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Quark-gluon plasma

It is a deconfined phase on the QCD phase diagram [1].
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Quarkonia

They are heavy quark-antiquark (qq̄) bound states [2].
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Why quarkonia as a probe
1 Hard scale: quarkonia mass.
2 Small radius: harder to dissociate from color screening than

light quark matter.

∆EJ/ψ = 2MD −MJ/ψ ≈ 0.6 GeV≫ ΛQCD ≈ 0.2 GeV. (1)
3 Well-known probe.
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Notation disclaimer

Open Quantum System −→ we divide
the full quantum system (T) into well-
differentiated parts: the subsystem (S)
and the environment (E) [3].
Main character −→ density matrix, ρ:

ρ = pi
∑

i
|ψi⟩ ⟨ψi | . (2)

Observables −→ ⟨O⟩ = Tr{ρO}

Hamiltonian:
HT = HS ⊗ IE + IS ⊗ HE + HI , where HI = VS ⊗ VE .

Evolution: the Liouville - von Neumann equation.

d
dt ρT = −i [HT , ρT ]. (3)
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Steps to be taken

From Liouville-von Neumann’s equation we can take the following
steps:

1 Divide DoF into subsystem + background.
2 Trace out the environmental DoF −→ loss of unitarity.
3 Make some further assumptions.
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The assumptions

1 Born approximation −→ weakly interacting system.

ρT (t) ≈ ρS(t)⊗ ρE (t) ≈ ρS(t)⊗ ρE (0) (4)

2 Markov approximation −→ no memory on the system (we
could extend our integral up to minus infinity without
affecting the result).

(0, t) −→ (−∞, t) (5)

3 Born-Oppenheimer approximation −→ the light degrees of
freedom of the plasma accommodate very fast to changes
produced by quarkonia (∼ atomic physics).
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These approximations also refer to the characteristic timescales τi
of the different parts of the system, namely:

τS = 1/E , τE ∼ 1/T , τR ∼ M/T 2. (6)

Here E is the binding energy of the state, T is the temperature, M
the particle mass and g the coupling constant.

We look for the regime where:

τE ≪ τR −→ Born and Markov approximations, (7)

τE ≪ τS −→ Born-Oppenheimer approximation. (8)
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As a result, after some rearranging, we get the Lindblad equation:

dρS(t)
dt = −i [HS(t), ρS(t)] +

∑
k
γk

(
AkρSA†

k −
1
2{A

†
kAk , ρS(t)}

)
, (9)

where, at least at first order, Ak ≈ VS(t) + i
4T

dVS(t)
dt is called the

Lindblad operator [4].

Conceptually, Lindblad operators are going to produce jumps
between states (modifying the internal quantum numbers of the
system). Thus, they are also called jump operators.
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How to retrieve information: quantum trajectories
1 Projecting ρS(t) into spherical harmonics.
2 Also, split into the singlet-octet colour basis.

ρS(t) = diag(ρsing ,s
S , ρoct,s

S , ρsing ,p
S , ρoct,p

S ) (10)

Great computational advantage: 3D −→ 1D ·Y ℓ
m(θ, ϕ).

We compact the free subsystem hamiltonian with the 1-loop
contributions, H1−loop [4, 5, 6]. This is a non-hermitian
hamiltonian.

Heff = HS + H1−loop = HS −
i
2

∑
k
γkA†

kAk (11)
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Description of the algorithm

1 Non-hermitian hamiltonian evolution step is performed. Its
non-unitarity makes the norm of the state decrease.

|⟨ψ(t1)|ψ(t1)⟩| > |⟨ψ(t2)|ψ(t2)⟩|, where t1 < t2 (12)

2 A random number decides if the jump is performed. The state
will normally evolve until the norm goes below this random
number.

When |⟨ψ(t)|ψ(t)⟩| < Random Number −→ jump. (13)

3 From the current state, another random number will decide
the kind of jump done (next slide). We project using the
corresponding jump operator:

|ψnew ⟩ = L̂x (q⃗) |ψold⟩ (14)

4 Renormalize and back again.
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Description of the algorithm
Jump operators must be obtained in a matrix fashion matching
this way of expressing the density matrix. [5]. We would call the
Lindblad operators L̂x (q⃗) from now on.

Decay rate is defined as:

Γ(p)k =
∑

k
Lk(p)L†

k(p).

(15)

Γ(p) =
∑

k
Γ(p)k (16)

The curve depends on the physics of the system −→ the explicit
expression of the Lindblad operators.
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QTRAJ (1.0 + ϵ)

QTRAJ 1.0 [7]: C-based code which simulates through the
quantum trajectories algorithm and shows the relative population
of colour and wave states for quarkonia.

The current potential available compatible with the Lindblad
formalism is the Munich potential. This approach is adequate for a
regime where rT ≪ 1 and is performed with a finite number of
Lindblad operators.

Goal of +ϵ : New potentials −→ Infinite number of Lindblad
operators −→ reach regime where rT ≈ 1.
How?:

1 Adding definitions of new potentials to QTRAJ.
2 Modifying the selection rules ←→ Defining new Lindblad

operators.
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Current efforts

Implementing new potentials, less restrictive, to try to perform up
to rT ≈ 1 [5].

Re{VS(r)}singlet = −CFαs(1/a0)e−mDr

r , (17)

Im{VS(r)}g2T
2π

∫ ∞

0
dx x

(x2 + 1)2

[
1− sin(xrmD)

xrmD

]
(18)

where mD is the Debye mass:

mD =

√
2Nc + Nf

6 gT (19)

This will give a contribution to an infinite number of Lindblad
operators.
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New Lindblad operators:
Lindblad operators are in this framework:

L̂x (q⃗) = Kx

√
∆(q⃗)cs( q⃗ · ˆ⃗r

2 ), (20)

where cs stands for sin
(

q⃗ · ˆ⃗r/2
)

if x ∈ {s → o, o → s, o → o (1)} and

cos ( q⃗·ˆ⃗r
2 ) is x ∈ {o → o (2)}. Using:

e−i k⃗ r⃗ =
∞∑
ℓ=0

(−i)ℓjℓ(kr)Yℓm(k⃗u)Y ∗
ℓ,m(⃗ru), (21)

we get:

L̂x (q⃗) = Kx

√
∆(q⃗)

∞∑
t

ℓ∑
m=−ℓ

jℓ(qr)Y m
ℓ (Ωr ) =

∞∑
t

L̂x
α(q⃗), (22)

where for the case of the cosine α = 2t and for the sine α = 2t + 1.



Context Quantum Trajectories New Implementation Appendix

Slight modification of the algorithm:

The change is in the third step, how selection rules are
implemented:

1 We choose, according to the current state, the kind of
transition that quarkonia will undergo to apply its proper
Lindblad operator:

L̂s−→o(q⃗), L̂o−→s(q⃗), , L̂o−→o(1)(q⃗), L̂o−→o(2)(q⃗). (23)

2 We choose, once the jump channel is known, the value of t of
L̂x

t (q⃗), which we understand it as the virtual angular
momentum of the one gluon exchange.

3 We choose q from its momentum distribution.
4 We apply the Lindblad operator so:

L̂x
t (q⃗) |ψold⟩ = |ψnew ⟩ . (24)
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Behaviour of the jump operators
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Behaviour of the jump operators
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Plots that can be retrieved.

These results are from Strickland’s original code [7].
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Conclusions

1 The inclusion of less restrictive potentials allows the expansion
the regime of validity of the simulations.

2 This means two things: either temperature does not have to
be as high as before for applying this formalism or the small
dipole approximation implicit in the Boltzmann equation is no
longer applied. The latter case is of our greater interest.

3 The new shape of the Lindblad operators depend on the
momentum exchanged with the medium particles. In the
region of interest, ∆J = 1 dominates.

Thank you!
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Approximations: Born approximation

It is a weak coupling between the subsystem and the environment,
HI ≪ 1.

ρT (t) = ρS(t)⊗ ρE (t) + ρcorr (t) ≈ ρS(t)⊗ ρE (t), (25)

where ρcorr is the correlation component between the environment
and the subsystem.

dρT ,I(t)
dt ≈ −

∫ t

0
dτ [HI(t), [HI(τ), ρS,I(τ)⊗ ρE ,I(0)]] (26)
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Approximations: Markov approximation

Taking into account only the current step in order to obtain the
next one ρS,I(τ) −→ ρS,I(t). We will perform the change of
variable τ −→ τ ′ = t − τ so:

τ = 0 −→ τ ′ = t − τ = t
τ = t −→ τ ′ = t − τ = 0
Since the correlation time of the environment is much less
than the average relaxation time of the system we can take
t −→∞.

If we also trace over the environment, we get:

dρS,I(t)
dt ≈ −

∫ ∞

0
dτ trE{[HI(t), [HI(t − τ), ρS,I(t)⊗ ρE ,I(0)]]}.

(27)
Redfield equation.
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Approximations: Born-Oppenheimer approximation

The environmental degrees of freedom move much faster than the
quarkonium so effectively they instantly change to any changes
that the quarkonium may induce.

VS(t − s) ≈ VS(t)− s dVS(t)
dt + · · · = VS(t)− is[HS ,VS(t)] + . . .

(28)
Gradient expansion for Brownian motion.
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