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LECTURE PLAN

. Light-Cone Perturbation Theory, light-cone wave functions

« Classical Small-x Physics:
- DIS in the dipole picture, Glauber-Gribov-Mueller formula
- Black disk limit, parton saturation, saturation scale
- McLerran-Venugopalan model, saturation scale for a nucleus

 Nonlinear small-x evolution:
- Non-linear BK and JIMWLK evolution equations

- Solution of BK and JIMWLK equations, unitarity,
energy dependence of the saturation scale, geometric scaling

- Map of high-energy QCD



GENERAL CONCEPTS

Big goal: understand QCD at high energies.
What is the high-energy asymptotic behavior of QCD?



Running of QCD Coupling Constant
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For short distances x < 0.2 fm, or, equivalently, large momenta k > 1 GeV

the QCD coupling is small o << ] and interactions are weak.



What sets the scale of running QCD coupling in
i high energy collisions?

= “Optimist”: o, =aj (ﬁ) <<1

= Pessimist: o, = aS(AQCD) ~1 we simply can not

tackle high energy scattering in QCD.

= pQCD: only study high-pt particles such that

O zaS(pT)<<l

But: what about total cross section? bulk of particles?



What sets the scale of running QCD coupling in
i high energy collisions?

= Saturation physics is based on the existence of a large internal
momentum scale Qs which grows with both energy s and nuclear atomic
number A

QS2 NA1/3 S/l

such that o, =0 (Qs) <<1

and we can calculate total cross sections, particle spectra and
multiplicities, etc, from first principles.




The main principle

Saturation physics is based on the existence of a large internal
transverse momentum scale Qg which grows with both
decreasing Bjorken x and with increasing nuclear atomic

number A A
Q2 NA1/3 <l>

X

such that

s :aS(QS) <<l

and we can use perturbation theory to calculate total cross
sections, particle spectra and multiplicities, correlations, etc,
from first principles.



Quasi-classical approximation



A. Glauber-Mueller Rescatterings



Kinematics of DIS

electron
e
=

q photon
Xgi P )
proton quarks mesons
or P >_ and —— and
: \)’W\/V gluons baryons
nucleus

_J
» Photon carries 4-momentum q# , its virtuality is

Q* = —quq"

» Photon hits a quark in the proton carrying momentum Xg;p

with p being the proton’ s momentum. Parameter xp; is

the Bjorken x variable. y



Physical Meaning of Q

Uncertainty principle teaches us
that ‘e ~1 fm%‘

ApAl = h

which means that the photon
probes the proton at the
distances of the order (h=1)

AL~ L

Q

Proton

Large Momentum Q = Short Distances Probed
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Physical Meaning of Bjorken x

The quarks and gluons that interact with
the target have their typical momenta on the
order of the typical momentum in the target,

proton
Xpjp = q~m.

XBj P

target

Then the energy of the collision at rest

1
E ~ ~ —
P

High Energy = Small x




Gluons at Small-x

There is a large number of small-x gluons (and quarks) in a proton:

_ xG HERA
10— Q2 =10 GeV2

e
X
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— HERAPDF1.0
10'2 - experimental uncertainty
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G(x, Q?), q(x, Q?) = gluon and quark number densities (q=u,d, or S for sea).
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Gluons and Quarks in the Proton

= There is a huge number of quarks, anti-quarks
and gluons at small-x !

= How do we reconcile this result @
with the picture of the proton @
made up of three valence quarks?

= Qualitatively we

understand that these extra N
quarks and gluons are emitted
by the original three valence

quarks in the proton.
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Dipole picture of DIS

X Xt

W = 34 / dr et (Pl OF) N

41
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iq-x iQ—2:c_—|—z'q ol
e — ¢ 2
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:Ui =
V2

aka the “shock wave”



Dipole picture of
DIS

« At small x, the dominant
contribution to DIS structure
functions does not
come from the handbag
diagram.

 Instead, the dominant terms
comes from the dipole
picture of DIS, where the
virtual photon splits into a
quark-antiquark pair, which
then interacts with the
target.
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Dipole Amplitude

* The total DIS cross section is expressed in terms of the (Im part of the) forward quark dipole
amplitude N:

1

- d?x -
A L g ; 9 .
ol b = g e N v
tot / 5 b1 / c(1—2) ! (71, 2)] (Z1,b1,Y)

0

b is the Fourier conjugate to q

with t = - g%, making the dipole

amplitude N similar to the GPDs
/F at zero skewedness.

b, Y

Gribov, 1970; Bjorken and Kogut, 1973;
Frankfurt, Strikman 1988; Mueller 1990;

Nikolaev and Zakharov 1991 with rapidity Y=In(1/x)



DIS in the Classical Approximation

The DIS process in the rest frame of the target nucleus is shown below.

L L -

* nueleons in the nuclens
oM 2p;, Q%) = [¥7 79 @ N(z,,Y =1Inl/zp;)

with rapidity Y=In(1/x)



Dipole Amplitude

* The quark dipole amplitude is defined by

Nz z) = 1= 5 o [Vie) Vi)

Here we use the Wilson lines along the light-cone direction

ig / de= AT(0", 2™, a:)]

— 0

Ve ="Pexp

In the classical Glauber-Mueller/McLerran-Venugopalan approach the
dipole amplitude resums multiple rescatterings:

I - I - I B




Quasi-classical dipole amplitude

)
g 9 9 g g g
§ § § § § § A.H. Mueller, ‘90

Lowest-order interaction with each nucleon — two gluon exchange — lead to the
following resummation parameter: 2 1/3
a; A

NIRRT
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Quasi-classical dipole amplitude

To resum multiple rescatterings, note that the nucleons are independent
of each other and rescatterings on the nucleons are also independent.

One then writes an equation (Mueller ‘90)

o = " ) e s

Each scattering!

4 CUJ_A

21



DIS in the Classical Approximation

gA 2
The dipole-nucleus amplitude in o1t =2 /d bN(z1,b,,Y)

the classical approximation is

N(z,,Y)=1—exp [_5’314@? In a:jA]
N A.H. Mueller, ‘90
T ~——— Black disk
i ; limit,
saturation i )
: o, <27R
2 Gt
. e
Color — — X,
transparency 1/Qs A

QZ - A1/3 22
S



Black Disk Limit

Start with basic scattering theory: the final and initial states are related by
the S-matrix operator,

[r) = S [4)
writeitas  ug) = [35;) + | — 1] i)
The total cross section is

Otot X ‘ [S‘ — 1] ;)

2
—2- 8- 8

where the forward matrix element of the S-matrix operator is

S = (1] S |4s)

and we have used unitarity of the S-matrix

SSt=1



Black Disk Limit
Nowsince [y} = |o5) + | — 1] |u)

the elastic cross section is
(Wil |5 =1 )
The inelastic cross section can be found via

Otot = Ojnel T Oel
In the end, for scattering with impact parameter b we write

Oror = 2 / d*b[1 — Re S(b)]
Tl = /d%u — S|
st = [ @[t~ I50)P]

2

=1- 8

Oe] X




Unitarity Limit

* Unitarity implies that

1= (] S ST [s) = (i 51X) (X|ST [ep;) > |S|?
* Therefore ‘Sﬁ <1

leading to the unitarity bound on the total cross section

Otor = 2/d2b [1 —ReS(b)] < 4/d2b — 41 R?

* Notice that when S=-1 the inelastic cross section is zero and

2
Ttor = 2 / d®b[1 — Re S(b)] Otot = ATR™ = 0¢y

Op] = /d2b |1 — S(b)‘2 This limit is realized in low-energy scattering!

Cimet = / Pb[1-150)]



Black Disk Limit

At high energy inelastic processes dominate over elastic. Imposing

Oinel = Oel
we get Re S > 0
The bound on the total cross section is (aka the black disk limit)
Oror = 2/d2b[1 —Re S| < 2/d2b — 21 R?

The inelastic and elastic cross sections at the black disk limit are
Tinel = Ol = TR Trot = 2 /d2b [1 — Re S(b)]
Tol = /d%u ~ S|
i = [ @b[1- SO



Notation

* At high energies ImS ~ 0

while the dipole amplitude N is the imaginary part of the T-matrix

(S=1+iT), such that
ReS=1—-—N

* The cross sections are

Otor = Z/deN(mL,bL)
Oel Z/d2bN2<£CJ_,bJ_)
Oinel = /de [QN(ZIJJ_,Z)J_) —NQ(J?J_,[)J_)}

* We see that N=1 is the black disk limit. Hence [\ < ] as we saw above.



DIS in the Classical Approximation

The dipole-nucleus amplitude in
the classical approximation is

2 2
1
N(z, ,Y)=1—exp _3&4@3 In A
N A.H. Mueller, ‘90
T ~——— Black disk
0 limit,
saturation i )
: o, <27R
og <<1 I
xf\\ l
\ |
Color — — X,
1/Qs 1/A

transparency



B. McLerran-Venugopalan Model

29



Gluons at Small-x

There is a large number of small-x gluons (and quarks) in a proton:

_ xG HERA
10— Q2 =10 GeV2

e
X
101
— HERAPDF1.0
10'2 - experimental uncertainty
|:| model uncertainty
- parametrization uncertainty
10'3 Ll Ll 1 Lo 1 \\\
104 103 102 107! 1
X

G(x, Q?), q(x, Q?) = gluon and quark number densities (q=u,d, or S for sea).
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McLerran-Venugopalan Model

o The wave function of a single nucleus has many
small-x quarks and gluons in it.

o In the transverse plane the nucleus is densely packed
with gluons and quarks.

<--.sea gluons
.~ and quarks

nuclens

Large occupation number = Classical Field

31



McLerran-Venugopalan Model

Get A3 density

enhancement
Boost > _
2 1/3
AL/ 0~ 4

* Large gluon density gives a large momentum scale Q, (the saturation
scale): Q.22 ~ # gluons per unit transverse area ~ A3 (nuclear oomph).

e For Qg >> Aqcp, get a theory at weak coupling ay, (Q?) <1
and the leading gluon field is classical.

32



Color Charge Density

1/3
~ A nucleons S| 1

4

Small-x gluon “sees” the whole nucleus coherently J_//
—

in the longitudinal direction! It “sees” many color charges
which form a net effective color charge Q = g (# charges)¥/?, such that Q2= g2
#charges (random walk).

Define color charge density McLerran

2 2
charges A ]
qu _ Q _9 i g ~ 92 o AL/3 ’Vgglu’g;fa an
S1 S S -
such that for a large nucleus (A>>1)

WP o Apep AP > Ao = as(p®) < 1

Nuclear small-x wave function is perturbative! H = Qs

33



Saturation Scale

To argue that Q; ~ A" et us consider an example of a
particle scattering on a nucleus. As it travels through the nucleus it
bumps into nucleons. Along a straight line trajectory it encounters
~ R ~ A3 nucleons, with R the nuclear radius and A the atomic

number of the nucleus.

O Q probe
The particle receives ~ A3 @\ m@\ Q | V’/

~

random kicks. [ts momentum
gets broadened by

Ak ~ VA3 = (Ak)? ~ AY?

nucleons
Saturation scale, as a feature of a collective field

of the whole nucleus also scales ~ A!/3. nucleus 34



McLerran-Venugopalan Model

o To find the classical gluon field A, of the nucleus one has
to solve the non-linear analogue of Maxwell equations -

the Yang-Mills equations, with the nucleus as a source of
the color charge:

D, F* = J# Ap-? o

nucleus is Lorentz contacted into a pancake

Yu. K. "96; J. Jalilian-Marian et al, ‘96
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Classical Field of a Nucleus

nucleus nucleons

non-Abelian Weizszi'cker-Williani/s
field

Here’s one of the diagrams showing the non-Abelian

gluon field of a large nucleus.

The resummation parameter is o2 A3, corresponding to
two gluons per nucleon approximation.

36



Unpolarized WW Gluon TMD

One can calculate the unpolarized gluon TMD with, say, the forward-
pointing (SIDIS) Wilson line staple

2 . “+, - .7 —
G 2N\ — 32 ixPTax™ —ikr-T
f (x’kT)_—xP+(27r)3/dx d°x, e <P

tr [F“'(om[ﬂ [0, z] F“(x*,fl)} ‘P>
In A*=0 gauge, one can choose a sub-gauge eliminating the Wilson line
staple (making it 1), and, since Ftt=0_A" , one obtains

20 Pt . -
fO (@, k%) = —(;;)3 /da:_d%:l el P aT —ikr T, <P

tr [AH(0) Al (z™, 71)] ‘P>

Since the classical (Weizsacker-Williams) A field is known exactly from
solving the Yang-Mills equations, one can directly calculate the gluon TMD
in the classical limit.

This is the WW gluon TMD.



Classical Gluon Field of a Nucleus

Using the obtained classical
gluon field one can construct
corresponding gluon distribution
function (gluon WW TMD):

B,(x,k*) ~ (A(—k)- A(k))

with the field in the A*=0 gauge

¢(x7 k%) = foG(xa k%)

C d?z, |
¢A(w, k%) _ F / 2J_ ez&.z

Qg T T

1 —exp (—

23 Q3
4

In

1
wJ_A

)

J. Jalilian-Marian et al, " 97; Yu. K. and A. Mueller, ‘98

2 1/3
= Qg=p is the saturation scale QS ~A

= Note that ¢~<A, A ,>~1/a such that A ,~1/g, which is what
one would expect for a classical field.



Qg T T

5 _
bz, k) = S /d fL e'BZ |1 — exp (—

= |n the UV limit of k— o,

Xt is small and one obtains

¢A@J%)NL/J%L6E—Q§meA

which is the usual LO result.

= In the IR limit of small kr,
Xt is large and we get
CF / dZZCJ_ eiE'Q

Qg T i
1/Qs

X

qu(.CU, k%) ~

da (X, K’ )

Qs

In —

kr

>kT

AOCD Q S

SATURATION!

Divergence is regularized.
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Classical Gluon Distribution

Ky da(x, kz)

A good object to plot is
the classical gluon TMD
distribution multiplied by
the phase space ky:

A

most partons
.- are here
~k lll Qs/k !
\\\ - /~1/k
\\ \%
\ \
ag <<1

> Kk

as~1 - Agecp Qs know how to do physics here

?2?

= Most gluons in the nuclear wave function have transverse
momentum of the order of k; ~ Qg and Q; ~ A"

= We have a small coupling description of the whole wave
function in the classical approximation.



Summary

We applied the quasi-classical small-x approach to DIS in the dipole
picture, obtaining Glauber-Mueller formula for multiple rescatterings of a

dipole in a nucleus.

We saw that onset of saturation ensures that unitarity (the black disk
limit) is not violated. Saturation is a consequence of unitarity!

We have reviewed the McLerran-Venugopalan model for the small-x wave
function of a large nucleus.

We saw the onset of gluon saturation and the appearance of a large
transverse momentum scale — the saturation scale:

Q2 -~ A1/3



Otot

Summary of the last time
We discussed dipole picture of DIS: qyffh ’

1
d2IJ_ 2 dZ * a "
= YT (E L 2)|?P N(F Y
/ L dbL/Z(l_Z)I (#1.2)P N(@L,bL.Y)
0

We calculated multiple-rescattering of the 1
dipole on a nucleus: 2 g3
05

We discussed the MV model, in which the
gluon field of the proton/nucleus is
classical, such that you can calculate the
WW gluon TMD directly:

2 - T )2 1
gbA(x,k%):&/d#eiﬁ‘ﬁ 1 — exp (_les In 1 )

Qg T

z5 4 z, A
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Small-x evolution equations



Small-x Evolution

* Energy dependence comes in through the long-lived s-channel gluon corrections (higher Fock

states): 1
as Ins~agIn—~1

These extra gluons bring in powers of ag In s, such that when ag<< 1 and Ins>>1 this
parameter is ag In s ~ 1 (leading logarithmic approximation, LLA).



Small-x Evolution: Large N_Limit

How do we resum this cascade of gluons?
The simplification comes from the large-Nc limit, where each gluon becomes a quark-antiquark

pair: 393=108 = N.ON,=1&(N2—1)~N2_1

Gluon cascade becomes a dipole cascade (each color outlines a dipole):

+ + +ee



Notation (Large-N()

o~ L
T \j Real emissions in the

. amplitude squared
.\ L
T = f

_[
1 Fo1

+ j L
g

L
T

Virtual corrections in the amplitude

(wave function) { . & N g + e

L?] 1

(dashed line — all
Glauber-Mueller exchanges
at light-cone time =0)

JLY b

2y S
o
=
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Nonlinear Evolution

To sum up the gluon cascade at large-N. we write the following equation
for the dipole S-matrix:

( L. ® L
1 ‘ f 1 @ f dashed line =

all interactions
= In 1 ~lIns J L QL
x f

I with the target

Remembering that S=1+iT=1- N where N =Im(T) we can rewrite this equation in terms of
the dipole scattering amplitude N.



Nonlinear evolution at large N,

As N=1-S we write

e LJ@L
@ F-4-%F

dashed line =
all interactions
with the target

0 BFKL
ag N, 0 TR '
Oy Nxox, (V) = 9 12 d”xo 33(2)2 1'31 [NXO,XZ(Y) + Ny x; (V) = Nxg x (Y) = Nipx, (Y) Nx X1 (Y]

Balitsky ‘96, Yu.K. "99; beyond large N, JIMWLK evolution, 0.1% correction for the dipole amplitude
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Resummation parameter

BK equation resums powers of

a; N. Y

The Glauber-Mueller/McLerran-Venugopalan initial conditions for it resum powers
of

ai Al/3

Beyond the large-N. limit: use the JIMWLK functional evolution equation (lancu,
Jalilian-Marian, Kovner, Leonidov, McLerran and Weigert, 1997-2002)



JIMWLK: derivation outline

A.H. Mueller, 2001

Start by introducing a weight functional, Wy[a]. Here a=A" is the gluon
field of the target proton or nucleus. «(z7,7) = AT (27 = 0,27, %)

The functional is used to generate expectation values of gluon-field
dependent operators in the target state:

(On)y = /Da O Wy [a]
Imagine that we know small-x evolution for some operator O:
aY <Oa>Y = <’Ca ® Oa>Y - /DO( [,Ca ® Oa:| WY[OC]

On the other hand, we can differentiate the first equation above,
ay <Oa>y = /Da Oa 8}/ Wy[a]
Comparing the last two equations and integrating by parts in the second

to last equation, we will arrive at and equation for the weight functional
Wylal].



JIMWLK: derivation outline

* As atest operator, take a pair of Wilson lines (not a dipole!):

Oz, 59, =V, @V

T1L ol

e Construct the evolution of this operator by summing the following familiar
diagrams:

|
. ‘ 1
B C .
| | virtual
l l Q¥ W Qs
| | 2 | | |
E F : 0 ; :
G H I
real
1 ‘ 1
B! é@@%% P
J K L



JIMWLK Equation

In the end one arrive at the JIMWLK evolution equation (1997-2002):

. 1 2 2 52 ab
B Wvle] = {2 [ ot oy e ]

2 0 a
N /d L Sat(x—, %) vz, Wrle] }

with A L .
b _ 2 21 220 T T + 1
77%11_57'0J_ T g2 72 /d x2 2. 12 |:1 - UflLUj‘QL - UEQL UfOL + Uf1¢ Uf(u
g 21 20
7 d2$2 t
v | = _g — oy Tr [TaU:ElLU@J

Here U is the adjoint Wilson line on a light cone,

Uz, = Pexp{ig /dxAJr(erO,x,i"l)}

— 0o



JIMWLK Equation

JIMWLK equation can be used to construct any-N. small-x evolution of any operator made of infinite
light-cone Wilson lines (in any representation), such as color-dipole, color-quadrupole, etc., and
other operators.

Since

JIMWLK evolution can be re-written in terms of the color density p in the kernel.

JIMWLK approach sums up powers of Olg Y and 04? A1/3



Solving JIMWLK

The JIMWLK equation was solved on the lattice by K. Rummukainen and H.
Weigert ‘04 (and others since).

For the dipole amplitude N(xg,x1, Y), the relative corrections to the large-N¢
limit BK equation are < 0.001 ! Not the naive 1/N2~ 0.1 ! (For realistic
rapidities/energies.)

The reason for that is dynamical and is largely due to saturation effects
suppressing the bulk of the potential 1/N2 corrections (Yu.K., J. Kuokkanen,
K. Rummukainen, H. Weigert, ‘08).

There are other objects at small x, quadrupoles, double-trace operators, etc.

Some (linear combinations) of them are subleading-N., and one has to use
JIMWLK to describe their evolution.
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Solution of the nonlinear equation



Solution of BK equation

1 B ’
/
N(x,,Y / . .
I (x,,Y) / numerical solution
08F agY=0,12,24,36438 / .
I ] by J. Albacete ‘03
- !
0.6 - !
- !
We conclude that ’,’ Energy increases = Q; increases
04 / moving further away from Aqcp
A
1
Qg ~ | — 02F
L I
0.00001 0.0001 10
1/Qs 1/Aqcp

994 — 9 /d2bN(a:l,bl,Y)

BK solution preserves the black disk limit, N<1 always

(unlike the linear BFKL equation)



Saturation scale

Qq(Y) (GeV)
10000

1000
100

10 £

numerical solution by J. Albacete (ca. 2006)



BK Solution

Preserves the black disk limit, N<1 always.

—
=l
T

o
T

log,,(1/x)

S04 _ o / PoN(i,b,Y)

Avoids the IR problem of BFKL
evolution due to the saturation
scale screening the IR: )

1F BFKL

Balitsky-Kovchegov

f
fl

Golec-Biernat, Motyka, Stasto ‘02

3‘ ‘4‘ L ‘5
log,,(k/1GeV)
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The BFKL Equation 7 ! ("

* The Balitsky, Fadin, Kuraev, Lipatov (BFKL) equation was derived in 1977-78.

* One starts with a two-gluon exchange diagram (left) and “dresses” it
by radiative corrections.

* The leading high-energy contribution can be drawn as a ladder
diagram, with the t-channel gluons being the special “reggeized”
gluons and the thick dots representing effective Lipatov vertices.

of
§ o Oln s

=0 Kprrr @ f .

- The BFKL equation.
Kgrki is an integral kernel.

Ty




BFKL Equation

3\

In the conventional Feynman
diagram picture the BFKL equation
can be represented by a ladder

graph shown here. Each rung of
the ladder brings in a power of <

a In s.

The resulting dipole amplitude
grows as a power of energy

A
N ~s

violating Froissart unitarity bound

2
o,, < constIn”s

A
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GLR-MQ Equation

Gribov, Levin and Ryskin (‘81) o
proposed summing up “fan” diagrams:

Mueller and Qiu (" 85) summed
“fan” diagrams for large Q2.

The GLR-MQ equation reads:

9,
Olnl/x

GLR-MQ equation has the same principle of recombination as BK and
JIMWLK. GLR-MQ equation was thought about as the first nonlinear
correction to the linear BFKL evolution. An AGL (Ayala, Gay Ducati, Levin

‘96) equation was suggested to resum higher-order nonlinear corrections.

o(z,k7) = as Kprrr @ ¢(z, k7) — o [z, k7))

BK/JIMWLK derivation showed that for the dipole amplitude N (!) there are no

more terms in the large-N limit and obtained the correct kernel for the non-

linear term (compared to GLR suggestion). h



Energy Dependence of the Saturation Scale

Single BFKL ladder gives scattering

\ \
amplitude of the order N A SA
kr

Nonlinear saturation effects become
important when N ~ N2 = N ~ 1. This Y

happens at
kr = Qs ~ A SA

Q

Saturation scale grows with energy! ) 7 A

Typical partons in the wave function have k;~ Qg, so that their
characteristic size is of the order r ~ 1/ky ~ 1/Qg.

= Typical parton size decreases with energy!



Saturation scale

Qq(Y) (GeV)
10000 £

1000 F
100

10

numerical solution by J. Albacete



High Density of Gluons

High number of gluons populates the transverse extent of the proton or nucleus, leading to a very
dense saturated wave function known as the Color Glass Condensate (CGC):

Low Energy High Energy

Xg >> X
—_—
parton
. many new
roton smailer partons ~ Proton
(Xo, Q2) are produced (x, Q2)

“Color Condensate”
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Map of High Energy QCD

number & dens 0y

|Il.lI ‘I' ;

energy

resohttion, In )< number of partons

size of gluons




Map of High Energy QCD

A

X
= 2
f= saturation Qs(Y) A
L region B 0 1
> ‘b\\@g \ ~ E
C
g Saturation Scale
o BK/JIMWLK .
- @ grows with energy
=
©
Q BFKL, DGLAP — linear equations
energy £ BFKL BK/JIMWLK — nonlinear
S
S
c
QCD In Q2
Og ~ 1 Og <1

< size of gluons .




Map of High Energy QCD

Saturation Scale U
grows with energy and atomic Q% ~ <_)

X
number A for a nucleus

<\
0
o
X
S—"
Q
A

1

BFKL, DGLAP — linear equations
BK/JIMWLK — nonlinear

In Q2

saturation

| W mmmmmm oo

non-perturbative region

Q
o

In X
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In Q2

Can Saturation be Discovered at EIC?

EIC will have an unprecedented small-x reach for DIS on large nuclear targets,
enabling decisive tests of saturation and non-linear evolution:

DGLAP

BFKL

saturation

non-perturbative region

103 Measurements with A = 56 (Fe):
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Plots from the EIC White Paper, '12, 14 (2" ed).
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Geometric Scaling

* One of the predictions of the JIMWLK/BK evolution equations is geometric scaling:

DIS cross section should be a function of one parameter:

O pis (x,0%) = O prs (Qz/Qé(x))

(Levin, Tuchin " 99; Iancu, Itakura, McLerran * 02)
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Geometric Scaling
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T = XJ_QS(Y)

numerical solution by J. Albacete
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Geometric Scaling in DIS

Geometric scaling has  z
been observed in DIS %
data by g
Stasto, Golec-Biernat,

Kwiecinski in ’ 00.

Here they plot the total
DIS cross section, which
is a function of 2 variables
- Q2 and x, as a function
of just one variable:
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all Q*
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Map of High Energy QCD

Saturation region
Color Glass Condensate

Extended Geometric
Scaling region

non-perturbative
region

ocs~1




Saturation Scale

To summarize, saturation scale is an increasing function of both energy (1/x) and A:

10 o

Gold nucleus provides an enhancement g1
by 1971/3, which is equivalent to doing
scattering on a proton at 197 times

; |
smaller x / higher s! 200

Color Glass Condensate




References

E.lancu, R.Venugopalan, hep-ph/0303204.
H.Weigert, hep-ph/0501087

J.Jalilian-Marian, Yu.K., hep-ph/0505052

F. Gelis et al, arXiv:1002.0333 [hep-ph]

J.L. Albacete, C. Marquet, arXiv:1401.4866 [hep-ph]
A. Morreale, F. Salazar, arXiv:2108.08254 [hep-ph]

and...



References

Published in September 2012
by Cambridge U Press

75



Summary

We have constructed nuclear/hadronic wave function in the quasi-classical
approximation (MV model), and studied DIS in the same approximation

We included small-x evolution corrections into the DIS process, obtaining nonlinear
BK/JIMWLK evolution equations

y)
We found the saturation scale QS2 ~ A3 ( lj

justifying the whole procedure. X

Saturation/CGC physics predicts geometric scaling observed experimentally at HERA.



