] T. Hinderer, et al., Phys. Rev. D 81, 123016 (2010)
- [5] B. P. Abbott, et al., Phys. Rev. Lett. 121, 161101 (2018)
- [6] B. P. Abbott, et al., Astrophysical Journal Letters 892, L3 (2020)

Backup slides

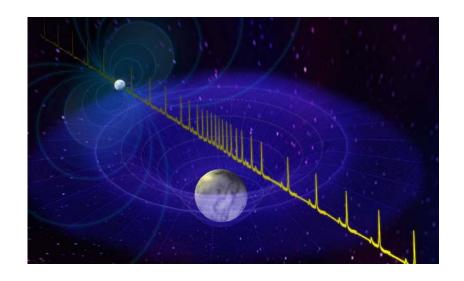
Mass measurement

Two other measurements:

- 1) Projected semi-major axis of the companion star → mass ratio
- a) White dwarf \rightarrow optical measurements
- b) Another pulsar
- 2.1) Eclipses \rightarrow observed edge-on
- 2.2) Independent mass measurement of the companion: Shapiro-delay
- 2.3) Relativistic effects: precession, gravitational radiation

$$f_{\rm ns} = \left(\frac{2\pi}{P_{\rm orb}}\right)^2 \frac{(a_{\rm ns}\sin i)^3}{G} = \frac{(M_{\rm c}\sin i)^3}{M_{\rm T}^2}$$

$$q = \frac{M}{M_{\rm c}} = \frac{(a_{\rm c} \sin i)}{(a_{\rm ns} \sin i)}$$

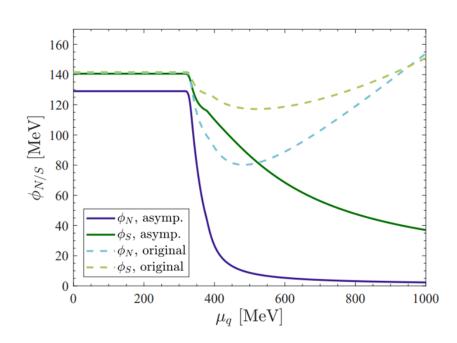


Vector condensates and asymptotic behaviour

For arbitrary parametrization chiral symmetry is not restored at high density.

 \hookrightarrow we need to include this extra requirement

Increasing the vector coupling, the phase transition turns into a crossover $(g_V>3.1)$

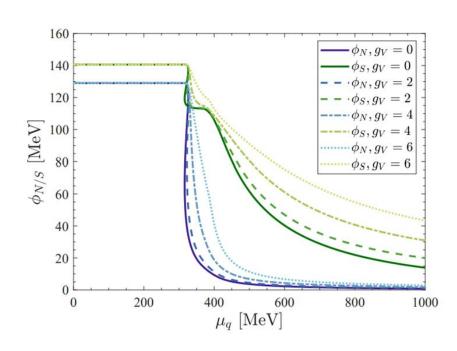


Vector condensates and asymptotic behaviour

For arbitrary parametrization chiral symmetry is not restored at high density.

 \hookrightarrow we need to include this extra requirement

Increasing the vector coupling, the phase transition turns into a crossover $(g_V>3.1)$

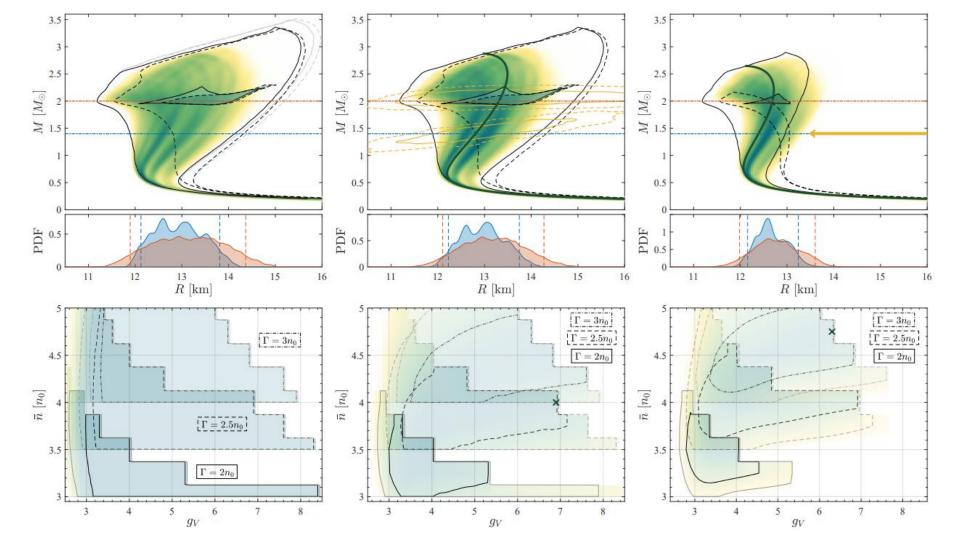


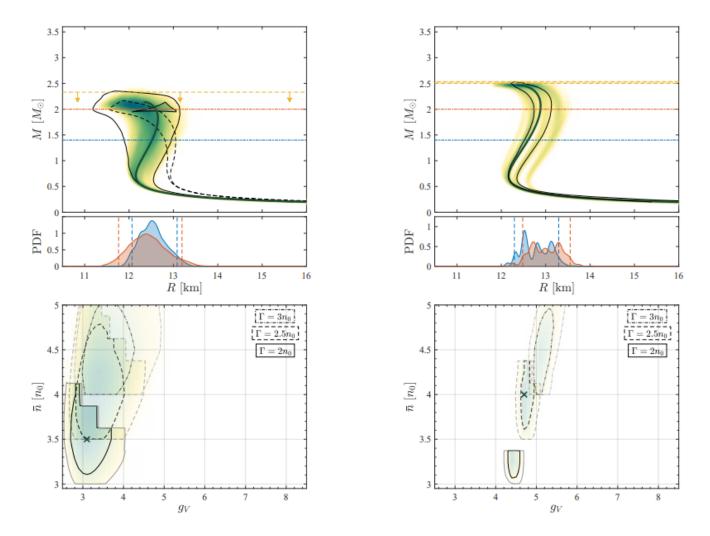
Bayesian analysis

Bayes' theorem:

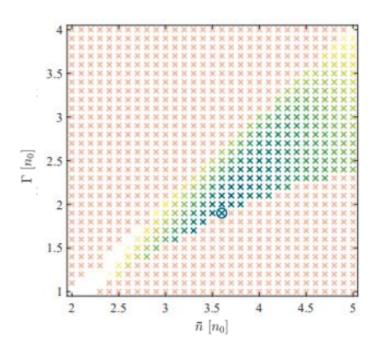
$$egin{aligned} p(artheta| ext{data}) &= rac{p(ext{data}|artheta)p(artheta)}{p(ext{data})} \ p(ext{data}|artheta) &= p(M_{ ext{max}}|artheta)p(ext{NICER}|artheta)p(ilde{\Lambda}|artheta) \end{aligned}$$

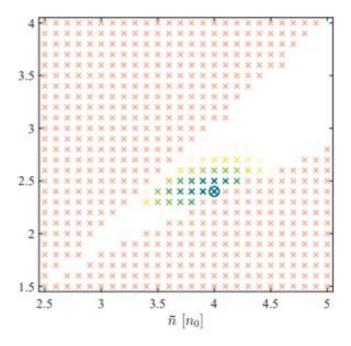
- → Mass-radius probability densities from observations of PSR J0030+0451 and PSR J0740+6620 with NICER
- → Tidal deformability data from LVC for GW170817 +
 constraint from no prompt collapse to BH
- Upper mass constraint from hypermassive NS hypothesis





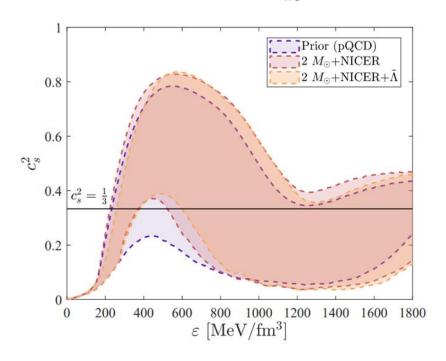
Constraints on concatenation parameters





Speed of sound peak

$$c_s^2=rac{\mathrm{d}p}{\mathrm{d}arepsilon}$$



$$\Delta = \frac{1}{3} - \frac{p}{\varepsilon}$$

