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1 LECTURE NOTES INTRODUCTION

1 Lecture Notes Introduction

These notes provide reading material on the Soft-Collinear Effective Theory (SCET). They are intended
to cover the material studied in the second half of my effective field theory graduate course at MIT. A
complete hand written version of the notes I used when teaching this course in 2013 can be found at:

http://http://www2.lns.mit.edu/̃iains/talks/SCET Lectures Stewart 2013.pdf

These latex notes will also appear as part of TASI lecture notes and a review article with Christian Bauer.

Familiarity will be assumed with various basic effective field theory (EFT) concepts, including power
counting with operator dimensions, the use of field redefinitions, and top-down effective theories. Also
the use of dimensional regularization for scale separation, the equivalences and differences with Wilsonian
effective field theory, and the steps required to carry out matching computations for Wilson coefficients. A
basic familiarity with heavy quark effective theory (HQET), the theory of static sources, is also assumed.
In particular, familiarity with HQET as an example of a top-down EFT where we simultaneously study per-
turbative corrections and power corrections, and for understanding reparameterization invariance. These
topics were covered in the first half of the EFT course.

A basic familiarity with QCD as a gauge theory will also be assumed. Given that SCET is a top-down
EFT, we can derive it directly from expanding QCD and integrating out offshell degrees of freedom. This
familiarity should include concepts like the fact that energetic quarks and gluons form jets, renormalization
and renormalization group evolution for nonabelian gauge theory, and color algebra. Also some basic
familiarity with the role of infrared divergences is assumed, namely how they cancel between virtual and
real emission diagrams, and how they otherwise signal the presence of nonperturbative physics and the
scale ΛQCD as they do for parton distribution functions.

Finally it should be remarked that later parts of the notes are still a work in progress (particularly
sections marked at the start as ROUGH which being around chapter 8). This file will be updated as more
parts become available. Please let me know if you spot typos in any of chapters 1-7. The notes also do not
yet contain a complete set of references. Some of the most frequent references I used for preparing various
topics include:

1. Degrees of freedom, scales, spinors and propagators, power counting: [1, 2, 3]

2. Construction of LSCET, currents, multipole expansion, label operators, zero-bin, infrared divergences:
[2, 4, 5]

3. SCETI, Gauge symmetry, reparameterization invariance: [4, 6, 7]

4. Ultrasoft-Collinear factorization, Hard-Collinear factorization, matching & running for hard func-
tions: [1, 2, 4, 6]

5. DIS, SCET power counting reduces to twist, renormalization with convolutions: [8, 9]

6. SCETII, Soft-Collinear interactions, use of auxillary Lagrangians, power counting formula, rapidity
divergences: [6, 3, 10, 5, 11]

7. Power corrections, deriving SCETII from SCETI: [12, 13, 10]
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2 INTRODUCTION TO SCET

2 Introduction to SCET

2.1 What is SCET?

The Soft-Collinear Effective Theory is an effective theory describing the interactions of soft and collinear
degrees of freedom in the presence of a hard interaction. We will refer to the momentum scale of the hard
interaction asQ. For QCD another important scale is ΛQCD, the scale of hadronization and nonperturbative
physics, and we will always take Q� ΛQCD.

Soft degrees of freedom will have momenta psoft, where Q � psoft. They have no preferred direction,
so each component of pµsoft for µ = 0, 1, 2, 3 has an identical scaling. Sometimes we will have psoft ∼ ΛQCD

so that the soft modes are nonperturbative (as in HQET for B or D meson bound states) and sometimes
we will have psoft � ΛQCD so that the soft modes have components that we can calculate perturbatively.

Collinear degrees of freedom describe energetic particles moving preferrentially in some direction (here
motion collinear to a direction means motion near to but not exactly along that direction). In various
situations the collinear degrees of freedom may be the constituents for one or more of

• energetic hadrons with EH ' Q� ΛQCD ∼ mH ,

• energetic jets with EJ ' Q� mJ =
√
p2
J � ΛQCD.

Both the soft and collinear particles live in the infrared, and hence are modes that are described by
fields in SCET. Here we characterize infrared physics in the standard way, by looking at the allowed
values of invariant mass p2 and noting that all offshell fluctuations described by SCET degrees of freedom
have p2 � Q2. Thus SCET is an EFT which describes QCD in the infrared, but allows for both soft
homogeneous and collinear inhomogeneous momenta for the particles, which can have different dominant
interactions. The main power of SCET comes from the simple language it gives for describing interactions
between hard ↔ soft ↔ collinear particles.

Phenomenologically SCET is useful because our main probe of short distance physics at Q is hard
collisions: e+e− → stuff, e−p → stuff, or pp → stuff. To probe physics at Q we must disentangle the
physics of QCD that occurs at other scales like ΛQCD, as well as at the intermediate scales like mJ that
are associated with jet production. This process is made simpler by a separation of scales, and the natural
language for this purpose is effective field theory. Generically in QCD a separation of scales is important for
determining what parts of a process are perturbative with αs � 1, and what parts are nonperturbative with
αs ∼ 1. For some examples this is fairly straightforward, there are only two relevant momentum regions,
one which is perturbative and the other nonperturbative, and we can separate them with a fairly standard
operator expansion. But many of the most interesting hard scattering processes are not so simple, they
involve either multiple perturbative momentum regions, or multiple nonperturbative momentum regions,
or both. In most cases where we apply SCET we will be interested in two or more modes in the effective
theory, such as soft and collinear, and often even more modes, such as soft modes together with two distinct
types of collinear modes.

Part of the power of SCET is the plethora of processes that it can be used to describe. Indeed, it is
not really feasible to generate a complete list. New processes are continuously being analyzed on a regular
basis. Some example processes where SCET simplifies the physics include

• inclusive hard scattering processes: e−p → e−X (DIS), pp → Xl+l− (Drell-Yan), pp → HX, . . .
(either for the full inclusive process or for threshold resummation in the same process)
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2.2 Light-Cone Coordinates 2 INTRODUCTION TO SCET

• exclusive jet processes: dijet event shapes in e+e− → jets, pp → H + 0-jets, pp → W + 1-jet,
e−p→ e− + 1-jet, pp→dijets, . . .

• exclusive hard scattering processes: γ∗γ → π0, γ∗p→ γ(∗)p′ (Deeply Virtual Compton), . . .

• inclusive B-decays: B → Xsγ, B → Xu`ν̄, B → Xs`
+`−

• exclusive B-decays: B → Dπ, B → π`ν̄`, B → K∗γ, B → ππ, B → K∗K, B → J/ψK, . . .

• Charmonium production: e+e− → J/ψX, . . .

• Jets in a Medium in heavy-ion collisions

Some of these examples combine SCET with other effective theories, such as HQET for the B-meson, or
NRQCD for the J/ψ.

Before we dig in, it is useful to stop and ask What makes SCET different from other EFT’s?
Put another way, what are some of the things that make it more complicated than more traditional EFTs?
Or another way, for the field theory afficionato, what are some of the interesting new techniques I can learn
by studying this EFT? A brief list includes:

• We will integrate off-shell modes, but not entire degrees of freedom. (This is analogous to HQET
where low energy fluctuations of the heavy quark remain in the EFT.)

• Having multiple fields that are defined for the same particle

ξn = collinear quark field, qs = soft quark field

which are required by power counting and to cleanly separate momentum scales.

• In traditional EFT we sum over operators with the same power counting and quantum numbers. In
SCET some of these sums are replaced by convolutions,

∑
iCiOi →

∫
dωC(ω)O(ω).

• λ, the power counting parameter of SCET, is not related to the mass dimensions of fields

• Various Wilson Lines, which are path-ordered line integrals of gauge fields, P exp[ig
∫
dsn · A(ns)],

play an important role in SCET. Some appear from integrating out offshell modes, others from
dynamics in the EFT, and all are related to the interesting gauge symmetry structure of the effective
theory.

• There are 1/ε2 divergences at 1-loop which require UV counterterms. This leads to explicit ln(µ)
dependence in anomalous dimensions related to the so-called cusp anomalous dimensions, and to
renormalization group equations whose solutions sum up infinite series of Sudakov double logarithms,∑

k ak[αs ln2(p/Q)]k.

2.2 Light-Cone Coordinates

Before we get into concepts, which should decide on convenient coordinates. To motivate our choice,
consider the decay process B → Dπ in the rest frame of the B meson. This decay occurs through the
exchange of a W boson mediating b→ cūd, along with a valence spectator quark that starts in the B and
ends up in the D meson. We are concerned here with the kinematics. Aligning the π with the −ẑ axis it
is easy to work out the pion’s four momentum for this two-body decay,

pµπ = (2.310 GeV, 0, 0,−2.306 GeV) ' Qnµ , (2.1)
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2.2 Light-Cone Coordinates 2 INTRODUCTION TO SCET

where nµ = (1, 0, 0,−1) in a 0, 1, 2, 3 basis for the four vector. Here n2 = 0 is a light-like vector and
Q� ΛQCD. This pion has large energy and has a four-momentum that is close to the light-cone. With a
slight abuse of language we will often say that the pion is moving in the direction n (even though we really
mean the direction specified by the 1, 2, 3 components of nµ). The natural coordinates for particles whose
energy is much larger than their mass are light-cone coordinates.

We would like to be able to decompose any four vector pµ using nµ as a basis vector. But unlike
cartesian coordinates the component along n will not be n · p, since n2 = 0. If we want to describe the
components (we do) then we will need another auxillary light-like vector n̄. The vector n has a physical
interpretation, we want to describe particles moving in the n direction, whereas n̄ is simply a devise we
introduce to have a simple notation for components.

Thus we start with light-cone basis vectors n and n̄ which satisfy the properties

n2 = 0, n̄2 = 0, n · n̄ = 2 , (2.2)

where the last equation is our normalization convention. A standard choice, and the one we will most often
use, is to simply take n̄ in the opposite direction to n. So for example we might have

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) (2.3)

Other choices for the auxillary vector work just as well, e.g. nµ = (1, 0, 0, 1) with n̄µ = (3, 2, 2, 1), and
later on this freedom in defining n̄ will be codified in a reparameterization invariance symmetry. For now
we stick with the choice in Eq. (2.3).

It is now simple to represent standard 4-vectors in the light-cone basis

pµ =
nµ

2
n̄ · p+

n̄µ

2
n · p+ pµ⊥ (2.4)

where the ⊥ components are orthogonal to both n and n̄. With the choice in Eq. (2.3), pµ⊥ = (0, p1, p2, 0).
It is customary to represent a momentum in these coordinates by

pµ = (p+, p−, ~p⊥) (2.5)

where the last entry is two-dimensional, and the minkowski p2
⊥ is the negative of the euclidean ~p 2

⊥ (ie. in
our notation p2

⊥ = −~p 2
⊥). Here we have also defined

p+ = p+ ≡ n · p , p− = p− ≡ n̄ · p. (2.6)

As indicated the upper or lower ± indices mean the same thing.

Using the standard (+−−−) metric, the four-momentum squared is

p2 = p+p− + p2
⊥ = p+p− − ~p 2

⊥ . (2.7)

We can also decompose the metric in this basis

gµν =
nµn̄ν

2
+
n̄µnν

2
+ gµν⊥ . (2.8)

Finally we can define an antisymmetric tensor in the ⊥ space by εµν⊥ = εµναβn̄αnβ/2.
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2.3 Momentum Regions: SCET I and SCET II

Lets continue with our exploration of the B → Dπ decay with the goal of identifying the relevant quark
and gluon degrees of freedom (d.o.f.) for designing an EFT to describe this process. We’ll then do the
same for a process with jets.

There are different ways of finding the relevant infrared degrees of freedom. We could characterize all
possible regions giving rise to infrared singularities at any order in perturbation theory using techniques
like the Landau equations, and then determine the corresponding momentum regions. We could carry out
QCD loop calculations using a technique known as the method of regions, where the full result is obtained
by a sum of terms that enter from different momentum regions. Then by examining these regions we could
hypothesize that there should be corresponding EFT degrees of freedom for those regions that appear to
correspond to infrared modes that should be in the EFT. (Either of these approaches may be useful, but
note that when using them we must be careful that the degrees of freedom are appropriate to our true
physical situation, and do not contain artifacts related to our choice of perturbative infrared regulators
that are not present in the true nonperturbative QCD situation.) Instead, our approach in this section will
be based solely on physical insight of what the relevant d.o.f. are, from thinking through what is happening
in the hard scattering process we want to study. More mathematical checks that one has the right d.o.f.
are also desirable, and we will talk about some examples of how to do this later on. This falls under the
ruberic of not fully trusting a physics argument without the math that backs it up, and visa versa.

For B → Dπ in the rest frame of the B, the constituents of the B meson are the nearly static heavy
b quark, and the soft quarks and gluons with momenta ∼ ΛQCD, ie. just the standard degrees of freedom
of HQET. Since |~pD| = 2.31 GeV ∼ mD = 1.87 GeV the constituents of the D meson are also soft and
described by HQET. The pion on the other hand is highly boosted. We can derive the momentum scaling
of the pion constituents by starting with the (+,−,⊥) scaling of

pµ ∼ (ΛQCD,ΛQCD,ΛQCD) for constituents in the pion rest frame,

and then by boosting along −ẑ by an amount κ = Q/ΛQCD. The boost is very simple with light cone
coordinates, taking p− → κp− and p+ → p+/κ. Thus

pµc ∼
(Λ2

QCD

Q
,Q,ΛQCD

)
(2.9)

for the energetic pions constituents in the B rest frame. This scaling describes the typical momenta of the
quarks and gluons that bind into the pion moving with large momentum pµπ = (0, Q, 0) +O(m2

π/Q), as in

n
µ

π

The important fact about Eq. (2.9) is that

p−c � p⊥c � p+
c . (2.10)

Whenever the components of pµc obey this hierarchy we say it has a collinear scaling. Its convenient to
describe this collinear scaling with a dimensionless parameter by writing

pµc ∼ Q(λ2, 1, λ) (2.11)

9
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hard
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s

2
λQ λQ 0

λQ

λQ

λQ 0

p +
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p2
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2Q

p2
= Λ

2

QCD

Figure 1: SCETII example. Relevant degrees of freedom for B → Dπ with an energetic pion in the B rest
frame.

where λ� 1 is a small parameter. This result is generic. For our B → Dπ example we have λ = ΛQCD/Q.1

This λ will be the power counting parameter of SCET. With this notation we can also say how the soft
momenta of constituents in the B and D meson scale,

pµs ∼ Q(λ, λ, λ) . (2.12)

Thus we see that we need both soft and collinear degrees of freedom for the B → Dπ decay.

It is convenient to represent the degrees of freedom with a picture, as in Fig. 1. This picture has some
interesting features. Unlike simpler effective theories SCET requires at least two variables to describe
the d.o.f. The choice of p− and p+ as the axis here suffices since the ⊥-momentum satisfies p2

⊥ ∼ p+p−

and hence does not provide additional information. The hyperbolas in the figures are lines of constant
p2 = p+p−. The labelled spots indicate the relevant momentum regions. We have included a hyperbola
and a spot for the hard region where p2 ∼ Q2, but these are the modes that are actually integrated out
when constructing SCET. (For B → Dπ they are fluctuations of order the heavy quark masses.) On the
p2 ∼ Λ2

QCD hyperbola in Fig. 1 we have two types of nonperturbative modes, collinear modes cn for the
pion constituents, and soft modes s for the B and D meson constituents. Since these modes live at the
same typical invariant mass p2 we need another variable, namely p−/p+, to distinguish them. This variable
is related to the rapidity, Y , since e2Y = p−/p+. Put another way, we need both of the variables p+ and
p− to define the modes for the EFT.

The example in Fig. 1 is what is known as an SCETII type theory. Its defining characteristic is that
the soft and collinear modes in the theory have the same scaling for p2, they live on the same hyperbola.
This type of theory turns out to be appropriate for a wide variety of different processes and hence we give
it the generic name SCETII. Essentially this version of SCET is the appropriate one for hard processes
which produce energetic identified hadrons, what we earlier called exclusive hard scattering and exclusive
B-decays.

1Please do not be confused into thinking that you need to assign a precise definition to λ. It is only used as a scaling
parameter to decide what operators we keep and what terms we drop in the effective field theory, so any definition which is
equivalent by scaling is equally good. In the end any predictions we make for observables do not depend on the numerical
value of λ. The only time we need a number for λ is when making a numerical estimate for the size of the terms that are
higher order in the power expansion which we’ve dropped.

10
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When looking at Fig. 1 we should interpret the collinear degrees of freedom as living mostly in a region
about the cn spot and the soft degrees of freedom as living mostly in a region about the s spot. An obvious
question is what determines the boundary between these degrees of freedom. In a Wilsonian EFT the
answer would be easy, there would be hard cutoffs that carve out the regions defined by these modes. But
hard cutoffs break symmetries. For SCET the cutoffs must be “softer regulators” so as to not to break
symmetries like Lorentz invariance and gauge invariance. Dimensional regularization is one regulator that
can be used for this purpose. If we were only trying to distinguish modes with the invariant mass p2 then
the dim.reg. scale parameter µ would suffice for the cutoff between UV and IR modes, and we would be set
to go. But in SCET we also need to distinguish modes in another dimension, µ does not suffice to separate
or distinguish the s and cn modes of Fig. 1. We will see how to do this later on without spoiling any
symmetries. In general it will require a combination of subtractions that localize the modes in the regions
shown in the figure, as well as additional cutoff parameters. The bottom line is that the physical picture
in Fig. 1 for where the modes live is the correct one to think about for the purpose of power counting. But
when integrating over loop momenta in a virtual diagram involving one of these modes we integrate over
all values with a soft regulator to avoid breaking symmetries.

Lets consider a second example involving QCD jets. Jets are collimated sprays of hadrons produced
by the showering process of an energetic quark or gluon as it undergoes multiple splittings. The splitting
is enhanced in the forward direction by the presence of collinear singularities. The simplest process is
e+e− → dijets, which at lowest order is the process e+e− → γ∗ → qq̄ with each of the light quarks q and
q̄ forming a jet. Let qµ be the momentum of the γ∗, then in the center-of-momentum frame (CM frame)
qµ = (Q, 0, 0, 0) and sets the hard scale. If there are only two jets in the final state then by momentum
conservation they will be back-to-back along the horizontal ẑ axis:

ultrasoft particles

n-collinear 

       jet

n-collinear 

       jet

nμnμ
21

p

a b

The x− y plane defines two hemispheres a and b, and we consider a process with one jet in each of them.
The energy in each hemisphere is Q/2 and is predominantly carried by the collimated particles in the jets.
To describe the degrees of freedom we need two collinear directions. We align nµ1 with the direction of the
first jet and nµ2 with the second. (These directions can be defined by using a jet algorithm to determine
the particles inside a jet, or indirectly from the process of calculating a jet event shape like thrust.)

Lets first consider the energetic constituents of the n1-jet. Since these constituents are collimated they
have a ⊥-momentum that is parametrically smaller than their large minus momentum, p⊥ ∼ ∆� p− ∼ Q.
In order that we have a jet of hadrons and not a single hadron or small number of hadrons we must have
∆� ΛQCD. Thus the jets constituents have (+,−,⊥) momenta with respect to the axes n1 = (1,−ẑ) and
n̄1 = (1, ẑ) that have a collinear scaling

pµn1
∼
(∆2

Q
,Q,∆

)
= Q(λ2, 1, λ) . (2.13)

As usual the scaling of the +-momentum is determined by noting that we are considering fluctuations
about p2 = 0, so p+ ∼ p2

⊥/p
−. Here the power counting parameter is λ = ∆/Q � 1. Note that the jet

11



2.3 Momentum Regions: SCET I and SCET II 2 INTRODUCTION TO SCET

constituents have the same scaling as the constituents of a collinear pion, but carry larger offshellness p2.
If we make ∆ so large that ∆ ∼ Q then we no longer have a dijet configuration, and if we make ∆ so small
that ∆ ∼ ΛQCD then the constituents will bind into one (or more) individual hadrons rather than the large
collection of hadrons that make up the jet. Another way to characterize the presence of the jet is through
the jet-mass m2

J , since a jet will have Q2 � m2
J � Λ2

QCD. For our example here we can make use of the
a-hemisphere jet-mass,

m2
Ja ≡

(∑
i∈a

pµi

)2
∼ p+

n1
p−n1
∼ ∆2 � Q2 . (2.14)

For the constituents of the n2-jet we simply repeat the discussion above, but with particles collimated
about the direction, n2 = n̄1 = (1, ẑ). A choice that makes this simple is n̄2 = n1 = (1,−ẑ), since then we
can simply take the n1-jet analysis results with + ↔ −. Using the same (+,−,⊥) components as for the
n1-jet we then have

pµn2
∼
(
Q,

∆2

Q
,∆
)

= Q(1, λ2, λ) . (2.15)

Again a measurement of the b-hemisphere jet-mass can be used to ensure that there is only one jet in that
region jet-mass,

m2
Jb
≡
(∑
i∈b

pµi

)2
∼ p+

n2
p−n2
∼ ∆2 � Q2 . (2.16)

Finally in jet processes there are also soft homogeneous modes that account for soft hadrons that
appear between the collimated jet radiation (as well as within it). The precise momentum of these degrees
of freedom depends on the observable being studied, and the restrictions it imposes on this radiation. In
our e+e− → dijets example we can consider measuring that m2

Ja
and m2

Jb
are both ∼ ∆2. In this case the

homogeneous modes are “ultrasoft” with momentum scaling as

pµus ∼
(∆2

Q
,
∆2

Q
,
∆2

Q

)
= Q(λ2, λ2, λ2) . (2.17)

To derive this we consider the restrictions that m2
Ja
∼ ∆2 imposes on the observed particles, noting in

particular that with a collinear and ultrasoft particle in the a-hemisphere we have

(pn1 + pus)
2 = p2

n1
+ 2pn1 · pus + p2

us ∼ ∆2 . (2.18)

The term 2p−n1
· pus = p−n1

p+
us plus higher order terms, so p+

us ∼ ∆2/p−n1
∼ ∆2/Q, which is the ultrasoft

momentum scale given in Eq. (2.17). Any larger momentum for p+
us is forbidden by the hemisphere mass

measurement. The scaling of the other ultrasoft momentum components then follows from homogeneity.

If we draw the degrees of freedom, then for the double hemisphere mass distribution measurement
of e+e− → dijets in the p+-p− plane we find Fig. 2. Again we have labelled hard modes with momenta
p2 ∼ Q2 that are integrated out in constructing the EFT (here they correspond to virtual corrections at
the jet production scale). In the low energy effective theory we have two types of collinear modes cn and
cn̄, one for each jet, which live on the p2 ∼ ∆2 hyperbola. Finally the ultrasoft modes live on a different
hyperbola with p2 ∼ ∆4/Q2. The collinear and ultrasoft modes all have p2 . Q2λ2 and are degrees of
freedom in SCET, while modes with p2 � Q2λ2 are integrated out. When we are in a situation like this
one, where the collinear and homogeneous modes live on hyperbolas with parametrically different scaling
for p2, then the resulting SCET is known as an SCETI type theory. Note that the cn and us modes have
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Figure 2: SCETI example. Relevant degrees of freedom for dijet production e+e− → dijets with measured
hemisphere invariant masses m2

Ja
and m2

Jb
.

p+ momenta of the same size, whereas the cn̄ and us modes have p− momenta of the same size. The names
collinear and ultrasoft denote the fact that these modes live on different hyperbolas.2 Once again these
degrees of freedom capture regions of momentum space, which are centered around the spots indicated and
each of them extend into the infrared.

It is important to note in this dijet example that ∆4/Q2 & Λ2
QCD, so in general the nonperturbative

ultrasoft modes can live on an even smaller hyperbola p2 ∼ Λ2
QCD than the perturbative contributions from

ultrasoft modes that have p2 ∼ ∆4/Q2. An additional p2 ∼ Λ2
QCD hyperbola is shown in green in Fig. 2.

If ∆4/Q2 ∼ Λ2
QCD then the yellow and green hyperbolas are not distinguishable by power counting, and

hence are equivalent. If on the other hand we are in a situation where ∆4/Q2 � Λ2
QCD then when we

setup the SCETI theory both the perturbative ultrasoft modes with p2 ∼ ∆4/Q2 and the nonperturbative
ultrasoft modes with p2 ∼ Λ2

QCD will be part of our single ultrasoft degree of freedom. This is convenient
because we can first formulate the ∆/Q� 1 expansion with the cn, cn̄ and us d.o.f., and only later worry
about making another expansion in QΛQCD/∆

2 � 1 to separate the two types of ultrasoft modes that
would live on the yellow and green hyperbolas.

If we compare Fig. 1 and Fig. 2 we see that it is the relative behaviour of the collinear and soft/ultrasoft
modes that determine whether we are in an SCETI or SCETII type situation. (There are also SCETII

examples which involve jets with ⊥ measurements rather than jet masses, and we will meet these later on
in Section 14.3 and 14.4.) Much of our discussion will be devoted to studying these two examples of SCET,
since they are already quire rich and cover a wide variety of processes. In general however one should
be aware that a more complicated process or set of measurements may well require a more sophisticated
pattern of degrees of freedom. For example, we could have soft or collinear modes on more than one
hyperbola, or might require modes with a new type of scaling. Indeed, this is not even uncommon, the
collider physics example of pp→ dijets in the CM frame requires both SCETII type collinear modes for the
incoming protons, and SCETI type collinear modes for the jets. Nevertheless, after having studied both
SCETI and SCETII we will see that often these more complicated processes do not really require additional
formalism, but rather simply require careful use of the tools we have already developed in studying SCETI

2In certain situations in the literature to use the names hard-collinear and soft to denote the same thing, and we will find
occasion to explain why when discussing how SCETI can be used to construct SCETII.
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Figure 3: Another SCETI example. Relevant degrees of freedom for B → Xsγ in the endpoint region.

and SCETII.

A comment is also in order about the frame dependence of our degrees of freedom. In both of our
examples we found it convenient to discuss the degrees of freedom in a particular frame (the B rest frame,
or e+e− CM frame). Typically there is a natural reference frame to think about the analysis of a process,
but of course the final result describing the dynamics of a process will actually not be frame dependent.
Thus it is natural to ask what the d.o.f. and corresponding momentum regions would look like in a different
frame. A simple example to discuss is a boost of the entire process along the ẑ axis. All the modes then slide
along their hyperbolas (since p2 is unchanged). The important point is that the relative size of momenta of
different d.o.f. is unchanged by this procedure: the p+ momenta of collinear and ultrasoft modes in SCETI

will be the same size even after the boost, and the p+ momentum of a soft particle will always be larger
than the p+ momentum of a collinear particle in SCETII. In B → Dπ such a boost can take us to the
pion rest frame, where its constituents are now soft, and the constituents of the B and D are now boosted.
Some components of the SCET analysis may look a bit different if we use different frames, but the final
EFT results for decay rates and cross sections will obey the expected overall boost relations. In general it
is only the relative scaling of the momenta of various degrees of freedom that enter into expansions and
the final physical result. The relative placement of the spots for our d.o.f. in SCETI and SCETII is not
affected by the ẑ boost.

Before finishing our discussion of d.o.f. we consider one final example. For the purpose of studying
SCETI it is useful to have an example with one jet rather than two, so the d.o.f. become simply cn and us.
This can occurs for the process B → Xsγ or for B → Xueν̄. The underlying processes here are the flavor
changing neutral current proess b → sγ or the semileptonic decay b → ueν̄. For these inclusive decays
we sum over any collection of hadronic s tates Xs or Xu that can be produced from the s or u quark.
In the B rest frame, the total energy of the γ or (eν̄) is E = (m2

B − m2
X)/(2mB) and ranges from 0 to

(m2
B −m2

Hmin
)/(2mB) where mHmin is the smallest appropriate hadron mass, either mHmin = mK∗ or mπ

for Xs or Xu respectively. An interesting region to consider for the application of SCET is

Λ2
QCD � m2

X � Q2 = m2
B (2.19)

where the photon or (eν̄) recoils against a jet of hadrons which are the constituents of X. For B → Xsγ
the picture is (double line being the b-quark, yellow lines are soft particles, and red lines are collinear
particles):
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mode fields pµ momentum scaling physical objects

nj-collinear ξnj , A
µ
nj (nj ·p, n̄j · p, p⊥j) ∼ Q(λ2, 1, λ) collinear virtual/real radiation

in jet or hadron in n̂j direction
soft ψs, A

µ
s pµ ∼ Q(λ, λ, λ) soft virtual/real radiation

ultrasoft ψus, A
µ
us pµ ∼ Q(λ2, λ2, λ2) ultrasoft virtual/real radiation

Glauber – pµ ∼ Q(λa, λb, λ) with a+ b < 2 forward scattering potential
hard – p2 & Q2 hard scattering

Table 1: Infrared momentum regions and the corresponding quark and gluon fields in SCET (taken from
Ref. [?]). Here nµj = (1, n̂j), Q is the scale of the hard interaction, and λ � 1 is a dimensionless power
counting parameter.

Here the jet mass is also the mass of the hadronic final state, and the situation which dominates the
phenomenology has m2

X ∼ QΛQCD. We have collinear modes for the jet, and ultrasoft modes with p2
us ∼

Λ2
QCD which are the constituents of the B meson for this inclusive decay. Often the region where m2

X � Q2

is known at the endpoint region since E ∼ mB/2 − ΛQCD and hence is close to the physical endpoint
E = mB/2. (The case m2

X ∼ Q2 is then known as the local OPE region where the traditional HQET
operator product expansion analysis suffices.) The picture of the modes for this case are shown in Fig. 3,
and indeed yield an example of an SCETI theory with only one collinear mode.

3 Ingredients for SCET

Our objective in this section is to expand QCD and formulate collinear and ultrasoft degrees of freedom. In
doing so, we will derive power counting expressions for operators and see what form the quark Lagrangian
takes in a SCET theory.

3.1 Collinear Spinors

We begin our exploration by considering the expansion in the collinear limit of Dirac spinors u(p) for
particles and v(p) for antiparticles. The relevant collinear spinors are obtained by considering the expansion
in momentum components, but the final result decomposes each QCD spinor into just two types of terms
rather than an infinite expansion.

It is useful to consider spinors of definite chirality

u±(p) =
1± γ5

2
u(p) , v±(p) =

1± γ5

2
v(p) . (3.1)

Adopting the Dirac representation

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
, (3.2)

15



3.1 Collinear Spinors 3 INGREDIENTS FOR SCET

a convenient set of solutions for the full Dirac equations p/ u(p) = 0 and p/ v(p) = 0 are then

u+(p) = v−(p) =
1√
2


√
p−√

p+eiφp√
p−√

p+eiφp

 , u−(p) = v+(p) =
1√
2


√
p+e−iφp

−
√
p−

−
√
p+e−iφp√
p−

 , (3.3)

where here

p± = p0 ∓ p3 , exp(±iφp) =
p1 ± ip2√
p+p−

, (3.4)

and the onshell condition sets p2 = p+p−−(p1)2−(p2)2 = 0. With this convention, which is also a common
one in the spinor-helicity literature [14], the spinors for particles and antiparticles with opposite chirality
are related.

For a collinear momentum pµ = (p0, p1, p2, p3) we have p− � p1,2 � p+ so keeping the leading order
term simply amounts to dropping the

√
p+ terms in Eq. (3.3), which gives

u±n = v∓n =

√
p−

2

(
σ3U±
U±

)
, (3.5)

where U+ =
( 1

0

)
and U− =

( 0
1

)
. From this analysis we see that in the collinear limit both quark and

antiquarks remain as relevant degrees of freedom (and indeed, there is no suppression for pair creation
from splitting). We also see that both spin components remain in each of the spinors. The same result
can be obtained by applying a projection operator. Recalling our default definitions of nµ = (1, 0, 0, 1) and
n̄µ = (1, 0, 0,−1), we can calculate their contractions with the gamma matrix,

/n = γ0 − γ3 =

(
1 −σ3

σ3 −1

)
, /̄n = γ0 + γ3 =

(
1 σ3

−σ3 −1

)
. (3.6)

We can then define the projection operators

Pn =
/n/̄n

4
=

1

2

(
1 σ3

σ3
1

)
, Pn̄ =

/̄n/n

4
=

1

2

(
1 −σ3

−σ3
1

)
, (3.7)

which satisfy P 2
n = Pn, P 2

n̄ = Pn̄. From {γµ, γν} = 2gµν we also have the completeness relation

Pn + Pn̄ =
/n/̄n

4
+
/̄n/n

4
= 1 . (3.8)

Note that only the explicit matrix formulas depend on the explicit choice for n and n̄, whereas formulas
like Eq. (3.8) only use n2 = n̄2 = 0 and n · n̄ = 2. The results for the collinear spinors in Eq. (3.5) can now
be obtained as a projection from the full theory spinors using the projector Pn as

Pnu
±(p) = u±n , Pnv

±(p) = v±n . (3.9)

The other projector, Pn̄ projects out precisely the small spinor components proportional to
√
p+ in

Eq. (3.3). Therefore the expansion of the full theory spinor u± contains just two terms, a large term
from Pnu

± and a smaller term from Pn̄u
±.
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Since P 2
n = Pn we also have projection relations for the collinear spinors alone

Pnun =
/n/̄n

4
un = un, Pnvn =

/n/̄n

4
vn = vn. (3.10)

Finally, noting that /nPn = 0 since /n2 = n2 = 0 we have the following relations

/nun = 0 , /nvn = 0 . (3.11)

These can be recognized as the leading term in the equations of motion /pu(p) = /pv(p) = 0 when expanded
in the collinear limit. The bottom line regarding the presence of collinear spinors is that when a hard
interaction produces a collinear fermion or antifermion it will be the components obeying the spin relations
in Eqs. (3.11) and (3.10) that appear at leading order.

A useful set of projection operator identities can easily be derived from n2 = 0, n̄ · n = 2, and/or
hermitian conjugation γµ† = γ0γµγ0:

PnPn̄ = 0 , PnPn = Pn , Pn /̄n = Pn̄/n = 0 , Pn/n = /n , Pn̄ /̄n = /̄n , P †n = γ0Pn̄γ0 . (3.12)

None of these results depends on making the canonical back-to-back choice for n̄. The last result is useful
for the computation of ūn from un = Pnu, i.e.

ūn = u†nγ
0 = u†P †nγ

0 = ū Pn̄ . (3.13)

For example, we can use this result to sum over spins for the product of collinear spinors∑
s=±

usnū
s
n = Pn

∑
s=±

usūsPn̄ = Pn /pPn̄ =
/n

2
n̄ · p . (3.14)

For later purposes it will be useful to decompose the QCD Dirac field ψ into a field ξn that obeys these
same spin relations. We write ψ in terms of two fields,

ψ = Pnψ + Pn̄ψ = ξ̂n + ϕn̄ (3.15)

where we defined

ξ̂n = Pnψ =
/n/̄n

4
ψ , ϕn̄ = Pn̄ψ =

/̄n/n

4
ψ. (3.16)

These fields satisfy the desired spin relations

/nξ̂n = 0 , Pnξ̂n = ξn , /̄nϕn̄ = 0 , Pn̄ϕn̄ = ϕn̄ . (3.17)

The label n on ξ̂n reminds us that it obeys these relations and that we will eventually be expanding about
the n-collinear direction. We also have the analog of Eq. (3.13)

ξ̂n = ξ̂†nγ
0 = ψ†P †nγ

0 = ψ Pn̄ . (3.18)

Note that here we denote the collinear field components with a hat, as in ξ̂n(x), since there are
still further manipulations that are required before we arrive at our final SCET collinear field ξn(x).
Nevertheless both ξ̂n and ξn satisfy these spinor relations. Thus just like the relations for ξ̂n or ξn we have

the following relations for
¯̂
ξn or ξ̄n:

¯̂
ξn/n = 0 ,

¯̂
ξnPn = 0 ,

¯̂
ξnPn̄ =

¯̂
ξn
/̄n/n

4
=

¯̂
ξn . (3.19)

In addition to our collinear decomposition of the Dirac spinors and field, we will also need spinors and
quark fields for the ultrasoft degrees of freedom. However, since all ultrasoft momenta are homogeneous of
order λ2 and the scaling of momenta does not affect the corresponding components of the ultrasoft spinors,
which are the same as those in QCD.
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3.2 Collinear Fermion Propagator and ξn Power Counting

Having considered the decomposition of spinors in the collinear limit, we now turn to the fermion propagator
in the collinear limit. Here p2 + i0 = n̄ · p n · p + p2

⊥, and since both of these terms are ∼ λ2 there is no
expansion of the denominator of the propagator. We can however expand the numerator by keeping only
the large n̄ · p momentum, as

i/p

p2 + i0
=
i/n

2

n̄ · p
p2 + i0

+ . . . =
i/n

2

1

n · p+
p2
⊥
n̄·p + i0 sign(n̄ · p)

+ . . . (3.20)

The fermion-gluon coupling will be proportional to /̄n/2 and hence will form a projector Pn when combined
with the /n/2 from the propagator. Therefore the displayed term in the propagator has overlap with our
spinors un and vn, just giving Pnun = un etc. The fact that both +i0 and −i0 occur in the expanded
propagator is a reflection of the fact that the lowest order SCET Lagrangian will contains both propagating
particles (n̄ · p > 0) and propagating antiparticles (n̄ · p < 0).

The leading collinear propagator displayed in Eq. (3.20) should be obtained from a time-ordered product

of the effective theory field, 〈0|T ξ̂n(x)
¯̂
ξn(0)|0〉. At this point we can already identify the λ power counting

for the field ξ̂n by noting that if its propagator has the form in Eq. (3.20) then its action must be of the
form

L(0)
n =

∫
d4x L(0)

n =

∫
d4x︸︷︷︸
O(λ−4)

¯̂
ξn︸︷︷︸
O(λa)

/̄n

2

[
in · ∂ + . . .︸ ︷︷ ︸
O(λ2)

]
ξ̂n︸︷︷︸
O(λa)

∼ λ2a−2 . (3.21)

Here we used the fact that d4x = 1
2(dx+)(dx−)(d2x⊥) ∼ (λ0)(λ−2)(λ−1)2 ∼ λ−4 where the scaling for the

coordinates xµ follows from those for the collinear momenta by writing x · pc = x+p−c + x−p+
c + 2x⊥ · p⊥c

and demanding that the terms in this sum are all O(1). In (3.21) we assigned ξ̂n ∼ λa with the goal of
determining the value of a. To do this we take the standard approach of assigning a power counting to the

leading order kinetic term in the action so that L
(0)
n ∼ λ0, which gives

ξ̂n ∼ ξn ∼ λ . (3.22)

Even though we have not fully considered all the issues needed to define the SCET collinear field ξn, the
further manipulations we will make in section 4 below will not effect its power counting, so we have also
recorded here the fact that the SCET field ξn ∼ λ. Note that this scaling dimension does not agree with
the collinear quark fields mass dimension since [ξ̂n] = [ξn] = 3/2. This is simply a reflection of the fact
that the SCET power counting for operators is not a power counting in mass dimensions. The observant
reader will notice that the λ scaling of the collinear field is the same as its twist, and indeed the SCET
power counting reduces to a (dynamic) twist expansion when the latter exists.

3.3 Power Counting for Collinear Gluons and Ultrasoft Fields

Similar to our procedure for the collinear fermion field, we can analyze the collinear gluon field Aµn in our n-
collinear basis to determine the λ scaling of its components. This information is necessary to formulate the
importance of operators in SCET. We begin by writing the full theory covariant gauge gluon propagator,
but we label the fields as Aµn(x) to denote the fact that we will be considering a n-collinear momenta:∫

d4x eik·x 〈0|TAµn(x)Aνn(0) |0〉 = − i

k2

(
gµν − τ k

µkν

k2

)
= − i

k4

(
k2gµν − τ kµkν

)
, (3.23)
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where τ is our covariant gauge fixing parameter. From our standard power counting result from the light-
cone coordinate section, we know that k2 = k+k−+ k2

⊥ = Q2λ2. So the 1/k4 on the RHS matches up with
the scaling of the collinear integration measure

d4x ∼ λ−4 ∼ 1

(k2)2
(3.24)

Thus the quantity in the final parentheses in (3.23) must be the same order as the product of Aµn(x)Aνn(0)
fields. If both of the µν indices are ⊥ then both of the terms in these parantheses are ∼ λ2, so therefore
we must have Aµn⊥ ∼ λ. If one index is + and the other − then again both terms are the same size and
we find A+

nA
−
n ∼ λ2. To break the degeneracy we take both indices to be +, then g++ = 0, (n · k)2 ∼ λ4,

so A+
n ∼ λ2 and A−n ∼ λ0. Other combinations also lead to this result, namely that the components of the

collinear gluon field scales in the same way as the components of the collinear momentum

Aµn ∼ kµ ∼ (λ2, 1, λ). (3.25)

This result is not so surprising considering that if we are going to formulate a collinear covariant derivative
Dµ = ∂µ + igAµ with collinear momenta ∂µ and gauge fields, then for each component both terms must
have the same λ scaling. Indeed imposing this property of the covariant derivative is another way to derive
Eq. (3.25).

The same logic can be used to derive the power counting for ultrasoft quark and gluon fields. Since
the momentum kµus ∼ (λ2, λ2, λ2) the measure on ultrasoft fields scales as d4x ∼ λ−8. Also the result is
now uniform for the components of Aµus. Once again we find that the gluon field scales like its momentum.
For the ultrasoft quark we have the Lagrangian L = ψ̄usi /Dusψus with iDµ

us = i∂µ + gAµus ∼ λ2. Therefore
ψ̄usψus ∼ λ6. All together we have

Aµus ∼ (λ2, λ2, λ2) , ψus ∼ λ3 . (3.26)

For a heavy quark field that is ultrasoft the Lagrangian is LHQET = h̄usv iv ·Dush
us
v which is again linear in

the derivative, so husv ∼ λ3 as well.

For completeness we also remark that the power counting for momenta determines the power counting
for states. For one-particle states of collinear particles (with a standard relativistic normalization):

〈p′|p〉 = 2p0δ3(~p− ~p ′) = p−δ(p− − p ′−)δ2(~p⊥ − ~p ′) ∼ λ−2 (3.27)

Thus the single particle collinear state has |p〉 ∼ λ−1 for both quarks and gluons. Given the scaling of
the collinear quark and gluon fields, this implies power counting results for the polarization objects. The
collinear spinors un ∼ ξn|p〉 ∼ λ0 which is consistent with our earlier Eq. (H.3). For the physical ⊥
components of polarization vectors for collinear gluons we also find εµ⊥ ∼ λ

0.

Of particular importance in the result in Eq.(3.25) is the fact that n̄ · An = A−n ∼ λ0, indicating that
there is no λ supression to adding A−n fields in SCET operators. To understand the relevance of this result
we consider in the next section an example of matching for an external current from QCD onto SCET.

3.4 Collinear Wilson Line, a first look

To see what impact there is to having a set of gauge fields n̄ · An ∼ λ0 lets consider as an example the
process b → ueν, where the b quark is heavy and decays to an energetic collinear u quark. This process
has the advantage of only invoving a single collinear direction. This decay has the following weak current
with QCD fields

JQCD = uΓb (3.28)
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Figure 4: Tree level graphs for matching the heavy-to-light current. (Swap qm → qk.)

where Γ = γµ(1 − γ5). Without gluons we can match this QCD current onto a leading order current in
SCET by considering the heavy b field to be the HQET field hv and the lighter u field by the SCET field
ξn. This is shown in Fig. 4 part (a), where we use a dashed line for collinear quarks. The resulting SCET
operator is

ξnΓhv. (3.29)

Next we consider the case where an extra A−n gluon is attached to the heavy quark. This process is
shown in Fig.4 part (b) and leads to an offshell propagator, shown by the pink line, that must be integrated
out when constructing the EFT. The full theory amplitude for this process is (replacing external spinors
and polarization vectors by SCET fields):

Aµ An ξnΓ
i(/k +mb)

k2 −m2
b

igTAγµhv = −g
(nµ

2
n̄ ·AAn

)
ξnΓ

[mb(1 + /v) + /q]

2mbv · q + q2
TAγµhv

= −gn̄ ·AAn ξnΓ

[
mb(1 + /v) + /n

2 n̄ · q
mbv · n n̄ · q

+ . . .

]
TA

/n

2
hv

= −gn̄ ·AAn ξnΓ

[ /n
2 (1− /v) + v · n
v · n n̄ · q

+ . . .

]
TAhv

= ξn

(−g n̄ ·An
n̄ · q

)
Γhv (3.30)

In the first equality we have used the fact that the incoming b quark carries momentum mbv
µ, that
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k = mbv + q so that k2 −m2
b = 2mbv · q + q2, and that

Aµn =
nµ

2
n̄ ·An︸ ︷︷ ︸
O(λ0)

+
n̄µ

2
n ·An︸ ︷︷ ︸
O(λ2)

+ Aµ⊥︸︷︷︸
O(λ)

(3.31)

where we can keep only the ∼ λ0 term. In the second equality in Eq. (3.30) we have expanded the numerator
and denominator of the propagator in λ and kept only the lowest order terms. Since mbv · n n̄ · q ∼ Q2λ0

we see that the propagator is offshell by an amount of ∼ Q2, and hence is a hard propagator that we must
integrate out when constructing the corresponding SCET operator. In the third equality we use /n2 = 0
and pushed the /n through to the left. Noting that (1− /v)hv = 0, the fourth equality gives the final leading
order result from this calculation. Thus we we see that in SCET integrating out offshell hard propagators
that are induced by n̄ · An gluons leads to an operator for the leading order current with one collinear
gluon coming out of the vertex, pictured on the RHS of Fig. 4 part (b).

Inspecting the final result in Eq. (3.30) we see that, in addition to being a great simplification of the
original QCD amplitude for this gluon attachments, it is indeed of the same order in λ as the result in
Eq. (3.29). Indeed it straightforward to prove that the same (−gn̄ · An/n̄ · q) result will be obtained if
we replace the heavy quark by a particle that is not n-collinear, such as a collinear quark in a different
direction n′ where n ·n′ � λ2. The sum of collinear momenta in the n and n′ directions will also be offshell,
for example when we add two back-to-back collinear momenta (pn + pn̄)2 ∼ λ0. In all these situations we
find operators with additional n̄ ·An ∼ λ0 fields.

In summary, the off-shell quark has been integrated out and its effects have been parameterized by an
effective operator. This was necessary because the virtual quark resulting from the interaction of a heavy
quark or a n′ collinear particle with a n-collinear gluon yields an off-shell momentum.

This result can be contrasted with what happens if we attach a single n̄ ·An collinear gluon field to the
light collinear u quark, as shown below:

q

k

q

k

Calling the final u quarks momentum p we have kµ = pµ − qµ. However here since both p and q are
n-collinear the propagator momentum kµ also has n-collinear scaling. In particular k2 ∼ λ2 and is not
offshell, it instead represents a propagating mode within the effective theory. Thus this interaction is
reproduced in SCET by a collinear propagator followed by a leading order Feynman rule that couples the
n̄ ·An field to the collinear quark. Thus this diagram corresponds to a time ordered product of the leading

order SCET current J (0) with the leading order Lagrangian L(0)
n . If we attach more collinear gluons to the

light u quark, the same remains true. We never get an offshell propagator that we have to integrate out
when we have an interaction between n-collinear particles. Indeed we will also find that the components
n ·An and A⊥n couple at leading order in T-products like the one shown above, so there is nothing special
about the n̄ ·An components for these diagrams.

Lets now consider the situation of multiple gluon emission from the heavy quark. In this case we again
have offshell propagators, which are represented by the pink line in Fig. 4 part (c). By inspection, it is
clear that the generalization from one gluon emission to k gluon emissions with momenta q1, . . . , qk and
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propagators with momenta q1, q1 + q2, . . . ,
∑k

i=1 qi is reproduced by the field theory operator

ξ̄n
∑
perm

(−g)k

k!

(
n̄ ·A(qk) · · · n̄ ·A(q1)

[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·
∑k

i=1 qi]

)
Γhv (3.32)

Here the sum of permutations (perms) of the {q1, . . . , qk} momenta accounts for the fact that we must
consider diagrams with crossed gluon lines on the LHS of Fig. 4 part (c). We also include the factor of k!
as a symmetry factor to account for the fact that all k gluon fields are localized and identical and may be
contracted with any external gluon state. Finally, by summing over the number of possible gluon emissions,
we can write the complete tree level matching of the QCD current to the SCET current,

JSCET = ξnWnΓhv , (3.33)

where

Wn =
∑
k

∑
perm

(−g)k

k!

(
n̄ ·An(qk) · · · n̄ ·An(q1)

[n̄ · q1][n̄ · (q1 + q2)] · · · [n̄ ·
∑k

i=1 qi]

)
. (3.34)

Here Wn is the momentum space version of a Wilson line built from collinear An gluon fields. In position
space the corresponding Wilson line is

W (0,−∞) = P exp

(
ig

∫ 0

−∞
ds n̄ ·An(n̄s)

)
(3.35)

Here P is the path ordering operator which is required for nonabelian fields and which puts fields with
larger arguments to the left e.g. n̄ ·An(n̄s) n̄ ·An(n̄s′) for s > s′.

In summary, we see that we have traded the field n̄ ·An for the Wilson line Wn[n̄ ·An]. Also, including
this Wilson line in our current operator makes our current gauge invariant, as we will show below in the
Gauge Symmetry section. For a situation with n and n′ collinear fields the same type of Wilson lines
Wn[n̄ ·An] are also generated in a manner that yields gauge invariant operators for each collinear sector.

4 SCET Lagrangian

In this section, we derive the SCET quark Lagrangian by analyzing and separating the collinear and usoft
gluons, and momentum degrees of freedom. On the way to our final result we introduce the label operator
which provide a simple method to separate large (label) momenta from small (residual) momenta.

4.1 SCETI Quark Lagrangian

Lets construct the leading order SCETI collinear quark Lagrangian. This desired properties that this
Lagrangian must satisfy include

• Yielding the proper spin structure of the collinear propagator

• Contain both collinear quarks and collinear antiquarks

• Have interactions with both collinear gluons and ultrasoft gluons

• Yield the correct LO propagator for different situations without requiring additional expansions
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• Should be setup so we do not have to revisit the LO result when formulating power corrections

To explain what is meant by the fourth point consider the propagator obtained when a collinear quark
interacts with a collinear gluon

q

p+q p

∝ n̄ · (p+ q)

n · (p+ q) n̄ · (p+ q) + (p⊥ + q⊥)2 + i0
.

Here both the momentum p and q appear on equal footing, and no momenta are dropped in the denomi-
nator. This can be contrasted with the leading propagator obtained when a collinear quark interacts with
an ultrasoft gluon

k

p+k p

∝ n̄ · p
n · (p+ k) n̄ · p+ p2

⊥ + i0
.

Here the ultrasoft kµ momentum is dropped for all components except n · k where it is the same size as
the collinear momentum n · p. The dropping of k⊥ � p⊥ and n̄ · k � n̄ · p corresponds to carrying out a
multipole expansion for the interaction of the ultrasoft gluon with the collinear quark. The LO collinear
quark propagator must be smart enough to give the correct leading order result without further expansions,
irrespective of whether it later emits a collinear gluon or ultrasoft gluon.

We will achieve the desired collinear Lagrangian in several steps.

Step 1: Lagrangian for the larger spinor components

In this section we construct a Lagrangian for the field ξ̂n. It will satisfy the first two requirements in
our bullet list.

We begin with the standard QCD lagrangian for massless quarks.

LQCD = ψi /Dψ (4.1)

Expanding ψ and D in our collinear basis gives us

L = (ϕn̄ + ξ̂n)

(
/̄n

2
in ·D +

/n

2
in̄ ·D + i /D⊥

)
(ϕn̄ + ξ̂n) . (4.2)

We can simplify this result by using the projection matrix identities for the collinear spinor found in
section 3.1. In particular, various terms vanish such as

/n

2
in̄ ·Dξ̂n = 0 , ϕn̄

/̄n

2
in ·D = 0 (4.3)

by virtue of the analog of (3.19) for ϕn̄. Lastly, terms like

ξ̂ni /D⊥ξ̂n = ξ̂ni /D⊥Pnξ̂n = ξ̂nPni /D⊥ξ̂n = 0 , ϕn̄i /D⊥ϕn = 0 , (4.4)

since ξ̄nPn = 0 and ϕ̄n̄Pn̄ = 0. These simiplifications leave us with the Lagrangian

L = ξ̂n
/n

2
in ·D ξ̂n + ϕn̄i /D⊥ ξ̂n + ξ̂n i /D⊥ϕn̄ + ϕn̄

/n

2
in̄ ·Dϕn̄ . (4.5)
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So far this is just QCD written in terms of the ξ̂n and ϕn̄ fields. However, the field ϕn̄ corresponds to the
spinor components which were subleading in the collinear limit. These spinor components will not show
up in operators that mediate hard interactions at leading order. Therefore we will not need to consider a
source term for ϕn̄ in the path integral.3 This means that we can simply perform the quadratic fermionic
path integral over ϕn̄. At tree level doing so is simply equivalent to imposing the full equation of motion
for ϕn̄. We find

0 =
δL
δϕn̄

:
/n

2
in̄ ·Dϕn̄ + i /D⊥ξn = 0 (4.6)

in̄ ·Dϕn̄ +
/̄n

2
i /D⊥ξ̂n = 0

ϕn̄ =
1

in̄ ·D
i /D⊥

/̄n

2
ξ̂n ,

where the second line is obtained by multiplying the first by /̄n/2 on the left, and the plus sign in the last
line comes from using /̄ni /D⊥ = −i /D⊥ /̄n. Plugging this result back into our Lagrangian, two terms cancel,
and the other two terms give the Lagrangian for the ξ̂n field

L = ξ̂n

(
in ·D + i /D⊥

1

in̄ ·D
i /D⊥

)
/̄n

2
ξ̂n . (4.7)

The inverse derivative operator may look a little funny, but we can understand it in the same way we do for
the operator 1/r̂ in quantum mechanics, namely by defining it through its eigenvalues, which in this case
are in momentum space. Say we have the operator 1

in̄·∂ acting on a field φ(x). Expressing this operation
in momentum space gives

1

in̄ · ∂
φ(x) =

1

in̄ · ∂

∫
d4pe−ipxϕ(p) =

∫
d4pe−ipx

1

n̄ · p
ϕ(p) , (4.8)

and the eigenvalues 1/n̄ · p define the inverse derivative operator.

Although we have a Lagrangian for ξ̂n we are not yet done. In particular we have not yet separated
the collinear and ultrasoft gauge fields, nor the corresponding momentum components. These remaining
steps will be to

2. Separate the collinear and ultrasoft gauge fields.

3. Separate the collinear and usoft momentum components with a multipole expansion.

We then can expand in the fields and momenta and keep the leading pieces.

Step 2: Separate collinear and ultrasoft gauge fields

Recall that Aµn ∼ (λ2, 1, λ) ∼ pµn and Aµn ∼ (λ2, λ2, λ2) ∼ kµus. Since k2
us � p2

n the ultrasoft gluons
encode much longer wavelength fluctuations, so from the perspective of the collinear fields we can think of
Aµus like a classical background field. In background field gauge we would write Aµ = Qµ + Aµcl where Qµ

is the quantum gauge field and Aµcl is the classical background field that only appears on external lines. In
general there is no need for a relationship between the full QCD gluon field Aµ and the SCET fields Aµus
and Aµn, but if one exists then it does make matching computations much simpler. Based on the analogy

3At subleading order the coupling to the subleading components is introduced in operators via the combination involving
ξn shown in the last line of Eq.(4.6), so there is still no reason to have a source term for ϕn̄.
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with a background gauge field you might not be too surprised to learn that a relation exists which encodes
basic tree level matching

Aµ = Aµn +Aµus + · · · . (4.9)

Here the ellipsis stand for additional terms involving Wilson lines which only will become relevant when
we formulate power corrections, and hence will be ignorded for our leading order analysis here (they are
given below in Eq.()). The interpretation of Aµus as a background field to ξn and Aµn will also prove useful
when we derive the collinear gluon lagrangian and when we later consider gauge transformations in the
theory.

Now, comparing the power counting between components of Aµn and Aµus, we find

n̄ ·An ∼ λ0 � n̄ ·Aus ∼ λ2 (4.10)

Aµ⊥n ∼ λ� Aµ⊥us ∼ λ
2

n ·An ∼ λ2 ∼ n ·Aus.

So we see that Aµ⊥us and n̄ ·Aus can be droped from our leading order analysis because in the combination
Aµn + Aµus they are always dominated by the collinear gluon term. Conversely, n · Aus cannot be dropped
because it is of the same order as n ·An.

Step 3: The Multipole Expansion for Separating momenta

We want to find a way to isolate momenta that have different scaling with λ. Such a procedure is useful
because it will allow us to formulate power corrections in a manner where operators give homogeneous
contributions in λ order by order. For example, consider the denominator of the propagator of a quark
with momentum pn + kus expanded to keep the leading and first subleading terms

1

(pn + kus)2
=

1

(p−n + k−us)(p
+
n + k−us) + (p⊥n + k⊥us)

2

=
1

p−n (p+
n + k+

us) + p⊥ 2
n

− 2k⊥us· p⊥n
[p−n (p+

n + k+
us) + p⊥ 2

n ]2
+ . . . . (4.11)

By power counting, we see that the first term scales as λ−2 and the second term scales as λ−1. Although
the first term dominates the second, we need to be able to reproduce the second term at the level of the
Lagrangian when higher order corrections are needed. Expressed more formally, we would like a systematic
multipole expansion. Our desired expansion is similar to the one found in E&M which gives corrections
to the electrostatic potential for a given charge distribution.

In position space the multipole expansion corresponds to expanding the long wavelength field, Aus(x) =
Aus(0) + x · i∂Aus(0) + . . .. To see what is going on here we can Fourier transform the operators (taking
one-dimensional fields and ignoring indices for simplicity)∫

dx ψ̄(x)Aus(0)ψ(x) =

∫
dx

∫
dp1 dp2 dk e

ip1xe−ik(0)e−ip2x ψ̄(p1)Aus(k)ψ(p2)

=

∫
dp1 dp2 dk δ(p1 − p2) ψ̄(p1)Aus(k)ψ(p2). (4.12)

We see immediately that this corresponds to a 3-point Feynman rule where the small momentum k is
ignored relative to the large momenta p1 and p2, and that total momentum is not conserved at the vertex.
For the next order term we get∫

dx ψ̄(x)x(i∂Aus)(0)ψ(x) =

∫
dp1 dp2 dk δ

′(p1 − p2) k ψ̄(p1)Aus(k)ψ(p2). (4.13)
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Figure 5: Grid to picture the separation of momenta into label and residual components.

Here the Feynman rule involves a kδ′(p1 − p2) and we must integrate by parts to obtain the multipole
momentum conservation expressed by δ(p1 − p2). This integration by parts differentiates other parts of a
diagram that carry this momentum, in particular the neighbouring propagators, which then would produce
terms like the 2nd term in Eq. (4.11).

Since Feynman diagrams are almost always evaluated in momentum space it would be more convenient
to have a multipole expansion formalism that avoids the step of going through position space. In the
remainder of this section we will set up a formalism to achieve this. It will allow us to 1) simply derive
the corresponding momentum space Feynman rules, 2) simplify the formulation of gauge transformations
in the effective theory, and 3) incorporate the multipole expansion into propagators rather than vertices.

For the moment we only consider the quark part of the field ξ̂n(x). We will add the anti-quark part
later on. Computing the Fourier transform ξ̃n(p) of the quark part of our field we have

ξ̃n(p) =

∫
d4x eip·x ξ̂n(x). (4.14)

Now to separate momentum scales, we define our momentum pµ to be a sum of a large momentum
components pµ` called the label momentum and a small momentum pµr called the residual momentum.

pµ = pµ` + pµr (4.15)

pµ` ∼ Q(0, 1, λ)

pµr ∼ Q(λ2, λ2, λ2)

This decomposition is similar to the one found in HQET where the quark momentum is pµ = mvµ + kµ.
Although at the end of the day all momenta will be continuous, it turns out that it is quite convenient
for understanding the multipole expansion to interpret the p` as defining a grid of points, and the pr as
defining locations in the surrounding boxes. This expansion is only necessary for the p− and p⊥ momenta
since there are no label p+ momenta, so we have a grid as shown in Fig. 5 (for convenience we show
only one of the pµ⊥ components). Note that any momentum pµ has a unique decomposition in terms of
label and residual components. Since p` � pr the spacing between grid points is always much larger than
the spacing between points in a box. This setup has the advantage of allowing us to cleaning separate
momentum scales in integrands, arranging things so every loop integrand is homogeneous in λ.
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In practice the grid picture is a bit misleading, since actually the boxes are infinite and with momentum
components (p`, pr) we are really dealing with a product of continuous spaces R3 × R4/I where I are a
group of relations that remove redundancy order by order in λ. (I includes the set of RPI transformations
that we will discuss later on.) Nevertheless it is very convenient to derive the rules for integrals on the
label-residual space by working with a more familiar discrete label and continuous residual momentum
picture, and then taking the continuum limit.

Thus if we are integrating the collinear momentum p over a certain region, we will write∫
d4p→

∑
p` 6=0

∫
d4pr (4.16)

where we do not include p` = 0 in the sum over all p` values, because p` = 0 does not define a collinear
momentum. Indeed the p` = 0 bin corresponds to the ultrasoft modes. For an ultrasoft momentum p we
simply have ∫

d4p→
∫
d4pr . (4.17)

With this momentum separation we can also label our fields by both components

ξ̃n(p)→ ξ̃n, p`(pr) . (4.18)

We also have separate conservation laws for label and residual momenta∫
d4x ei(p`−q`)·x ei(pr−qr)·x = δp`,q` δ

4(pr − qr)(2π)4. (4.19)

Every collinear field carries both label and residual momenta, they are both conserved at all vertices,
but Feynman rules may depend on only one or the other of these components. For example, what was
previously a nonconservation of momenta for an interaction between collinear and ultrasoft particles now
becomes two separate conservations of momenta.

k

,

us

p pl r)( ,p pl r )( +kus

An example is shown in the figure above.

Finally, since all fields carry residual momenta the conservation law just corresponds to locality of the
field theory with respect to the Fourier transformed variable pr → x. Therefore we transform the residual
momenta back to position space to obtain our final collinear quark field

ξn,p`(x) =

∫
d4pr
(2π)4

e−iprx ξ̃n, p`(pr) . (4.20)

We will build operators using these fields. Altogether, the above steps allow us to rewrite our hatted
collinear field ξ̂n(x) as

ξ̂n(x) =

∫
d4p

(2π)4
e−ip·x ξ̃n(p) =

∑
p` 6=0

∫
d4pr
(2π)4

e−ip`·xe−ipr·x ξ̃n, p`(pr)

=
∑
pl 6=0

e−ip`·x ξn, p`(x) . (4.21)

We can identify several facts about label conservation for the field ξn,p`(x)
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4.1 SCETI Quark Lagrangian 4 SCET LAGRANGIAN

• Interactions with ultrasoft gluons or quarks leave the label momenta of collinear fields conserved.

• Interactions with collinear gluons or quarks will change label momenta.

• The label n for the collinear direction is preserved by both ultrasoft and collinear interactions. Only
a hard (external) interaction can couple fields with different collinear directions.

Now that we have separated momentum scales in our fields we would like to do the same with derivatives
that act on these fields. Since ξn, p`(x) contains only residual momenta, we know that

i∂µξn, p`(x) ∼ λ2ξn, p`(x). (4.22)

We also define a label momentum operator such that

Pµξn, p`(x) ≡ pµ` ξn, p`(x). (4.23)

Recall that Pµ and pµ` only contains the components P ≡ n̄ · P ∼ p−` ∼ λ0 and Pµ⊥ ∼ p⊥µ` ∼ λ. Therefore
we have n · P = 0. Also

in̄ · ∂ � P , i∂µ⊥ � P
µ
⊥ . (4.24)

The main advantage of the label operator is that it provides a definite power counting for derivatives. It
is also notationally friendly in that it removes the necessity of a label sum. We can see this by rewriting
our field ξ̂n(x) in terms of label momenta

ξ̂n(x) =
∑
p` 6=0

e−ip`·x ξn,p`(x)

= e−iP·x
∑
p` 6=0

ξn,p`(x)

≡ e−iP·xξn(x) . (4.25)

In the last line we defined ξn(x) =
∑

pl 6=0 ξn, pl . Since the label operator allows us to encode the phase
factor involving label momenta as an operator, we can suppress the momentum labels on our collinear
fields if there is no reason to make them explicit. For field products we have

ξ̂n(x)ξ̂n(x) = e−iP·xξn(x)ξn(x) (4.26)

where the label operator acts on both fields. Consequently, conservation of label momenta is simply
encoded by this phase factor and is manifest at the level of operators.

Lastly, we must deal with anti-particles and gluons. For the anti-particles, we expand our Dirac field
into two parts

ψ(x) =

∫
d4p δ(p2)θ(p0)

[
u(p)a(p)e−ip·x + v(p)b†(p)eip·x

]
(4.27)

= ψ+(x) + ψ−(x)

we then associate each part with a collinear field and expand as a sum over label momenta.

ψ+ −→ ξ̂+
n (x) =

∑
pl 6=0

e−ip`·xξ+
n, p`

(x) , (4.28)

ψ− −→ ξ̂−n (x) =
∑
p` 6=0

eip`·xξ−n, p`(x) ,
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4.1 SCETI Quark Lagrangian 4 SCET LAGRANGIAN

where both have a θ(p0
` ) = θ(n̄ · p`). Because of charge conjugation symmetry it is convenient to combine

the particle and anti-particle fields back into a single field. In order to do this we have to deal with the
opposite signs for their phase. To do this we define

ξn, p`(x) ≡ ξ+
n, p`

(x) + ξ−n,−p`(x) (4.29)

where p` has either sign, but one picks out particles and one picks out antiparticles. Thus the action of
the fields ξn,p` and ξ̄n,p` is that for

n̄ · p` > 0 : a particle is destroyed or created

n̄ · p` < 0 : an antiparticle is created or destroyed

The sign convention for the label momentum is easy to remember since it is in the same direction as the
fermion number flow. With this definition, we still define ξn(x) =

∑
p` 6=0 ξn,p`(x) and write

ξ̂n(x) = e−iP·xξn(x) , (4.30)

and all the manipulations we were making with particle fields carry through for the fields that have both
particles and antiparticles. For collinear gluons, we proceed analogously to find

Âµn =
∑
q` 6=0

e−iq`·xAµn,q` = e−iP·xAµn(x) (4.31)

where

Aµn(x) =
∑
q` 6=0

Aµn, q` . (4.32)

Since the gluon field Aµn = AµAn TA where AµAn (x) is real we also have

[AµAn,q`(x)]∗ = AµAn,−q`(x) . (4.33)

Once again for q−` > 0 the field An,q` destroys a gluon, while for q−` < 0 it creates a gluon.

With our conventions the action of the label operator on a bunch of labelled fields is

Pµ(φ†q1φ
†
q2 · · ·φp1φp2 · · · ) = (pµ1 + pµ2 + · · · − qµ1 − q

µ
2 − · · · )(φ

†
q1φ
†
q2 · · ·φp1φp2 · · · ). (4.34)

Thus it gives a minus sign when acting on daggered fields. It is also useful to note that if we differentiate
an arbitrary collinear field φ̂n(x) that it yields

i∂µφ̂n(x) = i∂µ
∑
p 6=0

e−ip·xφn, p(x)

=
∑
p 6=0

e−ip·x(Pµ + i∂µ)φn, p(x)

= e−iP·x(Pµ + i∂µ)φn(x). (4.35)

In the last line, we can suppress the exponent if we assume that label momenta are always conserved.
Effectively, by introducing the label operator we have replaced the ordinary derivative operation by

i∂µφ̂n(x)→ (Pµ + i∂µ)φn(x). (4.36)
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Final Result: Expand and put pieces together

At last, we may construct our final leading order Lagrangian. We begin with the result in Eq. (4.7).
By introducing label operators, we can expand the derivative in powers of λ as

in ·D = in · ∂ + gn ·An + gn ·Aus (4.37)

iD⊥ = (Pµ⊥ + gAµn⊥)︸ ︷︷ ︸
∼λ

+ (i∂µ⊥ + gAµ⊥, us)︸ ︷︷ ︸
∼λ2

+ · · ·

in̄ ·D = (P + gn̄ ·An)︸ ︷︷ ︸
∼λ0

+ (in̄ · ∂ + gn̄ ·Aus)︸ ︷︷ ︸
∼λ2

+ · · ·

where the ellipses again denote additional ∼ λ2 terms that can be dropped in our leading order analysis
(but later on we will see are required by gauge symmetry when considering power suppressed operators).
This allows us to write at leading power

iDµ = i∂µn + gAµn +
n̄µ

2
gn·Aus

≡ iDµ
n +

n̄µ

2
gn·Aus

≡ iDµ
ns , (4.38)

where the n-collinear derivative operator is

i∂µn ≡ P
nµ

2
+ Pµ⊥ + in · ∂ n̄

µ

2
. (4.39)

For later convenience we also define a collinear derivative including the leading ultrasoft gauge field

i∂µns ≡ i∂µn +
n̄µ

2
gn ·Aus . (4.40)

Dropping the hat on the collinear quark fields and keeping only the lowest order terms, we have the
following quark Lagrangian

L(0)
nξ = e−ix·P ξ̄n

(
in ·Dns + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

) /̄n
2
ξn , (4.41)

Dropping the exponential factor that enforces label momentum conservation, we write the collinear quark
Lagrangian in its final form

L(0)
nξ = ξ̄n

(
in ·Dns + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

) /̄n
2
ξn , (4.42)

Note the following interesting facts about this Lagrangian:

• Both terms with covariant derivatives in the (· · · ) in L(0)
nξ are of order λ2 so the leading order La-

grangian is order λ4 (recalling that the fields scale as ξn ∼ λ). Since for a Lagrangian with collinear
fields

∫
d4x ∼ λ−4 this gives us an action that is ∼ λ0 as desired. The superscript (0) on the

Lagrangian denotes this power counting for the action.

• All fields are defined at x, and derivatives for this coordinate scale as i∂µ ∼ λ2 so the action is
explicitly local at the scale Qλ2.
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• The action is also local at the scale of Pµ⊥ ∼ Qλ since these derivatives occur in the numerator. It
only has non-locality at the hard scale through the inverse P ∼ λ0. The fact that there is locality
except at the hard scale is a key feature of SCETI. Some attempts to tweak the formalism described
here, in order to simplify SCET, lead to actions that are non-local at the small scale ∼ λ2 because
they integrate out some onshell particles, while leaving other onshell particles to be described by an
action. We will avoid doing this, taking the attitude that low energy locality is a desired property
for the effective field theory.

• The collinear Lagrangian above can be written by (re)introducing an auxiliary field ϕn

L(0)
nξ = e−ix·P ΞniDns/ Ξn , Ξn ≡

(
ξn
ϕn̄

)
, (4.43)

since integrating out ϕn̄ exactly reproduces Eq.(4.42). In the absence of the ultrasoft gluon field the
covariant derivative Dns is equal to the collinear derivative Dn, such that the Lagrangian is the same
as the full QCD Lagrangian, with the only difference being that a particular direction n has been
singled out. Thus, in situations where ultrasoft gluons don’t matter, and one only considers a single
direction n, the collinear Lagrangian can be replaced by the full QCD Lagrangian.

The computation of the propagator from L(0)
nξ is also greatly simplified without the need for any additional

power counting. Specifically, Eq. (4.42) gives the collinear quark propagator

i/n

2

n̄ · p`
(n̄ · p`)(n · pr) + (p`⊥)2 + i0

. (4.44)

This gives the correct propagator in different situations without having to make further expansions. This
is important to ensure that the leading order Lagrangian strictly give O(λ0) terms, while subleading La-
grangians (and operators) will be responsible for power corrections. For example, if we have an interaction
with an ultrasoft gluon then

k

,

us

p pl r)( ,p pl r )( +kus

=
i/n
2

n̄·p`
(n̄·p`)(n·pr+n·kus)+(p`⊥)2+i0

,

(4.45)

while if we have an interaction with a collinear gluon then

,p pl r)( ,p pl r )( +

,q ql r)(

qr+ ql

=
i/n
2

(n̄·p`+n̄·q`)
(n̄·p`+n̄·q`)(n·pr+n·qr)+(p`⊥+q`⊥)2+i0

.

(4.46)

4.2 Wilson Line Identities

With the label operator formalism there are several neat identities that we can derive for Wilson lines. In
particular we can show that all occurences of the field n̄ ·An can always be entirely replaced by the Wilson
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line Wn. As an example we will show how this is done for the Lagrangian L(0)
nξ . In position space the

defining equations for a Wilson line are W (x, x) = 1 and its equation of motion, which we can transform
to momentum space

in̄ ·DxW (x,−∞) = 0 (position space)

⇓ Fourier Transform

in̄ ·DnWn = (P + gn̄ ·An)Wn = 0 . (4.47)

With this definition, the action of in̄ ·Dn on a product of Wn and some arbitrary operator is

in̄ ·Dn(WnO) = (P + gn̄ ·An)WnO
=
[
(P + gn̄ ·An)Wn

]
O +WnPO

= WnPO (4.48)

So we have the operator equation

in̄ ·DnWn = WnP (4.49)

and with W †nWn = 1 we have

in̄ ·Dn = WnPW †n , P = W †nin̄ ·DnWn , (4.50)

as operator identities. Since by collinear gauge invariance we can always group n̄ ·An with P to give in̄ ·Dn,
the first identity implies that we can always swap n̄ · An for the Wilson line Wn. Inverting these results
also gives useful operator identities

1

in̄ ·Dn
= Wn

1

P
W †n ,

1

P
= W †n

1

in̄ ·Dn
Wn . (4.51)

The first relation allows us to rewrite L(0)
nξ as

L(0)
nξ = e−ix·P ξ̄n

(
in ·Dns + i /Dn⊥Wn

1

P
W †ni /Dn⊥

) /̄n
2
ξn . (4.52)

It is also useful to note that we can use the label operator to write a tidy expression for the Wilson line
which is built from fields that carry both label and residual momenta:

Wn(x) =

[ ∑
perms

exp
(−g
P
n̄ ·An(x)

)]
. (4.53)

4.3 SCETI Collinear Gluon and Ultrasoft Lagrangians

To derive the collinear gluon Lagrangian, we treat usoft and collinear degrees of freedom separately by
letting Aµus represent a background field with respect to Aµn. We begin with the gluon Lagrangian from
QCD:

L = − 1

2
Tr
{
GµνGµν}︸ ︷︷ ︸

Gauge Kinetic Term

+ τTr{(i∂µAµ)2
}︸ ︷︷ ︸

Gauge Fixing Term

+2 Tr
{
c i∂µ[iDµ, c]

}︸ ︷︷ ︸
Ghost Term

(4.54)
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where Gµν = i
g [Dµ, Dν ]. Here we are using a notation with fundamental color matrices, Gµν = GAµνT

A,

c = cATA, etc., and recall that Tr(TATB) = TF δ
AB = δAB/2. Expanding the covariant derivative as we

did in the quark sector we keep only the leading order terms. For a covariant derivative acting on collinear
fields the leading order terms are

iDµ → iDµ
ns ≡

nµ

2
(P + gn̄ ·An) + (Pµ⊥ + gAµ⊥, n) +

n̄µ

2
(in · ∂ + gn ·An + gn ·Aus). (4.55)

Recall that the field Aµus varys much more slowly than Aµn, so we can think of Aµus as a background field
from the perspective of the collinear fields (even though it is a quantum field in its own right). The gauge
fixing and ghost terms for the collinear Lagrangian should break the collinear gauge symmetry, but we do
not want them to gauge fix the ultrasoft gluons, and hence they should be covariant with respect to the
Aµus connection. Since by power counting only the n ·Aus gluon can appear along with the collinear gluons
Aµn, only this component is needed. Therefore we replace i∂µ → i∂µns for all the ordinary derivatives in
Eq. (4.54) where

i∂µns ≡
nµ

2
P + Pµ⊥ +

n̄µ

2
in · ∂ +

n̄µ

2
gn ·Aus. (4.56)

The resulting leading order collinear gluon Lagrangian is then

L(0)
ng =

1

2g2
Tr
{

([iDµ
ns, iD

ν
ns])

2
}

+ τTr
{

([i∂µns, Anµ])2
}

+ 2Tr
{
cn[i∂nsµ, [iD

µ
ns, cn]]

}
. (4.57)

For the Langrangian with only ultrasoft quarks and ultrasoft gluons, at lowest order we simply have
the QCD actions. Using a general covariant gauge for the ultrasoft gluon field we therefore can write

L(0)
us = ψusi /Dusψus −

1

2
Tr
{
GµνusG

us
µν

}
+ τusTr

{
(i∂µA

µ
us)

2
}

+ 2Tr
{
cus i∂µiD

µ
uscus

}
, (4.58)

where iDµ
us = i∂µ + Aµus. All the terms in L(0) have a power counting of O(λ8), but we subtract 8 for the

ultrasoft measure d4x which is why we label the Lagrangian as (0). Note that the choice of gauge fixing
parameters τ and τus for the collinear and ultrasoft gluons are independent, which is related to the fact
that there are independent gauge symmetries that define these connections.

All together this allows us to write down the full leading order SCETI Lagrangian with a single set of
quark and gluon collinear modes in the n direction, and quark and gluon ultrasoft modes,

L(0) = L(0)
nξ + L(0)

ng + L(0)
us . (4.59)

4.4 Feynman Rules for Collinear Quarks and Gluons

For convenience we summarize some of the Feynman rules that follow from the collinear quark and gluon
Lagrangians. We do not show the purely ultrasoft interactions which are identical to those of QCD, nor
do we show the purely collinear gluon interactions which are also identical to those of QCD.

The Feynman rules that follow from the leading order collinear quark Lagrangian are shown in Fig. 6
where each collinear line carries momenta (p, pr) with label momenta pµ = n̄ ·p nµ/2 + pµ⊥ and residual
momentum pµr . Only one momentum p or p′ is indicated for lines where the Feynman rule depends only
on the label momentum. For the collinear quark propagator we have contributions from both quarks and
antiquarks which give:

in/

2

θ(n̄ · p)

n · pr +
p2
⊥
n̄·p + i0

+
in/

2

θ(−n̄ · p)

n · pr +
p2
⊥
n̄·p − i0

=
in/

2

n̄ · p
n̄ · p n · pr + p2

⊥ + i0
(4.60)
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(p, pr)
= i

n/
2

n̄·p
n·pr n̄·p+ p2⊥+i0

 μ , A

= ig TA nµ
n̄/
2

p pɂ

μ , A

= ig TA

[
nµ +

γ⊥µ p/⊥
n̄·p +

p ′/⊥γ
⊥
µ

n̄·p ′ − p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µ

]
n̄/
2

p pɂ

μ , A ν , B

q

= ig2 TA TB

n̄·(p−q)

[
γ⊥µ γ

⊥
ν −

γ⊥µ p/⊥
n̄·p n̄ν −

p ′/⊥γ
⊥
ν

n̄·p ′ n̄µ + p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

+ ig2 TB TA

n̄·(q+p′)

[
γ⊥ν γ

⊥
µ −

γ⊥ν p/⊥
n̄·p n̄µ −

p ′/⊥γ
⊥
µ

n̄·p ′ n̄ν + p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

Figure 6: Order λ0 Feynman rules: collinear quark propagator with label p and residual momentum pr, and
collinear quark interactions with one soft gluon, one collinear gluon, and two collinear gluons respectively.

The Feynman rules between collinear gluons and ultrasoft gluons are shown in Fig. 7 with a collinear gluon
in background field gauge that is ultrasoft covariant and specified by the parameter τ .

4.5 SCETII Lagrangian

Define i∂µs = nµ

2 in̄·∂ + n̄µ

2 n·P + Pµ⊥ In SCETII the scaling of the collinear and soft fields is given by

pn ∼ Q(1, λ2, λ) , ps ∼ Q(λ, λ, λ) , (4.61)

such that

p2
n ∼ p2

s ∼ Q2λ2 . (4.62)

However, the sum of a soft and collinear momentum scales as

pn + ps ∼ Q(1, λ, λ) ⇒ (pn + ps)
2 ∼ Q2λ . (4.63)

Since this combined momentum is more off-shell than the degrees of freedom in SCETII, there can be no
coupling between collinear and soft fields in SCETII. Thus, the two Lagrangians completely decouple.

The leading order collinear Lagrangian is the same as the collinear Lagrangian in SCETI, with the only
difference being that the coupling to the soft gluon is absent. This gives for the collinear quark Lagrangian

L(0)
nξ = ξ̄n

(
in ·Dn + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

) /̄n
2
ξn , (4.64)
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a, μ b, ν

(q, k)

= −i
n̄·q n·k + q2

⊥ + i0

(
gµν − (1− τ)

qµqν
n̄·q n·k + q2

⊥

)
δa,b

b, ν c, λ

a, μ

q2q1

= gfabcnµ
{
n̄ · q1 gνλ − 1

2(1− 1
τ )[n̄λq1ν + n̄νq2λ]

}
a, μ b, ν

c, λd, ρ

= −1
2 ig

2nµ

{
fabef cde(n̄λgνρ − n̄ρgνλ)

+fadef bce(n̄νgλρ − n̄λgνρ) + facef bde(n̄νgλρ − n̄ρgνλ)

}
a, μ b, ν

c, λ d, ρ
= 1

4 ig
2nµnν n̄ρn̄λ(1− 1

α)
{
facef bde + fadef bce

}

Figure 7: Collinear gluon propagator with label momentum q and residual momentum k, and the order λ0

interactions of collinear gluons with the usoft gluon field. Here usoft gluons are springs, collinear gluons
are springs with a line, and τ is the covariant gauge fixing parameter in Eq. (4.57).

while for the collinear gluon Lagrangian one finds

L(0)
ng =

1

2g2
Tr
{

([iDnµ, iD
ν
n])2

}
+ τTr

{
([i∂µn , Anµ])2

}
+ 2 Tr

{
cn [i∂nµ, [iD

µ
n, cn]]

}
. (4.65)

The soft Lagrangian is identical to the ultrasoft Lagrangian

L(0)
s = ψsi /Dsψs −

1

2
Tr
{
Gµνs Gsµν

}
+ τsTr

{
(i∂µA

µ
s )2
}

+ 2Tr
{
cs i∂µiD

µ
s cs

}
, (4.66)

4.6 Rules for Combining Label and Residual Momenta in Amplitudes

In practical calculations the grid picture in Fig. 5 is not to be taken literally. Doing so would correspond to
using a Wilsonian EFT with finite cutoff’s (edges for the grid boxes) that distinguish the size of momenta.
Instead of this, we need to use a Continuum EFT picture where the EFT modes have propagators that
extend over all momenta, but integrands which obtain their key contribution from the momentum region
these modes are built to describe. The terms needed to correct the (otherwise incorrect) ultraviolet
contributions of the resulting Continuum EFT are included as perturbative Wilson coefficients for low
energy operators. The Wilsonian and Continuum versions of EFT are really two different pictures of
the same thing, in much the same way that two different renormalization schemes may represent the
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physics in different ways, but in the end still do encode the same physics. Nevertheless there are many
practical advantages to the Continuum EFT framework, and it makes setting up SCET much easier. In
particular it allows us to use regulators like dimensional regularization which naturally preserve spacetime
and gauge symmetries. To setup up SCET in this continuum framework we need to understand how the
redundancy I in the label-residual momentum space Rd−1 × Rd/I (for the case with d-dimensions) is
resolved, given a pair of momenta components (p`, pr) ∈ Rd−1 × Rd. The upshot is that in the simplest
cases the residual momentum can simply be dropped or absorbed into a label momentum in the same
direction (making it continuous), while in the most complicated cases the formalism leads to so-called 0-
bin subtractions for collinear integrands. These subtractions ensure that the collinear modes do not double
count an IR region that is already properly included from an ultrasoft integrand. For future convenience
we list the rules in this section, but caution the reader that some parts of this section are best understood
when read together with one of the one-loop examples from section 7, and also after having read the
discussion of the reparameterization invariance symmetry in section 5.3 that describes the redundancy
(pµ` ) + (pµr ) = (pµ` + βµ) + (pµr − βµ) which specifies I.

For an arbitrary tree level diagram in SCET we will have some set of external lines that are either
ultrasoft or collinear (and either in the initial or final state), and also a set of collinear and ultrasoft
propagators. For the external lines that are ultrasoft we have only residual momenta kµus and the onshell
condition k2

us = 0. For the external lines that are collinear it suffices to take label momenta p−` = n̄ · p`
and pµ`⊥, and a single residual momentum p+

r . This amounts to picking βµ above to contain the full p−r
and pµr⊥ components. The onshell condition for the collinear particles is then simply p−` p

+
r − ~p 2

`⊥ = 0.
All propagators for intermediate collinear and ultrasoft lines are then simply determined by momentum
conservation as usual. At leading order in λ this perscription for tree diagrams simply amounts to the same
thing as dropping any ultrasoft momentum components k−us and k⊥us from collinear propagators, though of
course these momenta can still appear within ultrasoft propagators. At higher orders in λ these ultrasfot
momentum components can also appear from collinear propagators through Lagrangian insertions, which
yield terms like the second one in Eq. (4.11).

For loop diagrams and loop integrations we need several rules for operations on the label-residual
momentum space. Internal collinear lines should be considered as carrying loop momenta with two parts
q = (q`, qr), while ultrasoft propagators only carry loop momenta kr. There is a seperate momentum
conservation for the label and residual momenta. After using momentum conservation we have label
momenta from either external collinear particles or collinear loops, and residual momenta for external
ultrasoft particle, external collinear particles from p+

r , and from collinear and ultrasoft loops.

First we note that if we integrate over all label momenta q` and residual momenta qr that this will be
equal to an integration over all of the qµ momentum space, since it does not depend on how we divide the
momentum into the two components. For notational convenience we denote the label space integration as
a sum rather than an integral. In d-dimensions we have∑

q`

∫
ddqr =

∫
ddq , (4.67)

where we have recombined the label and residual momenta for the minus components, and the (d − 2)
⊥-components. This is relevant for combining the two collinear loop integrations back into a single d-
dimensional integration. In particular at leading order in λ after having used momentum conservation
there will always be one qµr for each collinear loop integration, where q−r and q⊥r do not appear in any
collinear or ultrasoft propagator, and hence not in the integrand F (q−` , q

⊥
` , q

+
r ). We can therefore use this
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residual momentum integration in Eq. (4.67) to obtain a full integration

1)naive :
∑
q`

∫
ddqr F (q−` , q

⊥
` , q

+
r ) =

∑
q`

∫
ddqr F (q−` + q−r , q

⊥
` + q⊥r , q

+
r ) =

∫
ddq F (q−, q⊥, q+) . (4.68)

In the first step we use the fact that F is constant throughout each box in the grid picture of Fig. 5 so its
the same with the first two arguments shifted by residual momenta. (In the continuum EFT picture its
the same property, F does not depend on residual momenta in these components.) In the final equality we
then combined the momenta back into a standard dimensional regularization integration as in Eq. (4.67).
Essentially at leading order in λ Eq. (4.68) amounts to the same thing that would be achieved by never
considering the split into label and residual momenta in the first place, and simply writing down the
integrand without ultrasoft momenta appearing in the − or ⊥ components in collinear propagators, which
corresponds to the lowest order term in the ultrasoft multipole expansion (and is an easy way to think
about the outcome of the above formal procedure). We have called this rule 1)naive because there is one
final complication that we will have to deal with, namely that the integration on q` must avoid producing
additional divergences when this collinear momentum enters the ultrasoft regime. We denote this fact by
q` 6= 0 if q is the momentum of a collinear propagator. These are referred to as 0-bin restrictions.4 We
will discuss the change needed which handles this complication below. Often the results for collinear loop
integrals are called “naive” if one uses Eq. (4.68). The result from this naive result will be correct if the
added terms which properly handle this complication turn out to be zero, which happens in some cases.

At higher orders in λ there will be dependence on the residual momentum components from higher
order terms in the multipole expansion of the collinear propagators. If these terms correspond to the
momentum components q−r and q⊥r that do not appear inside any ultrasoft propagators then the resulting
integration is zero

2) :
∑
q`

∫
ddqr (qr)

jF (q−` , q
⊥
` , q

+
r ) = 0 , (4.69)

where (qr)
j denotes positive powers of the q−r and q⊥r momenta, j > 0. Here Eq. (4.69) is like the dimensional

regularization rule,
∫
ddq(q2)j = 0 for j > 0, which is a consequence of retaining Lorentz invariance with

this regulator. Eq. (4.69) is the analogous statement in the residual momentum space and ensures that
we do not obtain nontrivial contributions from higher order terms in the multipole expansion, unless the
residual loop momentum corresponds to a physical momentum for an ultrasoft loop integration. Both
ultrasoft loop integrations and ultrasoft external particles introduce residual momenta into propagators
that can not be absorbed by a rule like that in Eq. (4.67). If we consider a case with an ultrasoft loop
integration, then there will be dependence on the residual momentum also in an ultrasoft propagator, so
the integration will give∑

q`

∫
ddqr

∫
ddkr F (q−` , q

⊥
` , q

+
r , k

µ
r ) =

∫
ddq

∫
ddk F (q−, q⊥, q+, kµ) , (4.70)

which in general is nonzero. This integrand corresponds to a mixed two-loop diagram with one loop
momentum with collinear scaling and one with ultrasoft scaling.

Finally let us consider the implications of the zero-bin when combining label and residual momenta.
Rather than Eq. (4.67) we can have ∑

q` 6=0

∫
ddqr , (4.71)

4After imposing momentum conservation we get a set of such restrictions, one for each collinear propagator. For example
q` 6= −p` if there is a collinear propagator carrying momentum q + p.
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Figure 8: SCETI zero-bin from one collinear direction scaling into the ultrasoft region.

where q` 6= 0 is simply a label to denote the fact that the label momentum q` must be large in order
to correspond to a collinear particle carrying total momentum q. If q` = 0 then the particle would
instead be ultrasoft, and we will often have included another diagram in SCET to account for the different
integrand that accounts for the proper expansion in this special case. Thus these zero-bin restrictions avoid
double counting between the SCET fields, which effectively means double counting from the resulting loop
integrations. It is easy to determine what the set of restrictions are for any diagram, since we have
one such condition for every collinear propagator. At leading order in λ only the zero-bin subtractions
corresponding to collinear gluon propagators can give non-zero contributions since operators containing
an ultrasoft quark together with collinear fields are power suppressed. In a continuum EFT these zerobin
restrictions are implemented by subtraction terms which can be determined as follows

1):
∑
q` 6=0

∫
ddqr F (q−` , q

⊥
` , q

+
r ) =

∑
q` 6=0

∫
ddqr F (q−` + q−r , q

⊥
` + q⊥r , q

+
r )

=
∑
q`

∫
ddqr F (q−` + q−r , q

⊥
` + q⊥r , q

+
r )−

∫
ddqr F

0(q−r , q
⊥
r , q

+
r )

=

∫
ddq F (q−, q⊥, q+)−

∫
ddqr F

0(q−r , q
⊥
r , q

+
r )

=

∫
ddq

[
F (q−, q⊥, q+)− F 0(q−, q⊥, q+)

]
. (4.72)

Here the integrand F 0 is derived from expanding the integrand for F by taking the label momenta that
appear in its first two arguments to instead scale as ultrasoft momenta ∼ λ2, expanding, and keeping the
dominant and any sub-dominant scaling terms up to those that are the same order in λ as the original
loop integration. If the original integrand F ∼ λ−4, then this corresponds to keeping just the terms up to
F 0 ∼ λ−8, which is often the leading term. (Together with the standard scaling for the collinear measure,
ddq ∼ λ4 and for the residual measure ddqr ∼ λ8 these two integrands give contributions that are both
the same order in λ.) In the last line we combine the subtraction term back together with the original
integrand, since the integration variables are after all just dummy variables. This set of steps makes it
clear that zero-bin contributions are encoded by subtractions.5 The scaling for the subtraction is shown
pictorally in Fig. 8. The F 0 term subtracts singularities from F that come from the region where the

5In fact, an alternate formulation of zero-bin subtractions that avoids the use of notation like q` 6= 0 is to note that in
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collinear momentum behaves like an ultrasoft momentum. In general when the subtraction integration is
non-trivial there will always exist a corresponding ultrasoft diagram where the integration is ultrasoft from
the start, which precisely corresponds with the contribution that the subtractions is allowing us to avoid
double counting.

In general, when one has a continuum EFT with modes that live in a two dimensional space, such as
those in Fig. 8, one has subtractions induced by the presence of modes at smaller (or equal) p2. Therefore
there are ultrasoft subtractions for the collinear modes, but no collinear subtractions for the ultrasoft
modes.

It also should be remarked that depending on the choice of infrared regulators, the subtraction terms
very often give scaleless integrations of combined dimension d − 4 in dimensional regularization. These
then just yield terms proportional to (1/εjUV − 1/εjIR), which are only important to properly interpret
whether factors of 1/ε from the naive collinear loop integration that used Eq. (4.68) are UV poles that
require a counterterm, or are IR poles that correspond with physical IR singularities in QCD. In particular
this is often the case for the simplest measurements with an offshellness IR regulator for collinear external
lines. More complicated measurements (such as those depending on a jet algorithm) or other choices of IR
regulators (like a gluon mass or a cutoff) will lead to zero-bin subtractions that are not scaleless.

We will return to this discussion when carrying out explicit examples of collinear loops in section 7.

5 Symmetries of SCET

In quantum field theory Lagrangians are often built up from symmetries and dimensional analysis. So far
our leading order SCET Lagrangians were derived directly from QCD at tree level. To go further, and
determine whether loops can change the form of the Lagrangians (through Wilson coefficients or additional
operators) we need to exploit symmetries and power counting. In this section, we will introduce the SCET
gauge symmetries and reparameterization invariance (RPI) as a way to constrain SCET operators. We will
find that the gauge symmetry formalism is a simple restatement of the standard QCD picture except with
two separate gauge fields. RPI is a manifestation of the Lorentz symmetry which was broken by the choice
of light-cone coordinates, and which acts independently in each collinear sector. We will also examine the
spin symmetries of the SCET Lagrangian, although here we will find that there are no surprises beyond
what we know from QCD.

5.1 Spin Symmetry

To examine the spin symmetry of L(0)
nξ it is convenient to write the Lagrangian in a two component form.

From Eq. (3.5) we can write

ξn =
1√
2

(
σ3ϕn
ϕn

)
, (5.1)

a theory with both collinear and ultrasoft modes, each collinear propagator is actually a distribution, like a generalized +-
function, that induces these subtraction terms. The fact that we drop higher order terms in the λ expansion when determining
F 0 implies that we are making the minimal subtraction that avoids double counting IR singularities. Indeed there in principle
could still be a double counting by a ”constant” contribution, but such constants will be properly taken care of by the matching
procedure. The minimal subtraction also ensures that the matching result remains independent of the IR regulator as desired.
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where ϕn is a two-component field, dim ϕn = dim ξn = 3/2, and ϕn ∼ λ. With this two-component field
the SCET Lagrangian is

L = ϕ†n

[
in ·D + iDµ

n⊥
1

in̄ ·D
iDν

n⊥(g⊥µν + iε⊥µνσ3)

]
ϕn . (5.2)

Due to the σ3 the spin symmetry is not an SU(2), but rather just the U(1) helicity symmetry corresponding
to spin along the direction of motion n of the collinear fields. The relevant generator is

Sz = iεµν⊥ [γµ, γν ]→ h = σ3. (5.3)

We can relate this symmetry to the chiral symmetry by noting that under chiral symmetry ξn transforms
as

ξn → γ5ξn =

(
0 1
1 0

)
1√
2

(
φn
σ3φn

)
so ϕn → σ3ϕn . (5.4)

This U(1)A axial-symmetry is broken by fermion masses and non-perturbative instanton effects. Just like
in QCD it is a useful symmetry for determining the structure of perturbation theory results. This implies
that in SCET it is useful for determining the basis of operators we obtain when integrating out hard
particles, and for relating Wilson coefficients.

5.2 Gauge Symmetry

The standard gauge transformation in QCD is

U(x) = exp[iαA(x)TA] . (5.5)

When we go to SCET we need to have gauge transformations which do not inject large momenta into our
EFT fields, that is, the transformations must leave us withing our effective field theory. For example, if we
used a gauge transformation where αA satisfied

i∂µα
A ∼ QαA (5.6)

then ξ′n = U(x)ξn would no longer have p2 ≤ Q2λ2 and would not be described by SCET. There are two
acceptable SCET gauge transformations which are defined by their momentum scale. They are

collinear Un(x) : i∂µUn(x) ∼ Q(λ2, 1, λ)Un(x) (5.7)

ultrasoft Uus(x) : i∂µUus(x) ∼ Q(λ2, λ2, λ2)Uus(x). (5.8)

There is also a global color transformation which for convenience we group together with the Uus. To
avoid double counting, in the collinear transformation we fix Un(n · x = −∞) = 1. We can implement a
collinear gauge transformation on the collinear fields ξn, pl via a Fourier transform. Since ψ(x)→ U(x)ψ(x)
is equivalent to ψ̃(p)→

∫
dq Ũ(p− q)ψ̃(q), the transformation involves a convolution in label momenta. To

understand how the collinear gauge field transforms under a collinear gauge transformation, we need to
recall that there is a background usoft gauge field Aµus. Consequently we must take ∂µ → ∂µns so that Aµn
transforms as a quantum field in an Aµus background. Therefore the collinear gauge transformations are

ξn, p(x)→ (Un)p−q(x) ξn,q(x) ,

gAµn,p(x)→ Un,p−q(x)
(
gAµn,q−q′(x) + δq,q′i∂

µ
ns

)
U †n,q′(x) , (5.9)
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Object Collinear Uc Usoft Uus
ξn(x) Ûn(x)ξn(x) Uus(x) ξn(x)

Aµn(x) Ûn(x)(Aµn(x) + i
g∂

µ
ns)Û

†
n(x) Uus(x)Aµn(x)U †us(x)

Wn(x) Ûn(x)Wn Uus(x)W (x)U †us(x)

qus(x) qus(x) Uus(x) qus(x)

Aµus(x) Aµus(x) Uus(x)(Aµus(x) + i
g∂

µ)U †us(x)

Y (x) Y (x) Uus(x)Y (x)

Table 2: Gauge transformations for the collinear and usoft fields from Ref. [?], where i∂µns ≡ nµ

2 n̄ ·P +

Pµ⊥ + n̄µ

2 i n·Dus. The collinear fields and transformations are understood to have momentum labels and
involve convolutions, but for simplicity these indices are suppressed. The usoft transformations do not
change the momentum labels of collinear fields.

Objects Collinear Uc Soft Us
ξn(x) Ûn(x) ξn(x) ξn(x)

Aµn(x) Ûn(x) (Aµn(x) + i
g∂

µ
n) Û †n(x) Aµn(x)

W (x) Ûn(x)W (x) W (x)

qs(x) qs(x) Ûs(x) qs(x)

Aµs (x) gAµs (x) Ûs (Aµn(x) + i
g∂

µ
s )Û †s (x)

S(x) S(x) Ûs(x)S(x)

Table 3: Gauge transformations for collinear and soft fields in SCETII from Ref. [?]. Momentum labels
are suppressed, and we have defined i∂µn = n̄µ

2 in·∂ + nµ

2 n̄·P + Pµ⊥ and i∂µs = nµ

2 in̄·∂ + n̄µ

2 n·P + Pµ⊥ are
defined to only pick out collinear and soft momenta respectively. Here i∂µc 6= iDµ since usoft fields are not
included in SCETII.

where we sum over repeated momentum label indices. It is convenient to setup a matrix notation for these
convolutions by defining

(Ûn)p`,q` ≡ (Un)p`−q` , (5.10)

where the LHS is the (p`, q`) element of a matrix in momentum space, and the RHS is a number (both
are of course also matrices in color). Then Eq. (5.9) with a sum over repeated indices becomes ξn, p` →
(Ûn)p`,q`ξn,q` . And if we suppress indices then we have ξn → (Ûn)ξn.

Finally the ultrasoft fields do not transform under a collinear gauge transformation, since the resulting
field would have a large momentum and hence no longer be ultrasoft. Essentially this means that by
definition our collinear gauge transformations do not turn ultrasoft gluons into collinear gluons.

For usoft gauge transformations, the field ξn and Aµn transform as quantum fields under a background
gauge transformation, which is to say they transform as matter fields with the appropriate representation.
The usoft fields have their usual gauge transformations from QCD. Since all of the fields transform, these
ultrasoft gauge transformations connect fields in operators that are mixtures of collinear and ultrasoft
fields. This differs from Un(x) which only connects collinear fields to each other.

For SCETII, the gauge transformation are simpler, since the virtuality of the soft fields are too large
to be a background field to the collinear fields. Thus, the two gauge transformation completely decouple
from one another, and both sectors transform separately as full QCD fields.
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It is important to note that the gauge transformations are homogeneous in the power counting, so they
do not change the order in λ for transformed operators. They are exact, there are no corrections to these
transformations at higher orders in λ, and thus the power expansion will have gauge invariant operators
at each order in λ.

The transformation of the fields yield transformations for objects that are built from the fields. An
important case is the Wilson line Wn which is like the Fourier transform of W (x,−∞). In QCD a general
Wilson line with the gauge field along a path will transform on each end as W (x, y)→ U(x)W (x, y)U †(x).
For the collinear gauge transformation we have fields in momentum space for labels, and position space
representing residual momenta, and U †n(−∞) = 1, so the Wilson line transforms only on one side for
collinear transformations. For ultrasoft transformations Wn(x) is actually a local operator with all fields

at x, and the product of multiple n̄ ·An(x)→ Uus(x)n̄ ·An(x)U †us(x) leads to one Uus and U †us on the left
and right. Thus with the matrix notation

collinear : Wn(x)→ Ûn(x)Wn(x) ,

ultrasoft : Wn(x)→ Uus(x)Wn(x)U †us(x) . (5.11)

It is useful to consider the correspondence between the appearance of the Wilson line Wn in operators,
and the collinear gauge symmetry. If we consider our example of the heavy-to-light current then without the
Wilson line the operator ξ̄nΓhusv is not gauge invariant, transforming to ξ̄nU

†
nΓhusv . Here the ξn transforms

because collinear gluons couple to ξn without taking it offshell, but husv does not transform because this
ultrasoft field can not interact with the collinear gluons while remaining near its mass shell. But recall
that when the offshell collinear gluons are accounted for in matching onto the SCET operator that the
n̄ ·An ∼ λ0 gluons generate a Wilson line Wn, so the complete result from tree level matching is

JSCET = ξ̄nWnΓhusv . (5.12)

Now under a collinear gauge transformation JSCET → ξ̄nÛ
†
nÛnWnΓhusv = ξ̄nWnΓhusv , so the current is

collinear gauge invariant. Under an ultrasoft gauge transformation JSCET → ξ̄nU
†
usUusWnU

†
usΓUush

us
v =

ξ̄nWnΓhusv , so the current is also ultrasoft gauge invariant. Thus the leading order attachments of n̄ · An
gluons that lead to the Wilson line Wn are necessary to obtain a gauge invariant result. Furthermore,
by gauge symmetry the fact that the product ξ̄nWn appears in the operator will not be modified by loop
corrections. We will take up what modifications can be generated by loop corrections in section 6.2 below.

Gauge symmetry forces gauge fields and derivatives to occur in the following combinations

in·Dns = in · ∂ + gn ·An + gn ·Aus , (5.13)

iDµ
n⊥ = Pµ⊥ + gAµn⊥ ,

in̄ ·Dn = P + gn̄ ·An ,
iDµ

us = i∂µ + gAµus .

We see that gauge symmetry is a powerful tool in determining the structure of operators. It is reasonable

to ask, is power counting and gauge invariance enough to fix the leading order Lagrangian L(0)
nξ for ξn?

Only the operators in ·D and (1/P)Dn⊥Dn⊥ are O(λ2) and have the correct mass dimension. The latter
will have the correct gauge transformation properties once we include Wns. Nevertheless, nothing so far
rules out the operator

ξniD
µ
n⊥Wn

1

P
W †niD

⊥
nµ

/̄n

2
ξn (5.14)

which is gauge invariant and has the correct λ scaling. To exclude this term we need to consider another
symmetry prinicple, namely reparameterization invariance.
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5.3 Reparamterization Invariance

Our choice of the n and n̄ reference vectors explicitly breaks Lorentz symmetry in SCET, much like v does
in HQET. Part of this breaking is natural, SCETI is describing a collimated jet which explicitly picks out
a corresponding n-collinear direction about which the field theory is describing fluctuations. There is also
a part of the symmetry that is restored by the freedom we have in choosing our n and n̄ vectors, which
is a reparameterization invariance (RPI). A second attribute of the reparameterization symmetry is the
freedom we have in splitting momenta between label and residual components. We will explore these two
in turn.

The only required property of a set of n, n̄ basis vectors is that they satisfy

n2 = n̄2 = 0, n · n̄ = 2. (5.15)

Consequently a different choice for n and n̄ can yield a valid set of light-cone coordinates as long as our
result still obeys (5.15). Specifically, there are three sets of transformations which can be made on a set of
light-cone coordinates to obtain another, equally valid, set.

I II III
nµ → nµ + ∆⊥µ nµ → nµ nµ → eαnµ

n̄µ → n̄µ n̄µ → n̄µ + ε⊥µ n̄µ → e−αn̄µ

(5.16)

where n̄ · ε⊥ = n · ε⊥ = n̄ ·∆⊥ = n ·∆⊥ = 0. The first two transformations are inifinitesimal. The third is a
finite transformation (where the form is simple), but can be made infinitesimal by expansion in α. These
transformations must leave a collinear momentum collinear in the same directions, so we can obtain the
λ-scaling of these parameters by noting that:

λ2 ∼ n · p→ n · p+ ∆⊥ · p⊥ =⇒ ∆⊥ ∼ λ1 (5.17)

λ0 ∼ n̄ · p→ n̄ · p+ ε⊥ · p⊥ =⇒ ε⊥ ∼ λ0

α ∼ λ0

Thus only ∆⊥ is constrained by the power counting, while large changes are allowed for α and ε⊥. These
RPI transformations are a manifestation of the Lorentz symmetry which was broken by introducing the
vectors n and n̄. The five infinitesimal parameters ∆⊥µ , ε⊥µ , and α correpsond to the five generators of the
Lorentz group which were broken by introducing the vectors n and n̄. These generators are defined by
{nµMµν , n̄µM

µν} or in terms of our standard light-cone coordinates Q±1 = J1 ±K2, Q±2 = J2 ±K1, and
K3. Here Mµν are the usual 6 antisymmetric SO(3,1) generators.

If we start with our canonical basis choice n = (1, 0, 0, 1) and n̄ = (1, 0, 0,−1) then we can visualize
the Type I and Type II transformations as changes in the directions orthogonal to the ẑ direction

I
=⇒

II
=⇒
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and we can visualize Type III transformations as boosts in the ẑ direction. For Type I we can transform n
by an O(λ) amount, into another vector within this collinear sector, without changing any of the physics.
For Type II we recall that the auxillary vector n̄ was chosen simply to enable us to decompose momenta,
so their is a considerable freedom in its definition, and this corresponds to the freedom to make large
transformations. (If we start with a more general choice for n and n̄ that satisfies Eq. (5.15) then the
picture for the Type-III transformation is more complicated than a simple boost.)

The implications of the Type III transformation for SCET operators are very simple, n and n̄ must
appear in operators either together, or with one factor of n̄/n in both the numerator and denominator.
That is, in one of the combinations

(A · n)(B · n̄),
A · n
B · n

,
A · n̄
B · n̄

(5.18)

where Aµ and Bµ are arbitrary 4-vectors.

In order to derive the complete set of transformation relations we must also determine how pµ⊥ trans-
forms. Recall that the definition of p⊥ depends on n and n̄, since it is orthogonal to n and n̄, satisfying
n · p⊥ = 0 = n̄ · p⊥. We can work out its transformation by noting that the four vector pµ does not depend
on the basis for coordinates. Using the Type-I transformation as an example

pµ =
nµ

2
n̄ · p+

n̄µ

2
n · p+ pµ⊥ =⇒ nµ

2
n̄ · p+

n̄µ

2
n · p+ pµ⊥ +

∆µ
⊥

2
n̄ · p+

n̄µ

2
∆⊥ · p⊥ + δI(p

µ
⊥) = pµ . (5.19)

Thus pµ⊥ must transform as

pµ⊥
I

=⇒ pµ⊥ −
n̄µ

2
∆⊥ · p⊥ −

∆µ
⊥

2
n̄ · p . (5.20)

The projection relation (n/n̄//4)ξn = ξn also implies that ξn → [1 + ( /∆
⊥
n̄/)/4]ξn. Similar relations can also

be worked out for type-II transformations, for example

pµ⊥
II

=⇒ pµ⊥ −
nµ

2
ε⊥ · p⊥ −

εµ⊥
2
n · p . (5.21)

Summarizing all the type-I and type-II transformations on vectors and fields (using Dµ as a typical vector)
we have

I II

n→ n+ ∆⊥ n→ n
n̄→ n̄ n̄→ n̄+ ε⊥

n ·D → n ·D + ∆⊥ ·D⊥ n ·D → n ·D
D⊥µ → D⊥µ −

∆⊥µ
2 n̄ ·D − n̄µ

2 ∆⊥ ·D D⊥µ → D⊥µ −
ε⊥µ
2 n ·D −

nµ

2 ε
⊥ ·D

n̄ ·D → n̄ ·D n̄ ·D → n̄ ·D + ε⊥ ·D⊥

ξn →
(

1 + 1
4
/∆
⊥
/̄n
)
ξn ξn →

(
1 + 1

2/ε
⊥ 1
in̄·D i /D⊥

)
ξn

Wn →Wn Wn →
(
1− 1

in̄·D ε
⊥ · iD⊥

)
Wn

(5.22)

For type-III transformations pµ⊥ does not transform, and neither does Wn.

We can show that our leading order SCET Lagrangian

L(0)
nξ = ξnin ·Dns

/̄n

2
ξn + ξni /Dn,⊥

1

in̄ ·Dn
i /Dn⊥

/̄n

2
ξn (5.23)
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is invariant under these transformations. Under a type-I transformation we have

δIL(0)
nξ = δI

(
ξnin ·Dns

/̄n

2
ξn

)
+ δI

(
ξni /Dn,⊥

1

in̄ ·Dn
i /Dn⊥

/̄n

2
ξn

)
(5.24)

= ξni∆
⊥ ·D⊥n

/̄n

2
ξn − ξni∆⊥ ·D⊥n

/̄n

2
ξn

= 0

where to obtain the second line we used n̄/2 = 0, the orthogonal properties of the 4-vectors, and ignored
quadratic combinations of the ∆⊥ infinitesimal. Hence the SCET quark Lagrangian obtained from tree
level matching is indeed invaraiant under δI. However, this Lagrangian is not completely determined by
invariance under δI. For example, the term we encountered at the end of the gauge symmetry section
transforms as

δ(I)

(
ξniDn⊥µ

1

in̄ ·Dn
iDµ

n⊥
/̄n

2
ξn

)
= −ξni∆⊥ ·Dn⊥

/̄n

2
ξn (5.25)

which is the same transformation as for the second term in (5.24). Consequently, we may replace the
second term with this new term with no violation of power counting, gauge symmetry, or RPI type-I.
This ambiguity is only resolved by using invariance under RPI of type-II. The detailed calculation is given

in [7] with the final result that our Lagrangian L(0)
nξ remains invariant under δII while the term given in

(5.14) does transforms in a way that can not be compensated by any other leading order term in the

Lagrangian. Therefore our SCETI Lagrangian L(0)
nξ is unique by power counting, gauge invariance, and

reparameterization invariance. This also implies that its form is not modifed by loop corrections. In general
type-III RPI will restrict operators at the same order in λ, type-I restricts operators at different orders in
λ, and type-II will restrict operators at both the same and different orders in λ.

Reparameterization invariance also manifests itself in the ambiguity of label and residual momenta
decomposition. We can separate the total momenta

n̄ · p = n̄ · (p` + pr) pµ⊥ = pµl⊥ + pµr⊥ (5.26)

into p` and pr in different ways as long as we maintain the power counting. Specifically, a transformation
that takes

Pµ → Pµ + βµ i∂µ → i∂µ − βµ (5.27)

implements this freedom. The transformation on i∂µ is induced by the β-transformation of the fields, for
example

ξn,p(x)→ eiβ(x)ξn,p+β(x) . (5.28)

The set of these β transformations also determines the space of equivalent decompositions I that we mod
out by when constructing pairs of label and residual momenta components (p`, pr) in R3 × R4/I. We will
refer to this as type-0 RPI to distinguish it from those discussed above. Invariance under this RPI requires
the combination

Pµ + i∂µ (5.29)

to be grouped together for collinear fields. Since P and in̄ · ∂ (and Pµ⊥ and i∂µ⊥) appear at different orders
in the power counting, this RPI connects the Wilson coefficients of operators at different orders in λ.
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A natural question is how to gauge the connection between label and residual derivatives in (5.29).
Recall that the gauge transformations for derivatives are

collinear ultrasoft

iDn⊥ → ÛniDn⊥Û
†
n UusiDn⊥U

†
us

in̄ ·Dn → Ûnin̄ ·DnÛ
†
n Uusin̄ ·DnU

†
usm

in ·D → Ûnin ·DÛ †n Uusin ·DU †us
iDµ

us → iDµ
us UusiD

µ
usU

†
us

The most natural guess for the gauging of (5.29) would be

iDµ
n⊥ + iDµ

us⊥ , in̄ ·Dn + in̄ ·Dus . (5.30)

However, with the above transformations these combinations do not have uniform transformations under
the gauge symmetries, since Dus does not transform under Un. We can rectify this problem by introducing
our Wilson line Wn into the combination of these derivatives. The unique result which preserves the SCET
gauge symmetries without changing the power counting of the terms is

iDµ
⊥ ≡ iD

µ
n⊥ +WniD

µ
us⊥W

†
n (5.31)

in̄ ·D ≡ in̄ ·Dn +Wnin̄ ·DusW
†
n , (5.32)

where Wn transforms as Wn → UnWn. Stripping off the regular derivative terms, the extra multi-gluon
terms appearing in the formulae like Aµ⊥ = Aµn⊥+Aµus⊥+ . . . are the terms we denoted by ellipses in (4.9).
These terms are necessary to form gauge invariant subleading operators.

Like in HQET, the RPI in SCET connects the Wilson coefficients of leading and λ-suppressed La-
grangians and external currents and operators. As an example, applying the connection to the term

ξ̄ni /Dn,⊥Wn(1/P) W †ni /Dn,⊥ξn in L(0)
nξ yields the subleading Lagrangian that couples collinear quarks to Aus⊥

gluons,

L(1)
nξ = (ξ̄nWn)i /D

us
⊥

1

P
(W †ni /Dn,⊥ξn) + (ξ̄ni /Dn,⊥Wn)

1

P
i /D

us
⊥ (W †nξn). (5.33)

The complete set of SCETI power suppressed Lagrangians up to O(λ2) can be found below in Sec. 8.2.

5.4 Discrete Symmetries

After considering the residual form of Lorentz symmetry encoded in reparameterization invariance it is
natural to consider how our SCET fields transform under C, P, and T transformations. In this case we
will satisfy ourselves with the transformations of the collinear field ξn,p. We have

C−1ξn,p(x)C = −[ξ̄n,−p(x)C]T (5.34)

P−1ξn,p(x)P = γ0ξn̄,p̃(xP )

T−1ξn,p(x)T = T ξn̄,p̃(xT )

where n = (1, 0, 0, 1), n̄ = (1, 0, 0,−1), p ≡ (p+, p−, p⊥), x ≡ (x+, x−, x⊥), C is the standard matrix induced
by charge conjugation symmetry, and we have defined p̃ = (p−, p+,−p⊥) as well as xP = (x−, x+,−x⊥)
and xT = (−x−,−x+, xT ).
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5.5 Extension to Multiple Collinear Directions

For processes with more than one energetic hadron, or more than one energetic jet our list of degrees of
freedom must include more than one type of collinear mode, and hence more than one type of collinear
quark and collinear gluon. When two collinear modes in different directions interact, the resulting particle
is offshell, and does not change the formulation of the leading order collinear Lagrangians. Therefore the
Lagrangian with multiple collinear directions is

L(0)
SCETI

= L(0)
us +

∑
n

[
L(0)
nξ + L(0)

ng

]
. (5.35)

for n1, n2, n3, . . . collinear modes in the sum on n. The collinear modes are distinct only if

ni · nj � λ2 for i 6= j . (5.36)

We may understand this result by a counter argument: If a momentum p2 = Qn2, then n1·p2 = Qn1·n2 ∼ λ2

iff n1 ·n2 ∼ λ2. Hence p2 is n1-collinear, and n2 is not a distinct collinear direction from n1. If ni ·n1 ∼ λ2

then we say that ni is within the RPI equivalence class [n1] defined by the member n1. Distinct collinear
directions correspond to the different equivalence classes, and we only sum over distinct directions in
Eq. (5.35).

Essentially all of the things we derived with one collinear direction get repeated when we have more
than one collinear direction.

• For each light-like ni we define an auxillary light-like n̄i where ni ·n̄i = 2. Collinear momenta in the ni
direction are decomposed with the {ni, n̄i} basis vectors since the components have a definite power
counting: (ni · p, n̄i · p, pni⊥) ∼ (λ2, 1, λ). Note that the meaning of ⊥ depends on which ni-collinear
sector we are discussing.

• There is a separate RPI for each ni-collinear sector that only acts on the ni-collinear fields, and on
objects decomposed with the {ni, n̄i} basis vectors. Here there is no simple connection to an overall
Lorentz transformation because the fields in other sectors do not transform.

• There is a collinear gauge transformation Uni for each type of collinear field. Only the fields in the
ni-collinear direction transform (fields in other collinear sectors do not transform with Uni since such
transformations would yield offshell momenta that are outside the effective theory).

• Matching calculations generate multiple collinear Wilson lines Wni = Wni [n̄i · Ani ]. The definitions
are identical to Eq. (4.53) with n → ni, n̄ → n̄i, including P → n̄i · P. They are again always
built only out of the O(λ0) gluon fields, and correspond to straight Wilson lines. These matching
calculations lead to operators in SCET that are gauge invariant under Uni transformations.

As an example of the last point consider the process e+e− → γ∗ → two-jets. The QCD current is
Jµ = ψ̄γµψ. By integrating out offshell fields to match onto SCETI we obtain the leading order current

JµSCET = (ξ̄n1Wn1)γµ(W †n2
ξn2) . (5.37)

Here n1 and n2 are the directions of the two jets. The Wilson line Wn1 = Wn1 [n̄1 · An1 ] is generated by
integrating out the attachment of n̄1 · An1 gluons to n2-collinear quarks and gluons, and analogously for
Wn2 . The resulting operator in Eq. (5.37) is invariant under n1-collinear, n2-collinear, and ultrasoft gauge
transformations. In general one can carry out all orders tree level matching computations to derive the
presence of these Wilson lines. For situations with multiple lines in different directions these calculations
are greatly facilitated by using the auxillary field method (see the appendices of [6, 8]).
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Figure 9: The attachments of ultrasoft gluons to a collinear quark line which are summed up into a
path-ordered exponential.

6 Factorization from Mode Separation

One of the benefits of the SCET formalism is the clear separation of scales at the level of the Lagrangian
and of operators that mediate hard interatctions. We will explore the factorization between various types
of modes in this section.

6.1 Ultrasoft-Collinear Factorization

Recall that only the n · Aus component couples to n-collinear quarks and gluons at leading order in λ.
This is explicit in the Feynman rules in Figs. 6 and 7 where only nµ appears for the ultrasoft gluon with
index µ. Furthermore due to the multipole expansion the collinear particles only see the n · k ultrasoft
momentum of the n ·Aus gluons. For example, if we consider Fig. 9 with only one ultrasoft gluon then the
collinear quark propagator is

n̄ · p
n̄ · p n · (pr + k) + p2

⊥ + i0
=

n̄ · p
n̄ · p n · k + p2 + i0

=
n̄ · p

n̄ · p n · k + i0
, (6.1)

where in the last equality we used the onshell condition p2 = 0 for the external collinear quark. Together
with the nµ from the vertex this result corresponds to the eikonal propagator for the coupling of soft gluons
to an energetic particle. The appropriate sign for the i0 is determined by dividing through by n̄ · p and
noting the sign of this momentum, which differs for quark and antiquarks. Accounting for attachments to
incoming or outgoing particles this leads to the four eikonal propagator results summarized in Fig. 10.

Now, we consider the case of multiple usoft gluon emission. Calculating within SCET the graphs in
Fig. 9 gives Γ Ỹnun where Γ is the structure at the ⊗ vertex, and un is a collinear quark spinor. Here

Ỹn =

∞∑
m=0

∑
perms

(−g)mn ·Aa1(k1) · · ·n ·Aam(km)T am · · ·T a1

n · k1n · (k1 + k2) · · ·n · (
∑

i ki)
(6.2)

where all propagators are +i0. These eikonal propagators come from collinear quarks with offshellness
∼ λ2, which is near their mass shell, and hence are a property of fields in the EFT itself (as opposed to the
Wilson lines Wn which were generated by matching onto the EFT). This corresponds to the momentum
space formula for an ultrasoft Wilson line Yn. In position space this formula becomes

Yn(x) = Pexp

[
ig

∫ 0

−∞
ds n ·Aaus(x+ ns)T a

]
. (6.3)

It satisfies a defining equation and unitarity condition:

in ·Dus Yn = 0, Y †nYn = 1. (6.4)
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Figure 10: Eikonal i0 prescriptions for incoming/outgoing quarks and antiquarks and the result that
reproduces this with an ultrasoft Wilson line and sterile quark field.

For the case where the Wilson line is in the fundamental representation T a → T aαβ, while for a Wilson line

in the adjoint representation T a → −ifabc. We will assume that all Wilson lines are in the fundamental
representation and reserve the notation Yn for this case. For the adjoint Wilson line we will use Yn.

When we wish to be specific in the notation for our Wilson lines to show whether they extend from −∞
or out to +∞, and whether they are path-ordered or antipath-ordered, we will use the following notations

Yn+ = P exp
(
ig

∫ 0

−∞
ds n·Aus(x+ sn)

)
, Yn− = P exp

(
−ig
∫ ∞

0
ds n·Aus(x+ sn)

)
, (6.5)

Y †n− = P exp
(
−ig
∫ 0

−∞
ds n·Aus(x+ sn)

)
, Y †n+ = P exp

(
ig

∫ ∞
0
ds n·Aus(x+ sn)

)
.

Here (Yn±)† = Y †n∓, and the subscript on Y †n± should be read as (Y †n )± rather than (Y±)†. The + denotes
Wilson lines obtained from attachments to quarks, and the − denotes Wilson lines from attachments to
antiquarks. The Wilson lines obtained for various situations are shown in Fig. 10.

The generation of the Wilson line Yn from the example above motivates us to consider whether all the
leading order usoft-collinear interactions within SCETI (to all orders in αs and with loop corrections) can
be encoded through the non-local interactions contained in the Wilson line Yn(x). To show that this is
indeed the case we consider the BPS field redefinitions [6]

ξn,p(x) = Yn(x)ξ(0)
n,p(x), Aµn,p(x) = Yn(x)A(0)µ

n,p (x)Y †n (x) . (6.6)

They include in addition cn,p(x) = Yn(x) c
(0)
n,pY

†
n (x) for the ghost field in any general covariant gauge.

The defining equation for Yn implies the operator equation

Y †n in ·DusYn = in · ∂. (6.7)

Also because the label operator P commutes with Yn the redefinition on n̄ ·An in (6.6) implies that

Wn → YnW
(0)
n Y †n , (6.8)

where W
(0)
n is built from n̄ ·A(0)

n fields. Implementing these transformations into our leading collinear quark
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Lagrangian we find

L(0)
nξ = ξn

(
in ·D + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

)
/̄n

2
ξn

= ξn

(
in ·Dus + gn ·An,q + (/P⊥ + g /An,q⊥)W

1

P
W †(/P⊥ + g /An,q⊥)

)
/̄n

2
ξn

= ξ
(0)
n Y †

(
in ·Dus + gY n ·A(0)

n,qY
†

+(/P⊥ + gY /A
(0)
n,q⊥Y

†)YW (0)Y †
1

P
YW (0)†Y †(/P⊥ + g /A

(0)
n,q⊥)

)
/̄n

2
Y ξ(0)

n

= ξ
(0)
n

(
in · ∂ + gn ·A(0)

n,q + (/P⊥ + g /A
(0)
n,q⊥)W (0) 1

P
W (0)†(/P⊥ + g /A

(0)
n,q⊥)

)
/̄n

2
ξ(0)
n

= ξ
(0)
n

(
in ·D(0)

n + i /D
(0)
n⊥

1

in̄ ·D(0)
n

i /D
(0)
n⊥

)
/̄n

2
ξ(0)
n , (6.9)

where the last line is completely independent of the usoft gluon field. With similar steps we can easily

show that the collinear gluon Lagrangian L(0)
ng in (4.57) also completely decouples from the n · Aus usoft

gluon field. In summary, we see that the usoft gluons have completely decoupled from collinear particles

in the leading order collinear Lagrangian L(0)
n = L(0)

nξ + L(0)
ng via

L(0)
n

[
ξn,p, A

µ
n,q, n ·Aus

]
= L(0)

n

[
ξ(0)
n,p, A

(0)µ
n,q , 0

]
. (6.10)

However, it is important to note that the usoft interactions for our collinear field have not disappeared,
but have simply moved out of the Lagrangian and into the currents. We must make the field redefinition
everywhere, including external operators and currents, as well as on interpolating fields for partons and
hadrons. The field redefinition on the interpolating fields that describe incoming and outgoing states
will determine whether the final usoft Wilson lines are Y+, Y †+, Y−, or Y †− since these interplolating field
operators are localized either at −∞ or +∞.

Eg.1: Consider our standard heavy-to-light current. Performing the field redefinitions we have

Jµ = ξn,WΓµhv = ξ
(0)
n Y †nYnW

(0)Y †nΓµhv (6.11)

= ξ
(0)
n W (0)ΓµY †nhv .

The last line gives us our first factorization result. Since ξ̄n is an outgoing quark, here Y †n = Y †+. As
is necessary for effective theories, we will need to include a Wilson coefficient encoding higher energy
dynamics, but we can already clearly see how different scales have separated into distinct gauge invariant

quantities (ξ
(0)
n,pW

(0)) and (Y †nhv) at the level of operators. We can demonstrate this ultrasoft-collinear

factorization diagrammatically by considering the time ordered product of two currents TJµ(x)J†ν(0)
(whose imaginary part is related to the inclusive decay rate). Rather than having diagrams with ultrasoft
gluons coupling to collinear lines they decouple into distinct parts:
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Eg.2: Consider a current that is a global color singlet within the n-collinear sector

Jµ = (ξnW )ΓµW †ξn = (ξ
(0)
n W (0))Γµ(W (0)†ξ(0)

n ) . (6.12)

Here all the usoft gluons have cancelled using Y †nYn = 1, so all the usoft gluons decouple at leading order.
Diagramatically we can imagine this current producing an energetic color singlet state like a collinear pion
(ignoring the fact that we’re in SCETI for a moment):

=⇒

This decoupling is called color transparency, the long wavelength usoft gluons only see the overall color
charge of the energetic fields in the pion, and hence cancel out for this color singlet object.

Eg.3: As a third example, consider our operator for e+e− → dijets. Here we have two types of collinear
fields, n1 and n2, and the BPS field redefinitions give Yn1 and Yn2 ultrasoft Wilson lines:

J = (ξ̄n1Wn1)Γ(W †n2
ξn2) =

(
ξ̄(0)
n1
W (0)
n1

)(
Y †n1

Yn2

)
Γ
(
W (0)†
n2

ξ(0)
n2

)
. (6.13)

This result involves the product of three factored sectors (n1-collinear)(ultrasoft)(n2-collinear). Here the

lines are both outgoing, Y †n1 = Y †n1+ and Yn2 = Yn2−.

Remark: It is possible to formulate a gauge symmetry for the decoupled collinear fields via U
(0)
n =

Y †n (x)Un(x)Yn(x), that then acts on the collinear (0) fields without ultrasoft components. However, there
is not new content to this gauge symmetry beyond the ones we considered earlier.

6.2 Wilson Coefficients and Hard Factorization

As is standard in effective field theories, the high energy behavior of the theory is encoded in Wilson
coefficients C. In SCET the Wilson coefficients can depend on the large momenta of collinear fields that
are O(λ0). Because of gauge symmetry the momenta appearing in C must be momenta for collinear
gauge invariant products of fields. We can write C(P, µ) where the large momenta is picked out by the
label operator P which acts on these products of fields. For example, including this operator with our
heavy-to-light current yields

(ξnWn)ΓµhvC(P†) = C(−P, µ)(ξnWn)Γµhv (6.14)

(noting that P† > 0 so we have picked a convenient sign). We have included parentheses around ξnWn

because C(−P , µ) must act on this product, since only the momentum of this combination is collinear
gauge invariant. It is convenient to write this result as a convolution between a real number valued Wilson
coefficient and an operator depending on a new label ω

(ξnW )ΓµhvC(P†) =

∫
dω C(ω, µ)

[
(ξnWn)δ(ω − P†)Γµhv

]
=

∫
dω C(ω, µ)O(ω, µ) (6.15)
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where C(ω, µ) encodes the hard dynamics and O(ω, µ) encodes the collinear and ultrasoft dynamics. Thus
the hard dynamics is factorized from that of collinear fields, and this in general leads to convolutions since
they both have n̄ · p momenta that are O(λ0).

We can show see that this hard-collinear factorization is a general result that can be applied to any
SCET operator. Recall the following relations for W

in̄ ·DnWn = 0 , W †nWn = 1 , in̄ ·Dn = WnPW †n , 1/(in̄ ·Dn) = Wn(1/P)W †n . (6.16)

These conditions imply the operator equations (for any integer k)

(in̄ ·Dn)k = Wn(P)kW †n . (6.17)

and we have for a general function f(P) or f(in̄ ·Dn)

f(P) =

∫
dω f(ω) [δ(ω − P)] , (6.18)

f(in̄ ·Dn) = Wnf(P)W † =

∫
dω f(ω) [Wδ(ω − P)W †n] .

If in general the hard dynamics leads to a function f of a large momentum P, then we have f(P) if it acts
on a n-collinear gauge invariant product of fields, and this relation shows that we can always represent this
by a convolution of a Wilson coefficient f(ω) which includes a δ(ω − P) as part of the collinear operator.
(If we act on fields that transform under a collinear gauge transformation then the same is true but with
f(in̄ · Dn) and the extra Wilson lines are included in the operator.) For example, with our current for
e+e− → dijets we have∫

dω1 dω2 C(ω1, ω2) (ξ̄n1Wn1)δ(ω1 − n̄1 · P†)Γδ(ω2 − n̄2 · P)(W †n2
ξn2) . (6.19)

Note that since the Yn Wilson lines commute with Pµ we can perform the ultrasoft-collinear factorization
by field redefinition after having determined the most general possible Wilson coefficient, and the results
will be the same as we obtained prior to discussing Wilson coefficients. In general the function C(ω1, ω2)
will be constrained by momentum conservation for the process under consideration, and any nontrivial
dependence must be determined by matching calculations.

6.3 Soft-Collinear Factorization

The factorization of soft gluons from collinear degrees of freedom is quite different than for ultrasoft gluons
discussed in Sec. 6.1. This is because as discussed in Sec. 4.6, soft gluons do not couple to collinear particles
in the Lagrangian. When a soft particle interacts with a collinear particle, it produces an offshell particle
with momentum p ∼ Q(λ, 1, λ). For example, a triple gluon vertex with a soft and collinear gluon has an
offshell gluon with momentum Q(λ, 1, λ) as shown in Fig. 11. These offshell modes have p2 ∼ Q2λ� (Qλ)2

and can therefore be integrated out of the theory. Thus, the only way that the coupling between collinear
and soft particles can arise in SCETII is through Wilson lines present in the external operators.

At lowest order in λ soft interactions with collinear fields can only involve the n·As component. This can
be understood from the scaling of the momenta, where the only the momentum component n·ps survives
when expanding the invariant mass of a collinear and soft momentum

(pn + ps)
2 = n̄·pnn·ps + . . . (6.20)
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Figure 11: The interaction of a soft and collinear gluon with momenta k ∼ Q(λ, λ, λ) and q ∼ Q(λ2, 1, λ)
respectively, to produce an offshell gluon with momentum k + q ∼ Q(λ, 1, λ).

Integrating out all offshell fluctuations simply builds up factors of the Wilson line S, which is defined in
position space in a very similar way to the ultrasoft Wilson line

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n ·Aas(x+ ns)T a

]
. (6.21)

which in momentum space becomes

Sn =

[ ∑
perms

exp

(
−g 1

n·P
n·As,q

)]
. (6.22)

Thus, much like Wn, Sn turns out to be a fundamental object in the SCET.

One can also understand the appearance of the soft Wilson lines by considering gauge invariance. Take
the example of a soft-collinear heavy-to-light current. Under soft and collinear gauge transformations
(suppressing the soft field labels) the fermions transform as

soft: hv → Vshv , ξn → ξ

collinear: hv → hv , ξn,p → Ûnξn . (6.23)

Thus, the simplest current J = ξ̄n,pΓhv (where Γ is the spin structure) is not invariant under the gauge
symmetries. To construct a gauge invariant current requires the addition of soft and collinear Wilson lines.
Using the transformation properties

Wn → ÛnWn , S → Vs S , (6.24)

it is easy to see that the gauge invariant current is

J =
[
ξ̄nWn

]
Γ
[
S† hv

]
. (6.25)

Thus, we see that soft gauge invariance determines how S appears. However, gauge invariance tells us
nothing about the direction of the Wilson line S, and this information can only be obtained through a
matching calculation.

There are three properties of Eq. (6.25) that need to be reproduced by this calculation, namely that
only n̄ · An,q gluons appear to give Wn, that only the n·As component of the soft gluons appear to build

up S†n, and that Wn and S†n appear in the gauge invariant combination shown.

Consider the order g2 graphs which match onto Eq. (6.25) and which contain one soft and one collinear
gluon. The necessary graphs are shown in Fig. 12. Expanding the diagram in Fig. 12a to leading order
gives

Fig. 12a = −g2 nµ

n·qs
n̄ν

n̄·qc
ξ̄n,p T

a ΓT b hv . (6.26)
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qc

qs

ν,b

µ,a

(a)

qc

qs

ν,b

µ,a

(b) (c)

qc

qs

ν,b

µ,a

Figure 12: QCD graphs for the current q̄ Γ b with offshell propagators induced by a soft gluon with mo-
mentum qs, and a collinear gluon with momentum qc.

We see that as expected, the leading contribution contains only the n̄·An ∼ λ0 collinear gluon by power
counting, and only the n·As gluon because the γν for this vertex is sandwiched between a ξ̄n,p and an n/
from the offshell light quark propagator. However, the two color factors T a and T b are in the opposite
order to those in Eq. (6.25). At leading order the remaining two non-Abelian graphs are equal and give

Fig. 12b = Fig. 12c =
g2

2
ifabcT c

nµ

n·qs
n̄ν

n̄·qc
ξ̄n,pΓhv . (6.27)

Adding the three graphs together reverses the order of the color matrices in Eq. (6.26) to give

Figs. 12a + 12b + 12c = −g2 nµ

n·qs
n̄ν

n̄·qc
ξ̄n,p T

b ΓT ahv . (6.28)

This is the desired result and is in agreement with Eq. (6.25). In Appendix ?? we extend this matching cal-
culation to all orders in perturbation theory. In the next section we derive this to all orders in perturbation
theory.

6.4 Mixed, hard, collinear and soft factorization [Strong overlap]

In this section we discuss the simultaneous factorization of the soft (λ, λ, λ) modes, n-collinear (λ2, 1, λ)
modes, and n̄-collinear (1, λ2, λ) modes. As discussed before, these three classes of modes can not interact
with each other in a local manner and therefore do not couple through the SCET Lagrangian. However,
they can couple in a gauge invariant way through external operators and currents. These interactions are
built up by integrating out fluctuations with offshellness p2 � (Qλ)2. For the special case of a single
collinear and soft field, this was shown to first order in Sec. 6.3. In this section, we show this to all orders
in perturbation theory, and for a case where two different colliner directions are present. Much of this
section is taken varbatim from Appendix A of [8].

The basic idea is to first match onto a theory which contains explicit degrees of freedom for the off-shell
fluctuations. The Lagrangian of this theory describes the couplings between onshell and offshell modes
that give all order λ0 diagrams. The offshell modes (having p2 � (Qλ)2) can then be explicitly integrated
out, so that all operators are expressed entirely in terms of the onshell degrees of freedom. In table 4
a summary is given of the three types of offshell momenta that are induced by adding soft, n-collinear,
and n̄-collinear momenta. For each type auxillary quark and gluon fields are defined, and for convenience
momentum labels are suppressed in this section. For example, the ψQ quarks are created by the interaction
of a n-collinear quark with an n̄-collinear gluon. The ψLn quarks are created when a collinear quark ξn is
knocked offshell by a soft gluon, whereas the ψMn̄ quarks are created when a soft quark qs is knocked offshell
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Type Momenta (+,−,⊥) Fields Wilson lines

onshell collinear-n pµ1 ∼ (λ2, 1, λ) ξn, Aµn Wn

collinear-n̄ pµ2 ∼ (1, λ2, λ) ξn̄, Aµn̄ Wn̄

soft qµ ∼ (λ, λ, λ) qs, A
µ
s Sn, Sn̄

usoft kµ ∼ (λ2, λ2, λ2) qus, A
µ
us Yn, Yn̄

offshell p = p1 + p2 pµ ∼ (1, 1, λ) ψQ, AµQ Xn, Xn̄

p = p1 + q pµ ∼ (λ, 1, λ) ψLn , ψMn̄ , AXµn WX
n , SXn

p = p2 + q pµ ∼ (1, λ, λ) ψMn̄ , ψLn , AXµn̄ WX
n̄ , SXn̄

Table 4: Summary of the onshell modes discussed in section ??, and the auxillary fields introduced to
represent the offshell fluctuations that are integrated out in this appendix.

by a collinear gluon An. For the field ψQ we write ψQ = ψQn +ψQn̄ , where ψQn = 1
4n/n̄/ψQ and ψQn̄ = 1

4 n̄/n/ψQ.

Then we have n/ψQn = n̄/ψQn̄ = 0, n/ψLn = n̄/ψLn̄ = 0, and n/ψMn = n̄/ψMn̄ = 0. Various Wilson lines are also
required and are listed in the table. It is convenient to define a generic Wilson line L[a,A] along direction
a with field A by the solution of (

a·P + g a·A
)
L[a,A] = 0 . (6.29)

With this notation the on-shell Wilson lines are Wn = L[n̄, An], Wn̄ = L[n,An̄], Sn = L[n,As], and
Sn̄ = L[n̄, As]. (Recall that the subscripts on W and S mean different things.) The Wilson lines involving
offshell fields that we will require are

Xn = L[n̄, AQ+AXn +An] , Xn̄ = L[n,AQ+AXn̄ +An̄] , (6.30)

WX
n = L[n̄, AXn +An] , WX

n̄ = L[n,AXn̄ +An̄] ,

SXn = L[n,AXn +As] , SXn̄ = L[n̄, AXn̄ +As] .

Below we discuss the results which allow us to integrate out offshell fluctuations. The structure of the
auxiliary Lagrangians and construction of their solutions are very similar to the case presented in Ref. [?],
to which we refer for a more detailed presentation.

From Table 4 we see that adding n and n̄-collinear momenta gives p2 ∼ Q2, whereas adding soft and
collinear momenta gives p2 ∼ Q2λ. Loops that are dominated by these offshell momenta only modify
Wilson coefficients and not the infrared structure of the operators. Therefore, to determine the structure
of SCET fields in an operator it sufficient to integrate out the offshell fields at tree level. For convenience we
can integrate out the fluctuations starting with those with the largest offshellness. Recall that we only wish
to consider offshell propagators connected to external operators. A subtelety for quarks is that distinct
auxillary fields are needed for the incoming and outgoing offshell propagators. However, the solution for
the outgoing field turns out to be the conjugate of the incoming field, so to avoid a proliferation of notation
we simply denote the outgoing terms in the Lagrangian by +h.c., and present a solution for the incoming
fields. Finally, note that for the gluon field AQ the fields An, An̄, AXn , AXn̄ , and As appear as background
fields while for the fields AXn and AXn̄ it is An, An̄, and As that appear as background fields.

The terms in the auxillary Lagrangian involving the p2 ∼ Q2 fields are

LQaux = ψ̄Qn gn·(AQ+AXn̄ +An̄)
n̄/

2
(ψLn + ξn) + ψ̄Qn

[
n·P + gn·(AQ+AXn̄ +An̄)

] n̄/
2
ψQn

+(n↔ n̄) + h.c.

+
1

2g2
tr
{

[iDµ
Q + gAµQ , iD

ν
Q + gAνQ]2

}
+

1

αQ
tr{[iDµ

Q, AQµ]2} . (6.31)
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where iDµ
Q = 1

2n
µ[n̄·P + gn̄·(AXn +An)] + 1

2 n̄
µ[P + gn · (AXn̄ +An̄)]. The solution of the equations of motion

for these modes are

ψQn = (Xn̄−1)(ψLn + ξn) , ψQn̄ = (Xn−1)(ψLn̄ + ξn̄) ,

X†n̄Xn = WX
n W

X†
n̄ . (6.32)

(In addition to the last equation a constraint on the components n ·AQ and n̄ ·AQ also comes from the
gauge fixing term, but will not be needed.) The terms in the auxillary Lagrangian involving the p2 ∼ Q2λ
fields are [?]

LXaux = ψ̄Lngn·(AXn +As)
n̄/

2
ξn + ψ̄Ln

[
n·P + gn·(AXn +As)

] n̄/
2
ψLn + (n↔ n̄) + h.c. (6.33)

+ ψ̄Mn̄ gn̄·(AXn +An)
n/

2
qs + ψ̄Mn̄

[
n̄·P + gn̄·(AXn +An)

]n/
2
ψMn̄ + (n↔ n̄) + h.c.

+
1

2g2
tr
{

[iDµ
nX+gAXµn , iDν

nX+gAXνn ]2
}

+
1

αn
tr
{

[iDµ
nX , A

X
nµ]2

}
+ (n↔ n̄) ,

where iDµ
nX = 1

2n
µ[n̄·P + gn̄·An] + 1

2 n̄
µ[n·P + gn·As]. The solutions for these modes are

ψLn = (SXn −1)ξn , ψMn̄ = (WX
n −1)qs , SX†n WX

n = WnS
†
n ,

ψLn̄ = (SXn̄ −1)ξn̄ , ψMn = (WX
n̄ −1)qs , SX†n̄ WX

n̄ = Wn̄S
†
n̄ . (6.34)

Together Eqs. (6.32) and (6.34) can be used at leading order to elliminate the fields representing offshell
fluctutations with p2 � (Qλ)2.

As an illustration of these results we discuss the soft-collinear factorization for the production of a qnq̄n̄
pair with a large invariant mass Q2. This process is mediated in the full theory by the electromagnetic
current J = ψ̄Γψ (Γ a color singlet). This current will match onto a current in SCET that is built entirely
out of onshell fields. Using the results in this section this current can be systematically derived. To start
the quark field in J matches onto ξn plus all possible fields which the auxillary Lagrangian can create
starting from ξn, so

J → (ξ̄n + ψ̄Ln + ψ̄Qn ) Γ (ξn̄ + ψLn̄ + ψQn̄ ) . (6.35)

Integrating out the p2 ∼ Q2 fluctuations with Eq. (6.32) and inserting a hard Wilson coefficient C which
depends on label operators turns Eq. (6.35) into

(ξ̄n + ψ̄Ln )X†n̄CΓXn(ξn̄ + ψLn̄ ) = (ξ̄n + ψ̄Ln )WX
n CΓWX†

n̄ (ξn̄ + ψLn̄ ) . (6.36)

To construct the first operator we used the equations of motion for ψQn and ψQn̄ , and in the second operator
we used the equation of motion identity for the gluons in Xn and Xn̄. In a similar fashion we can now
integrate out the p2 ∼ Q2λ fluctuations with Eq. (6.34) to give

ξ̄nS
X†
n WX

n CΓWX†
n̄ SXn̄ ξn̄ = ξ̄nWnS

†
nCΓSn̄W

†
n̄ξn̄ . (6.37)

The operator on the right is the final result used in Eq. (??), and is soft, collinear, and usoft gauge invariant.
It should be obvious from this example how the equations of motion in Eqs. (6.32) and (6.34) can be used
to determine the factorized form of a general leading order operator.
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6.5 Operator Building Blocks

Our discussion of hard-collinear factorization in SCET in the previous section motivates setting up a more
convenient notation for building operators out of products that are collinear gauge invariant. For the
collinear quark field we define a “quark jet field” (SCETI) or “quark parton field” (SCETII)

χn ≡W †nξn , (6.38)

χn,ω ≡ δ(ω − n̄ · P)(W †nξn) ,

where the last expression has a definite O(λ0) momentum. With this notation our e+e− → dijets operator
becomes ∫

dω1 dω2C(ω1, ω2) χ̄n,ω1Γχn̄,ω2 . (6.39)

For the gluon field we define a “gluon jet field” (SCETI) or “gluon parton field” (SCETII) as

Bµn⊥ ≡
1

g

[
W †niD

µ
n⊥Wn

]
, (6.40)

Bµn⊥, ω ≡ [Bµn⊥δ(ω − P̄
†)] ,

where the label operators and derivatives act only on the fields inside the outer square brackets. The gluon
jet field can also be written as a commutator via

gBµn⊥ =
[
W †niD

µ
n⊥Wn

]
=
[ 1

n̄ · P
n̄ · PW †niD

µ
n⊥Wn

]
=
[ 1

n̄ · P
W †nin̄ ·DniD

µ
n⊥Wn

]
=
[ 1

n̄ · P
W †n[in̄ ·Dn, iD

µ
n⊥]Wn

]
. (6.41)

The outer square brackets indicate that deriviatives act only on objects inside. In the third equality we used
n̄ ·P = W †nin̄ ·DnWn, and in the last line we used that fact that within the square brackets [in̄ ·DnWn] = 0
to write the result as a commutator. Equation (6.41) allows the gluon jet field to be written in terms of a
field strength via Bµn⊥ = TABAµn⊥ where

BAµn⊥ =
1

n̄ · P
n̄νiG

Bνµ⊥
n WBA

n , (6.42)

where WBA
n =WBA

n [n̄ ·An] is the adjoint representation collinear Wilson line and the collinear gluon field
strength obeys igGAµνn TA = [iDµ

n, iDν
n].

We can show that a complete basis of objects for building collinear operators at any order in λ is given
by the three objects [15]

χn , Bµn⊥ , Pµn⊥ . (6.43)

Any other operators can be expressed in terms of these three objects. This basis is nice because the two
gluon degrees of freedom in Bµn⊥ can be taken as the physical polarizations. Indeed the expansion of Bµn⊥
in terms of gluon fields yields

Bµn⊥ = Aµn⊥ −
qµ⊥
n̄ · q

n̄ ·An,q + . . . , (6.44)

where the ellipses denote terms with ≥ 2 collinear gluon fields. In addition to the building blocks in
Eq. (6.43), operators will also of course involve functions of P = n̄ · P that appear as Wilson coefficients.

57



6.5 Operator Building Blocks 6 FACTORIZATION FROM MODE SEPARATION

To see that Eq. (6.43) gives a complete basis we start by noting that the ⊥ covariant derivative is
redundant. If we consider it sandwiched by Wilson lines, then

iD⊥µn ≡W †niD
µ
n⊥Wn = Pµn⊥ +

[
W †niD

µ
n⊥Wn

]
= Pµn⊥ + gBµn⊥ . (6.45)

We can also remove in ·∂ derivatives by using the equations of motion for quarks and gluons. For instance
the collinear quark equations of motion can be written as

in · ∂χn = −(gn · Bn)χn − (i /D⊥n )
1

n̄ · P
(i /D⊥n )χn , (6.46)

where Dµn⊥ is given in terms of basis objects by (6.45), and where

n · Bn ≡
1

g

[
1

P
W †n[in̄ ·Dn, in ·Dn]Wn

]
. (6.47)

The gluon equations motion allow us to elliminate n · Bn in terms of basis objects as

n · Bn = −
2Pνn⊥
n̄ · P

Bn⊥ν +
2

n̄ · P
g2TA

∑
f

[
χ̄fnT

An̄/χfn
]

+ . . . , (6.48)

where the ellipses denote a term that involves two Bn⊥s. The gluon equation of motion also allow us to
eliminate in ·∂Bµn⊥ in terms of the basic building blocks, much like for the quark term. Finally, objects like
gBµν⊥⊥ ≡ [1/(n̄ · P)W †[iDµ

n⊥, iD
ν
n⊥]W ] and gBµ⊥2 ≡ [1/(n̄ · P)W †[iDµ

n⊥, in·Dn]W ] can again be eliminated
in terms of the building blocks with manipulations similar to those in (6.41), and with the use of (6.48).

The standard building blocks for ultrasoft fields and operators are the same as those in QCD, namely
ultrasoft quark fields ψus and ultrasoft covariant derivatives Dus (from which we also obtain field strengths).
The ultrasoft equations of motion (equivalent to the QCD equations of motion) can be used to reduce the
basis for these operators. Since at leading power the n ·Aus field appears inside iDµ

ns we also introduce for
latter convenience the notation

iDµns = W †niD
µ
nsWn . (6.49)

The other components of the ultrasoft gauge field are power suppressed relative to the corresponding
components of the collinear gauge field, but do appear in collinear operators at subleading power (and
of course in the purely ultrasoft leading power Lagrangian). It is worth remarking about the connections
between our building blocks in Eq. (6.43) and the ultrasoft operators that come from RPI and gauge
covariance. Multiplying the identities in (5.32) with Wilson lines on both sides we find

iW †niD
µ
⊥Wn = iDµn⊥ + iDµ

us⊥ = Pµn⊥ + gBµn⊥ + iDµ
us⊥ ,

iW †nin̄ ·DWn = n̄ · P + in̄ ·Dµ
us . (6.50)

Thus factors of Pµn⊥ and n̄ · P that appear in operators will be connected to higher order operators with
these ultrasoft covariant derivatives.

For constructing operators in SCETII at any order in the power expansion we have the same three
collinear building blocks in Eq. (6.43). Since the sum of soft and collinear momenta gives an offshell
momentum, we here do not need any analog of the mixed derivative in Eq. (6.49). As explained in Sec. 6.3,
integrating out these offshell particles leads to soft Wilson lines Sn that appear along with soft quark
and gluon fields in an analogous manner to how the collinear Wilson lines appear with collinear fields.
Therefore we have direct soft analogs of the building blocks in Eq. (6.43),

ψs(n) , Bµs⊥(n) , Bs0(n) , P⊥ , (6.51)

where we define the quark and gluon soft building block operators by

ψs(n) = S†nψs , Bµs⊥(n) =
1

g

[
S†niD

µ
s⊥Sn

]
, Bs0(n) =

1

g

[
S†nin̄ ·DsSn

]
. (6.52)
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Building Block: Bµni⊥ χni Pµ⊥ ψus Dµ
us ψs(n) Bµs⊥(n) Bµs0(n)

Power Counting: λ λ λ λ3 λ2 λ3/2 λ λ

Table 5: Summary of building block operators for SCETI and SCETII and their power counting.

6.6 Helicity Operator Building Blocks

When building operators with many collinear directions or when building operators beyond leading power,
it is useful to work with building blocks that are scalars under the Lorentz group. This can be done by
projecting the building blocks from Sec. 6.5 onto objects with definite helicity, and our discussion in this
section follows that of Refs. [16, ?].

We define a collinear gluon field of definite helicity as

h=± 1: Bai± = −ε∓µ(ni, n̄i)Baµni⊥,ωi , (6.53)

where a is an adjoint color index and the polarization vectors are defined by

εµ+(n, n̄) =
〈n+|γµ|n̄+〉√

2〈n̄n〉
, εµ−(n, n̄) = −〈n−|γ

µ|n̄−〉√
2[n̄n]

. (6.54)

The objects Bai± are the desired scalar gluon building block fields. For this discussion of objects with
definite helicity, we will adopt standard spinor-helicity notations (see eg. [14, ?, ?]). For instance, we have

|p〉 ≡ |p+〉 =
1 + γ5

2
u(p) , |p] ≡ |p−〉 =

1− γ5

2
u(p) ,

〈p| ≡ 〈p−| = sgn(p0) ū(p)
1 + γ5

2
, [p| ≡ 〈p+| = sgn(p0) ū(p)

1− γ5

2
, (6.55)

with light-like momentum p, and we choose a representation where the spinors for quarks and antiquarks
are related, u(p) = v(p).6 With this definition, for an outgoing gluon with polarization ±, momentum
p, p0 > 0 (or an incoming gluon with polarization ∓, momentum −p, p0 < 0), and color a, the nonzero
tree-level Feynman rules are

〈ga±(p)|Bbi±|0〉 = δabδ̃(p̃i − p) , 〈0|Bbi±|ga∓(−p)〉 = δabδ̃(p̃i − p). (6.56)

Here the δ̃-function ensures that the momentum p is ni-collinear and that the label momentum ωi of the
Bbi± field is set equal to that of the external gluon,

δ̃(p̃i − p) ≡ δ{ni},p δ(ωi − n̄i · p) , δ{ni},p =

{
1 ni · p = O(λ2) ,

0 otherwise .
(6.57)

The Kronecker delta is nonzero if the collinear momentum p is in the {ni} collinear equivalence class
(recalling that if ni · p ∼ λ2 and n̄i · p ∼ λ0, that by the onshell condition p2 = 0 we automatically have
pµni⊥ ∼ λ). The corresponding measure for this δ̃-function is∫

dp̃ ≡
∑
{ni}

∫
dωi ,

∫
dp̃i δ̃(p̃i − p) = 1 . (6.58)

6Note that the spinor products 〈n̄n〉 and [n̄n], in Eq. (6.54) depend on the choice of quantization axis for the spinors, and
hence are not automatically trivial even though n · n̄ = 2 (they become trivial only if the quantization axis is taken to be n̂).
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The sum here runs over the distinct collinear equivalence classes.

We also define quark building block fields with definite helicity by

χαi± =
1 ± γ5

2
χαni,−ωi , χ̄ᾱi± = χ̄ᾱni,−ωi

1 ∓ γ5

2
. (6.59)

For external quarks of definite helicity, with ni-collinear momentum p, the spinor appearing in SCET
Feynman rules is,

1 ± γ5

2

/ni /̄ni
4
u(p) =

/ni /̄ni
4
|p±〉 =

1 ± γ5

2
un ≡ |p±〉ni , (6.60)

where |p±〉ni is a convenient short-hand spinor-helicity style notation for the projected spinor, and is
proportional to |ni±〉. Using this, we get the nonzero tree-level Feynman rules for incoming (p0 < 0) and
outgoing (p0 > 0) quarks with definite helicity ± and color α (or ᾱ),〈

0
∣∣χβi±∣∣qᾱ±(−p)

〉
= δβᾱ δ̃(p̃i − p) |(−pi)±〉ni ,

〈
qα±(p)

∣∣χ̄β̄i±∣∣0〉 = δαβ̄ δ̃(p̃i − p) ni 〈pi±| ,〈
0
∣∣χ̄β̄i±∣∣q̄α∓(−p)

〉
= δαβ̄ δ̃(p̃i − p) ni 〈(−pi)±| ,

〈
q̄ᾱ∓(p)

∣∣χβi±∣∣0〉 = δβᾱ δ̃(p̃i − p) |pi±〉ni . (6.61)

Unlike Bi±, the quark building blocks χαi± still carry an (implicit) spinor Lorentz index, and hence are not
scalars. This can be rectified by grouping the quark building blocks into contracted pairs in currents of
definite helicity. The appropriate currents include those that involve quark building block fields in distinct
collinear sectors, ni 6= nj ,

h=± 1: J ᾱβij± = ∓

√
2

ωi ωj

εµ∓(ni, nj)

〈nj ∓ |ni±〉
χ̄ᾱi± γµχ

β
j± , (6.62)

h=0: J ᾱβij0 =
2√

ωi ωj [ninj ]
χ̄ᾱi+χ

β
j− , (J†)ᾱβij0 =

2√
ωi ωj〈ninj〉

χ̄ᾱi−χ
β
j+.

and those involving two collinear quark building blocks in the same collinear sector,

h=0: J ᾱβi0 =
1

2
√
ωχ̄ ωχ

χ̄ᾱi+ /̄ni χ
β
i+ , J ᾱβ

i0̄
=

1

2
√
ωχ̄ ωχ

χ̄ᾱi− /̄ni χ
β
i− , (6.63)

h=±1: J ᾱβi± = ∓

√
2

ωχ̄ ωχ

εµ∓(ni, n̄i)(
〈ni ∓ |n̄i±〉

)2 χ̄ᾱi± γµ /̄ni χβi∓ .
Together, the currents in Eqs. (6.62) and (6.63) are sufficient to construct any operator that has multiple
collinear quarks. The choice of spinor factors in these currents is such that the tree-level Feynman rules
for these currents are all trivial. For example,

〈qα1
+ (p1)q̄ᾱ2

− (p2)|J β̄1β2
12+ |0〉 = eiΦ(J12+) δα1β̄1δβ2ᾱ2 δ̃(p̃1 − p1)δ̃(p̃2 − p2) , (6.64)

where for generic momenta the phase is nontrivial, eiΦ(J12+) 6= 1, for the common situation where p1⊥ =
p2⊥ = 0 one does have eΦ(J12+) = 1. The complete set of Feynman rules for the quark currents can be
found in Refs. [16, ?].

Finally we can also decompose Pµ⊥ into scalar operators of definite helicity

h = ±1: P+
⊥ = P+

i⊥(ni, n̄i) = −ε−(ni, n̄i) · Pi⊥ ,
P−⊥ = P−i⊥(ni, n̄i) = −ε+(ni, n̄i) · Pi⊥ . (6.65)
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Bai± J ᾱβij± J ᾱβij0 P±⊥ J ᾱβi± J ᾱβi0 J ᾱβ
i0̄

Baus(i)± Baus(i)0 ∂us(i)± ∂us(i)0

λ λ2 λ2 λ λ2 λ2 λ2 λ2 λ2 λ2 λ2

J ᾱβi(us)± J ᾱβi(us)± J ᾱβi(us)0 J ᾱβi(us)0 J(us)2ij± J(us)2ij0

λ4 λ4 λ4 λ4 λ6 λ6

Table 6: Complete set of helicity building block operators in SCETI and their power counting. The
complete set of ultrasoft currents shown here are not all defined in the text, but can be found in Ref. [?].

It will always be clear from the other field content which collinear sector i the operators P±i⊥ are acting on,
so we can freely suppress this index. It is important to emphasize that the subscripts ± here refers to the
helicity about the n̂i axis, and not the lightcone components of the momenta.

In addition to the collinear building blocks, it is also desirable to have scalar building blocks for the
ultrasoft (and soft) fields. For scalar ultrasoft gluon and derivative building blocks we define

h = ±1: Baus(i)± = −ε∓µ(ni, n̄i)Baµus(i), ∂us(i)± = −ε∓µ(ni, n̄i) ∂
µ
us, ,

h = 0: Baus(i)0 = n̄µBaµus(i), ∂us(i)0 = n̄iµ∂
µ
us , (6.66)

Note that we allow Baus(i)0 as a building block because removing it by the gluon equations of motion would
come at the expense of allowing inverse ultrasoft derivatives in our operators. On the other hand in·∂us can
always be removed from operators beyond the leading power Lagrangian by using the equation of motion,
and without introducing inverse derivatives. Examples of quark currents with ultrasoft quark building
blocks include

h = ±1: J ᾱβi(us)± = ∓ 2√
ωi

εµ∓(ni, n̄i)

〈n̄i ∓ |ni±〉
χ̄ᾱi± γµψ

β
us(i)± , J ᾱβ

(us)2ij± = ∓
εµ∓(ni, nj)

〈nj ∓ |ni±〉
ψ̄ᾱus(i)±γµψ

β
us(j)± ,

h = 0: J ᾱβi(us)0 =

√
2

ωi
χ̄ᾱi+ψ

β
us(i)− . (6.67)

The complete set of definite helicity scalar building blocks for SCETI is summarized in Table 6, including
the full set of ultrasoft currents whose definitions can be found in Ref. [?]. Beyond leading power there
are also nontrivial angular momentum selection rules that must be obeyed when constructing operators,
and we refer to Ref. [?] for a detailed discussion. For SCETII the building block fields for soft gluons,
derivatives, and quark currents are defined in a manner that is exactly analogous to the ultrasoft building
blocks discussed above.

As an example of the advantages of using the helicity operator building blocks, consider using the
traditional SCET building blocks in Table 5 to build a basis of four quark operators or four gluon operators
involving four distinct collinear directions,

O ᾱβγ̄δ = χ̄ᾱn1
Γ1χ

β
n2
χ̄γ̄n3

Γ2χ
δ
n4
, (6.68)

Oabcd = Bµan1⊥B
νb
n2⊥B

σc
n3⊥B

δd
n4⊥Γµνσδ .

Here Γ1, Γ2, and Γµνσδ are shorthand for all possible Lorentz and Dirac structures, and to determine a
basis we must enumerate the minimal number of such structures. In general this is a non-trivial task. On
the other hand, using the helicity operators there are four independent helicity operators for the quark
process at leading power [16],

Oᾱβγ̄δ(+;+) = J ᾱβ12+ J
γ̄δ
34+ Oᾱβγ̄δ(+;−) = J ᾱβ12+ J

γ̄δ
34− ,

Oᾱβγ̄δ(−;+) = J ᾱβ12− J
γ̄δ
34+ , Oᾱβγ̄δ(−;−) = J ᾱβ12− J

γ̄δ
34− , (6.69)
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and five operators for the gluons at leading power,

Oabcd+++ =
1

4!
Ba1+Bb2+Bc3+Bd4+ , Oabcd+++− =

1

3!
Ba1+Bb2+Bc3+Bd4−

Oabcd++−− =
1

4
Ba1+Bb2+Bc3−Bd4− , Oabcd+−−− =

1

3!
Ba1−Bb2−Bc3−Bd4+

Oabcd−−−− =
1

4!
Ba1−Bb2−Bc3−Bd4− . (6.70)

Thus we see that the use of helicity building blocks dramatically simplifies the necessary Lorentz algebra.
The choice of traditional versus helicity building blocks does not change the difficulty of enumerating a color
basis. Discussion of operator color bases and the connection to the standard bases used in the amplitude
literature can be found in Ref. [16].

6.7 Convolutions in SCETI and SCETII [First Pass]

Given the factorization of hard, collinear, ultrasoft (and soft) dynamics as described in SCET, it is in-
teresting to ask the general question of how these modes can communicate with each other. The generic
picture that emerges is that modes of the same type can communicate by sharing any component of their
momenta, while modes of different types can only communicate through momenta that are the same or-
der in λ, see Table 8.1. (TODO) Thus, ultrasoft and n-collinear fields can communicate by exchanging TODO: Move

this table
earlier?

n ·p ∼ λ2 momenta, n-collinear fields can communicate with the hard Wilson coefficients through n̄ ·p ∼ λ0

momenta, and soft and n-collinear fields can communicate by exchanging p⊥ ∼ λ momenta. On the other
hand, if we have two collinear modes, such as n and n̄, they can not directly communicate through any of
their momenta components. This communication will occur between soft or collinear building block fields
that are individually gauge invariant, since otherwise a gauge transformation could change the exchanged
momentum.

This communication can be illustrated graphically as shown by the example of SCETI in Fig. 13,
where the dashed lines indicate communication between the modes through momenta that are the same
order in λ. In general, when one considers a physical observable, the factorization in SCET will lead to
a factorization of squared soft and collinear matrix elements, which are individually integrated over the
respective phase space of their particles. So in SCETI we could expect convolutions between hard (H),
collinear (Cn), and ultrasoft (U) squared matrix elements of the form

σ ∼
∫

dp−dp+H(p−)Cn(p−, p+)U(p+) . (6.71)

The choice of observable and its factorization properties will also influence the convolutions between
functions H, Cn, and U . Several explicit examples will be explored for both SCETI and SCETII in
Secs. (9,10,11,14).

7 Wilson Coefficients and Hard Dynamics

We now turn to the dynamics of SCET at one loop. An interesting aspect of loops in the effective theory is
that often a full QCD loop graph has more than one counterpart with similar topology in SCET. We will
compare the SCET one loop calculation for a single hard interaction current with the one loop calculation
in QCD. Our goal is to understand the IR and UV divergences in SCET and the corresponding logarithms,
as well as understanding how the terms not associated to divergences are treated.
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hardcn

us

2λQ λQ 0λQ

λQ

2λQ

λQ 0

p +

p-

p2 = Δ4

p2 = 2Q

p2 =

Q

Δ
cn

2

/ 2

Figure 13: Convolutions that can occur between hard, n-collinear, and ultrasoft modes in SCETI can only
occur between momenta that are the same order in the power counting, as shown by the dashed line in
this figure.

In our analysis we will use the same regulator for infrared divergences, and show that the IR divergences
in QCD and SCET exactly agree, which is a validation check on the EFT. The difference determines
the Wilson coefficient for the SCET operator that encodes the hard dynamics. This matching result is
independent of the choice of infrared regulator as long as the same regulator is used in the full and effective
theories. Finally, the SCET calculation contains additional UV divergences, beyond those in full QCD,
and the renormalization and anomalous dimension determined from these divergences will sum up double
Sudakov logarithms.

We will give two examples of matching QCD onto SCET, the b → sγ transition, and e+e− → 2-
jets. The first example has the advantage of involving only one collinear sector, but the disadvantage
of requiring some familiarity with Heavy Quark Effective theory for the treatment of the b quark and
involving contributions from two Dirac structures. The second example only involves jets with a single
Dirac structure, but has two collinear sectors. In both cases we will use Feynman gauge for all gluons, and
dimensional regularization with d = 4− 2ε for all UV divergences (denoting them as 1/ε). To regulate the
IR divergences we will take the strange quark offshell, p2 6= 0. For IR divergences associated purely with
the heavy quark we will use dimensional regularization (denoting them 1/εIR to distinguish from the UV
divergences).

7.1 b→ sγ, SCET Loops and Divergences

As a 1-loop example consider the heavy-to-light currents for b→ sγ. Although there are several operators
in the full electroweak Hamiltonian, for simplicity we will just consider the dominant dipole operator
JQCD
µν Fµν where Fµν is the photon field strength and the quark tensor current is

JQCD = s̄Γb , Γ = σµνPR . (7.1)

In SCET the corresponding current (for the original Lagrangian, prior to making the Yn field redefinition)
was

JSCET = (ξ̄nW )ΓhvC
(
v · n P†

)
=

∫
dω C(ω) χ̄n,ωΓhv . (7.2)
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In general because of the presense of the vectors vµ and nµ there can be a larger basis of Dirac structures
Γ for the SCET current (we will see below that at one-loop there are in fact two non-zero structures for
the SCET tensor current). Note that the factor of v · n makes it clear that the current preserves type-III
RPI. We will set v · n = 1 in the following.

Together with the QCD and (leading order) SCET Lagrangians, we can carry out loop calculations with
these two currents. First lets consider loop corrections in QCD. We have a wavefunction renormalization
graph for the heavy quark denoted b, and one for the massless (strange) quark denoted q:

b q

This gives the wavefunction renormalization factors Zψb and Zψ respectively. In the “on-shell” scheme
which includes both the UV divergences and the finite residues these Z-factors are

Zψb = 1− αsCF
4π

[
1

ε
+

2

εIR
+ 3 ln

µ2

m2
b

+ 4

]
,

Zψ = 1− αsCF
4π

[
1

ε
− ln

−p2

µ2
+ 1

]
. (7.3)

(If one instead uses MS for the wavefunction renormalization factors, then the finite residues still show up
in the final result for the S-matrix element due to the LSZ formula.) The remaining diagram is a vertex
graph for the tensor current JQCD. At tree level the matrix element gives

V 0
qcd = ūs(p)PR iσ

µνub(pb) (7.4)

while the one-loop diagram

p
b

p

gives

V 1
qcd = −αsCF

4π

[
ln2
(−p2

m2
b

)
+ 2 ln

(−p2

m2
b

)
− 2

ε
+

1

2
ln
(−p2

µ2

)
+ 2 ln

µ

ω
− 3 ln

µ

mb
+ f1(1− q̂2)

]
ūsPR iσ

µνub

+
αsCF

4π
f2(1− q̂2) ūsPR

(pµγν − pνγµ
mb

)
ub , (7.5)

where we have kept p2 6= 0 only for the IR singularities, and set it to zero whenever it is not needed to
regulate an IR divergence. The variable q̂2 = (pb − p)2/m2

b = 1 − 2pb · p/m2
b and the functions appearing

in Eq. (7.5) are

f1(x) = ln(x) +
2

(1− x)
ln(x) + 2Li2(1− x) + π2 , f2(x) =

4

(1− x)
ln(x) . (7.6)

Unlike for the conserved vector current, in QCD for the tensor current the sum of vertex and wave-
function graphs still contains a 1/ε UV divergence. Hence this QCD local current operator requires an
additional counterterm not related to strong coupling renormalization, and it is given by

Ztensor = 1 +
αsCF

4π

1

ε
. (7.7)
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Adding together the QCD vertex graph and the contributions from the three Z’s, and replacing the
kinematic variable q̂2 = 1− n̄ · p/mb = 1− ω/mb, the sum gives

QCD Sum = V 1
qcd +

[1

2
(Zψb − 1) +

1

2
(Zψ − 1) + (Z−1

tensor − 1)
]
V 0

qcd

= −usΓub
αsCF

4π

[
ln2
(−p2

ω2

)
+

3

2
ln
(−p2

ω2

)
+

1

εIR
+ ln

(µ2

ω2

)
+ f1

( ω
mb

)
+

5

2

]
+
αsCF

4π
f2

( ω
mb

)
ūsPR

(pµγν − pνγµ
mb

)
ub , (7.8)

Next consider the ultrasoft loops in SCET. In Feynman gauge the ultrasoft wavefunction renormal-
ization of the collinear quark vanishes, since the couplings are both proportional to nµ, and n2 = 0. The
ultrasoft wavefunction renormalization of the heavy quark is just the HQET wavefunction renormalization.
We summarize these two results as:

Zusξn ∝ n
µnµ = 0 , Zushv = 1 +

αsCF
4π

(2

ε
− 2

εIR

)
. (7.9)

We can already note that the 1/εIR pole in Zushv matches up with the IR pole in Zψb in full QCD (and this is
the only IR divergence that we are regulating with dimensional regularization). In addition to wavefunction
renormalization there is an ultrasoft vertex diagram for the SCET current. Using the on-shell condition
v · pb = 0 for the incoming b-quark, and the SCET propagator from Eq. (4.45) for a line with injected
ultrasoft momentum, we have

= V 1
us = (ig)2(−i)i2CF ūnΓuv

∫
d−dk µ2ειε n · v

(v · k + i0)(n · k + p2/n̄ · p+ i0)(k2 + i0)

V 1
us = −αsCF

4π

[
1

ε2
+

2

ε
ln
( µn̄ · p
−p2−i0

)
+ 2 ln2

( µn̄ · p
−p2−i0

)
+

3π2

4

]
V 0

scet , (7.10)

where the tree level SCET amplitude is

V 0
scet = unΓuv , (7.11)

and ιε = (4π)−εeεγE ensures that the scale µ has the appropriate normalization for the MS scheme. Note
that this graph is independent of the current’s Dirac structure Γ. On the heavy quark side the heavy-
quark propagator gives a Pv = (1 + v/)/2, but this commutes with the HQET vertex Feynman rule and
hence yields a projector on the HQET spinor, Pvuv = uv. On the light quark side the propagator gives
a n//2 and the vertex gives a n̄//2 to yield the projector Pn = (n/n̄/)/4 acting on the light-quark spinor,
Pnun = un. Hence whatever Γ is inserted at the current vertex is also the Dirac structure that appears
between spinors in the answer for the loop graph. For this heavy-to-light current this feature is actually
true for all loop diagrams in SCET, the spin structure of the current is preserved by loops diagrams in
the EFT. For ultrasoft diagrams it happens by a simple generalization of the arguments above, while for
collinear diagrams the interactions only appear on the collinear quark side of the Γ, so we just need to
know that they do not induce additional Dirac matrices. (This is ensured by chirality conservation in the
EFT.)

Lets finally consider the one loop diagrams with a collinear gluon. There is no wavefunction renormal-
ization diagram for the heavy quark, since the collinear gluon does not couple to it. There is a wavefunction
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renormalization graph for the light-collinear quark

= . . . =
n̄/

2

p2

n̄ · p
CFαs

4π

(1

ε
− ln

−p2

µ2
+ 1
)
, so Zξn = 1− CFαs

4π

(1

ε
− ln

−p2

µ2
+ 1
)
.

(7.12)

We have not written out the SCET loop integrand, but it follows in a straightforward manner from using
the collinear quark and gluon propagators and vertex Feynman rules from Fig. (6). Note that the result for
Zξn is the same as the full theory Zψ. This occurs because for the wavefunction graph there is no connection
to the ultrasoft modes or the hard production vertex, and by itself a single collinear sector is just a boosted
version of full QCD (and Zψ is independent of this boost). There are also no subtelties related to zero-bin
subtractions for this graph (the subtraction integrands are power suppressed and therefore the subtraction
vanishes). There is also a diagram generated by the two-quark two-gluon Feynman rule, but this tadpole
type diagram vanishes with our choice of regulators. There is also a tadpole type diagram where two gluons
are taken out of the Wilson lines in the vertex, which also vanishes, ie.

= 0 , = 0 . (7.13)

The last diagram we must consider is the collinear vertex graph with an attachment from the Wilson
line going to the collinear quark propagator,

pp k+

k

= V 1
n = −ig2CFunΓuv µ

2ειε
∑
k` 6= 0
k` 6= −p`

∫
d−
d
kr (n · n̄) n̄ · (p` + k`)

(n̄ · k`)(k2)(k + p)2

= −ig2CFunΓuv V̂
1
n . (7.14)

Here each momentum has been split into label and residual components k = (kµ` , k
µ
r ) and p = (pµ` , p

+
r ).

There are no +-momenta in the label components, and the only residual component for the external p is
its +-momentum. For reasons that will soon become apparent, we have used a short hand notation for the
relativistic collinear gluon and quark propagators, which in fact contain a mixture of label and residual
momenta,

k2 = k+
r k
−
` − ~k

⊥ 2
` , (k + p)2 = (k+

r + p+
r )(k−` + p−` )− (~k⊥` + ~p⊥` )2 , (7.15)

and are homogeneous in the power counting with k2 ∼ p2 ∼ λ2. We have also introduced the notation
with a hat, V̂ 1

n , for the collinear loop integrand.

In general in collinear loop integrals there can be a nontrivial interplay between the Wilson coefficients
and the large collinear loop integration, because both depend on a momentum that is the same size in the
power counting, namely the large minus momenta, k− ∼ Q. When matching at one-loop, O(αs), in some
cases the tree level hard matching coefficient we insert might be independent of the loop momentum k−.
In this case we can insert it back into the calculation only at the end. Even in this case it must be included
when considering the renormalization group evolution, because the sharing of large momenta can lead to
convolutions in the RG evolution equations. We will meet an example of this type later on when we discuss
the running of parton distributions for a collinear proton. For our example of the heavy-to-light current
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for b → sγ, things are actually simple for a different reason. The SCET operator in Eq. (7.2) contains
only a single gauge invariant product of collinear fields, (ξ̄nW ), and the Wilson coefficient only depends
on the overall outgoing momentum of this product. Therefore if we include a coefficient into our diagram
in Eq. (7.14) it gives only dependence on the total external momentum

C
[
n̄ · (p+ k) + n̄ · (−k)]

]
= C

(
n̄ · p

)
. (7.16)

This result remains true for collinear loop diagrams at higher orders, so the coefficient can always be treated
as multiplicative for this current, and the coefficient is always evaluated with the total −-momentum
of the collinear jet, which in this case is n̄ · p = mb. Indeed, even when we have collinear fields for
multiple directions, the large momentum are still fixed by the external kinematics as long as we have only
one(gauge invariant product of) collinear fields in each direction. In this case the Wilson coefficient for the
hard dynamics remains multiplicative in momentum space. (And we remark that this is the case that is
predominantly studied for amplitudes for LHC processes with an exclusive number of jets. In general the
coefficient will still be a matrix in color space once we have enough colored particles to give more than one
possibility for making an overall color singlet (4 particles). There is only one possibility for the current
example and hence no matrix in color space.) When we have more than one block of gauge invariant
collinear fields in the same collinear direction then this will no longer be true, there will be momentum
convolutions between the hard coefficient C and the collinear parts of the SCET operator.

To perform the collinear loop integration in Eq. (7.14) we should follow the rules from section 4.6 on
combining label and residual momenta. As a first pass we will ignore the 0-bin restrictions k` 6= 0,−p`.
In this case we can apply the simple rule from Eq. (4.68). Results following this rule in SCETI are often
called the naive collinear integrals. Since only momenta of external collinear particles appear in the loop
integrand the multipole expansion is trivial for this integral, and this gives the same result that we would
have obtained by ignoring the split into label and residual momenta from the start:

V̂ 1 naive
n = µ2ειε

∫
d−
d
k (n · n̄)(n̄ · (p+ k))

(n̄ · k)k2(k + p)2

=
i

(4π)2

[
2

ε2
+

2

ε
+

2

ε
ln

(
µ2

−p2

)
+ ln2

(
µ2

−p2

)
+ 2 ln

(
µ2

−p2

)
+ 4− π2

6

]
. (7.17)

This result for the loop integral can be obtained either with standard Feynman parameter rules or by
contour integration in k+ or k−. Feynman parameter tricks and other equations that are useful for doing
loop integrals in SCET are summarized in Appendix C.1.

Having assembled results for all the SCET loop graphs we can now add them up to obtain the bare
SCET result

Sum SCET = V 1
us + V 1

n +

[
1

2
(Zushv − 1) +

1

2
(Zξn − 1)

]
V 0

scet , (7.18)

and then compare with the full QCD calculation, setting the renormalized coupling g2 = 4παs(µ). For the
moment we still will label our SCET result as naive since it ignores the 0-bin restrictions. If we examine
the IR divergences encoded in the ln(−p2) factors (and the 1/εIR from the heavy quark wavefunction
renormalization) then we find for Γ = PRiσ

µν that at leading order V 0
qcd = V 0

scet and

(Sum QCD)ren =− αsCF
4π

[
ln2

(
−p2

m2
b

)
+

3

2
ln

(
−p2

m2
b

)
+

1

εIR
+ . . .

]
V 0

scet + . . . ,

(Sum SCET)naive =− αsCF
4π

[
ln2

(
−p2

m2
b

)
+

3

2
ln

(
−p2

m2
b

)
+

1

εIR
− 1

ε2
− 5

2ε
− 2

ε
ln

(
µ

mb

)
+ . . .

]
V 0

scet .

(7.19)
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Thus the results match up in the IR (as long as the remaining 1/ε terms in the SCET result can be
interpretted as UV divergences). To obtain this result for the sum of the SCET diagrams there is an
important cancellation between the collinear and ultrasoft diagrams, ln(−p2/µ2)/ε− ln[−p2/(µn̄ · p)]/ε =
ln(n̄ · p/µ)/ε = − ln(µ/mb)/ε. The cancellation of the ln(−p2) dependence in this 1/ε pole is crucial both
to match the IR divergences correctly in QCD, and in order for the remaining 1/ε pole to possibly have
an ultraviolet interpretation. The remaining dependence on n̄ · p = mb in the 1/ε pole is fine because this
is the large momentum that the Wilson coefficient anyway depends on. This same cancellation also has a
reflection in the double logarithms where the ln(µ2) dependence cancels out from the ln2(−p2) dependent
term. Again this cancellation is important for the matching of IR divergences with the full theory.

The final catch is related to our use of the naive collinear integrand is the interpretation of the 1/ε
poles from the collinear loop integral. The 1/ε divergences from the ultrasoft vertex diagram are clearly
determined to be of UV origin (from large euclidean momenta or large light-like momenta). However in the
collinear vertex diagram with the naive integral one of the divergences actually comes from n̄ · k → 0, and
hence is of IR origin. This IR region is actually already correctly accounted for by the ultrasoft diagram
where the heavy quark propagator is time-like, v · k + i0, as it should be in the infrared region. In this
region the original propagator does not behave like n̄ · k. The n̄ · k term which comes from the collinear
Wilson line W is instead the appropriate approximation for large n̄ · k, rather than small n̄ · k. Thus the
issue with the naive collinear loop integral for the vertex diagram is that is double counts an IR region
accounted for by the ultrasoft diagram. This double accounting is removed once we properly consider the
0-bin subtraction contributions. Therefore we apply now the rule with the 0-bin subtractions k` 6= 0,−p`
using Eq.(4.72) to obtain

V̂ 1
n = µ2ειε

∫
d−
d
k

[
(n · n̄) n̄ · (p+ k)

(n̄ · k)k2(k + p)2
− (n · n̄) n̄ · p

(n̄ · k)k2(n̄ · p n · k + p2)

]
= V̂ 1,naive

n − V̂ 1,0bin
n . (7.20)

It is easy to see where the 0-bin integrand comes from because it can be obtained from the appropriate
ultrasoft scaling limit of the naive collinear integrand. For k` 6= 0 we have a subtraction for the region
k` ∼ λ2 where we only keep terms up to those scaling as λ−8, which gives precisely the integrand in
Eq. (7.20) denoted as V̂ 1,0bin

n . The terms with n · k and n̄ · k in the denominator count as λ2, while the
term with k2 ∼ λ4 to give the eight powers that compensate the ddk ∼ λ8 for the subtraction. Note that
we have kept the offshellness 0 6= p2 ∼ λ2 since it is the same order as the (n̄ · p)(n · k) term. The other
subtraction is k` 6= −p` so we have the subtraction region k` + p` ∼ λ2. For this case one of the factors in
the denominator is n̄ · k → −n̄ · p ∼ λ0 (and there is suppresion from the numerator as well) so there is no
contribution at O(λ−8).

Being more careful about the UV (1/ε) and IR (1/εIR) divergences we find

V̂ 1,naive
n =

i

(4π)2

[
2

εIRε
+

2

ε
+

2

εIR
ln

µ2

−p2
+
(2

ε
− 2

εIR

)
ln

µ

n̄ · p
+ ln2 µ2

−p2
+ 2 ln

µ2

−p2
+ 4− π2

6

]
,

V̂ 1,0bin
n =

i

(4π)2

[
2

ε
− 2

εIR

] [
1

ε
+ ln

µ2

−p2
− ln

µ

n̄ · p

]
,

V 1
n =

αsCF
4π

[
2

ε2
+

2

ε
+

2

ε
ln

(
µ2

−p2

)
+ ln2

(
µ2

−p2

)
+ 2 ln

(
µ2

−p2

)
+ 4− π2

6

]
. (7.21)

So we see that the subtraction cancels the n̄ · q → 0 IR singularities 1/εIR in the first line. The UV
divergences arising from n̄ · q → ∞ are independent of the IR regulator and just depend on the UV
regulator ε. Since the 0-bin contribution is scaleless with our choice of regulators, taking εIR = ε and
ignoring this subtraction would give us the correct answer. Nevertheless, even with this regulator the 0-bin
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contribution is still important to obtain the correct physical interpretation for the divergences. 7

Since the final result after subtracting the 0-bin contribution is the same as in Eq. (7.17) with the
1/ε poles all now known to be UV, we can determine the appropriate UV counterterm to renormalize the
SCET current. Defining

Cbare(ω, ε) = ZC(µ, ω, ε)C(µ, ω) = C + (ZC − 1)C , (7.22)

and adding the counterterm graph with (ZC − 1)C to cancel the 1/ε poles in MS gives

ZC(µ, ω, ε) = 1− CFαs(µ)

4π

( 1

ε2
+

1

ε
ln
µ2

ω2
+

5

2ε

)
+O(α2

s) . (7.23)

(Where by momentum conservation ω = mb.) We can now add up the collinear and ultrasoft loop graphs
to obtain the final renormalized SCET result, and compare with the renormalized QCD result

(Sum QCD)ren = −αsCF
4π

[
1

εIR
+ ln2

(−p2

ω2

)
+

3

2
ln
(−p2

ω2

)
+ 2 ln

(µ
ω

)
+ f1

( ω
mb

)
+

5

2

]
V 0

scet

+
αsCF

4π
f2

( ω
mb

)
ūsPR

(pµγν − pνγµ
mb

)
ub ,

(Sum SCET)ren = V 1
us + V 1

n +

[
1

2
(Zushv − 1) +

1

2
(Zξn − 1) + (ZC − 1)

]
V 0

scet

= −αsCF
4π

[
1

εIR
+ ln2

(−p2

ω2

)
+

3

2
ln
(−p2

µ2

)
− 2 ln2

(µ
ω

)
+

11π2

12
− 7

2

]
V 0

scet . (7.24)

From these two results we see that the renormalized QCD and SCET have the same infrared divergences.
The difference of these results is determined by ultraviolet physics and determines the one-loop matching
result for the MS Wilson coefficients C1(µ, ω,mb) and C2(µ, ω,mb) that multiply the SCET operator in
Eq. (7.2) for the Dirac structures Γ = Γ1 = PRiσ

µν and Γ = Γ2 = PR(nµγν⊥ − nνγ
µ
⊥) respectively. Only

the Dirac structure Γ1 was present at tree-level, while Γ2 is generated at one-loop. Taking the difference
of the above two results and simplifying we find

C1(µ, ω,mb) = 1− CFαs(µ)

4π

[
2 ln2

(µ
ω

)
+ 5 ln

(µ
ω

)
+ f1

( ω
mb

)
− 11π2

12
+ 6

]
,

C2(µ, ω,mb) =
CFαs(µ)

4π

ω

2mb
f2

( ω
mb

)
. (7.25)

7.2 e+e− → 2-jets, SCET Loops

In this section we perform the matching from QCD onto SCET for the process e+e− → 2-jets. This
matching will be independent of the details of the kinematical constraints that are used to enforce that we
really are restricting ourselves to have only 2 jets in the final state, which will all be contained in the long
distance dynamics of the effective theory. Indeed, the fact that we can successfully carry out this matching
at the amplitude level makes it clear that it does not depend on which constraints we put on the phase
space of the 2-jet final state. Once again, it will also be independent of the choice of IR regulator as long
as the same regulator is used in both the QCD and SCET calculations. We will use Feynman gauge in
both QCD and SCET, and take d = 4− 2ε to regulate UV divergences and offshellness for the quark and
antiquark, p2

q = p2
q̄ = p2 6= 0, to regulate all IR divergences.

7For other less inclusive calculations or for other choices of regulators (such as Ω2
⊥ ≤ ~k2

⊥ ≤ Λ2
⊥, Ω2

− ≤ (k−)2 ≤ Λ2
−) the

subtractions are even more crucial to obtain the correct result and have the UV divergences independent of the IR regulator.
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In full QCD, the production of hadrons in e+e− collisions occurs via an s-channel exchange of a virtual
photon or a Z boson. The coupling is either via a vector or an axial vector current and is therefore given
by

JQCD = q̄ Γi q , ΓV = gV γ
µ , ΓA = gAγ

µγ5 , (7.26)

where gV,A contain the electroweak couplings for the photon or Z-boson (for a virtual photon gV = eq the
electromagnetic charge of the quark q, and gA = 0). In SCET the current involves collinear quarks in the
back-to-back n and n̄ directions

JSCET = (ξ̄n̄Wn̄)ΓiC
(
P†n̄,Pn, µ

)
(W †nξn) =

∫
dω dω′ C(ω, ω′) χn̄,ω′Γi χn,ω . (7.27)

By reparametrization invariance of type-III the dependence on the label operators can only be in the
combination ωω′ inside C, so

C
(
ω, ω′) = C

(
ωω′
)
. (7.28)

Finally in the CM frame momentum conservation fixes ω = ω′ = Q, the CM energy of the e+e− pair, so
we can write

JSCET = C(Q2) (ξ̄n̄Wn̄) Γi (W †nξn) , (7.29)

and the matching calculation in this section will determine the renormalized MS Wilson coefficient C(Q2, µ2).
In this case there is only one relevant Dirac structure Γi in SCET for each of the vector and axial-vector
currents.

We again begin by calculating the full theory diagrams. As in the case of B → Xsγ we need the wave
function contributions for the light quarks, in this case one for the quark and one for the anti-quark. Both
wave function contributions are the same as the results obtained before

Zψ = 1− αsCF
4π

[
1

ε
− ln

−p2

µ2
+ 1

]
. (7.30)

The remaining vertex graph can again be calculated in a straightforward manner. At tree level we find

V 0
qcd = ū(pn)Γivn̄(pn̄) (7.31)

while the one loop vertex diagram

p
q

p
q

gives

V 1
qcd = µ2ειε

∫
ddk

(2π)d
ig ū(pq)γ

αTA
i(k/+ p/q)

(k + pq)2
Γi
i(k/− p/q̄)
(k − pq̄)2

igγαT
A v(pq̄)

−i
k2

= −ig2CF µ
2ε

∫
ddk

(2π)d
ū(pq)

γα (k/+ p/q)Γi (k/− p/q̄) γα
(k + pq)2 (k − pq̄)2 k2

v(pq̄)

=
αsCF

4π

[
1

ε
− 2 ln2 p

2

Q2
− 4 ln

p2

Q2
− ln

(−Q2 − i0)

µ2
− 2π2

3

]
ū(pq) Γi v(pq̄) . (7.32)
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Here ιε = (4π)−εeεγE ensures that the scale µ has the appropriate normalization for the MS scheme. Adding
the QCD diagrams we find

QCD Sum = V 1
qcd + 2

[1

2
(Zψ − 1)

]
V 0

qcd

=
αsCF

4π

[
−2 ln2 p

2

Q2
− 3 ln

p2

Q2
− 1− 2π2

3

]
ū(pq) Γi v(pq̄) . (7.33)

As before, we next consider the loops in SCET. The wave function renormalization for the collinear
quark is the same as in the previous section, and we find

Zusξ = 0 , Zξ = 1− CFαs
4π

(1

ε
− ln

−p2

µ2
+ 1
)
. (7.34)

The tree level amplitude in SCET is V 0
scet = ūn(pq)Γi vn̄(pq̄), and to leading order V 0

qcd = V 0
scet. The

ultrasoft vertex graph in SCET involves an exchange between the n-collinear and n̄-collinear quarks,

p
q

p
q

k

and is given by

V 1
usoft = µ2ειε

∫
ddk

(2π)d
ūn

(
ig
n̄/

2
nαTA

) in/
2

n̄ · pq
n̄ · pq n · k + p2

q

Γi
in̄/

2

(−n · pq̄)
n · pq̄ n̄ · k + p2

q̄

(
ig
n/

2
n̄αT

A
)
vn̄

(−i)
k2

= ig2CFµ
2ειε

(
ūn
n/n̄/

4
Γi
n̄/n/

4
vn̄

)∫ ddk

(2π)d
n · n̄(

n · k +
p2
q

n̄·pq

)(
n̄ · k +

p2
q̄

n·pq̄

)
k2

=
αsCF

4π

[
− 2

ε2
+

2

ε
ln
−p4

µ2Q2
− ln2 −p4

µ2Q2
− π2

2

]
ūn(pq)Γivn̄(pq̄) . (7.35)

There are two possible collinear vertex graphs which involve a contraction between the Wn[n̄ ·An] Wilson
line and a n-collinear quark, and another between the Wn̄[n ·An̄] Wilson line and the n̄-collinear quark

p
q

p
q

k

p
q

p
q
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For the first diagram, we find

V 1
coll = µ2ειε

∫
ddk

(2π)d
ig ūn

[
nα +

p/⊥γ
α
⊥

n̄ · p
+
γα⊥(p/⊥ + k/⊥)

n̄ · (p+ k)
− p/⊥(p/⊥ + k/⊥)

n̄ · p n̄ · (p+ k)

]
n̄/

2
TA

× i
n/

2

n̄ · (p+ k)

(p+ k)2

(
−g n̄α

n̄ · k
TA
)

Γi vn̄
(−i)
k2

= −ig2CFµ
2ειε

∫
ddk

(2π)d
(n · n̄) n̄ · (p+ k)

n̄ · k (p+ k)2 k2
ūnΓivn̄

=
αsCF

4π

[
2

ε2
+

2

ε
− 2

ε
ln
−p2

µ2
+ ln2 −p2

µ2
− 2 ln

−p2

µ2
+ 4− π2

6

]
ūn(pq) Γi vn̄(pq̄) . (7.36)

One can easily show that the second collinear vertex diagram gives the same result as the first diagram.
Furthermore the collinear integral here is identical to the one for b → sγ in Eq. (7.14). The result in
Eq. (7.36) is for the naive integrand, since it does not include the 0-bin subtraction contribution. But the
0-bin subtraction terms here are scaleless as in Eq. (7.21), and hence the final result in Eq. (7.36) is correct
with the interpretation of the 1/ε divergences as UV.

Adding the SCET diagrams we find after some straightforward manipulations

SCET Sum = V 1
usoft + 2V 1

coll + 2
[1

2
(Zξ − 1)

]
V 0

scet (7.37)

=
αsCF

4π

[
2

ε2
+

3

ε
− 2

ε
ln
−Q2

µ2
+ 2 ln2 µ2

−p2
− ln2 µ

2Q2

−p4
+ 3 ln

µ2

−p2
+ 7− 5π2

6

]
ūnΓivn̄

=
αsCF

4π

[
2

ε2
+

3

ε
− 2

ε
ln
−Q2

µ2
− 2 ln2 p

2

Q2
+ ln2 −Q2

µ2
− 3 ln

p2

Q2
− 3 ln

−Q2

µ2
+ 7− 5π2

6

]
ūnΓivn̄ .

Comparing the ln(p2) dependence in the final line to the QCD amplitude in Eq. (7.33) We can see that
SCET reproduces all IR divergences of the form ln p2/Q2, and that the matching coefficient is therefore
independent of IR divergences as it should. However, while the matrix element of the full QCD current is
UV finite (since it is a conserved current), the matrix element in the effective theory is UV divergent and
therefore needs to be renormalized. Defining a renormalized coupling by

C(Q, ε) = ZC(Q,µ, ε)C(Q,µ) = C(Q,µ) +
[
ZC(Q,µ, ε)− 1

]
C(Q,µ) (7.38)

the renormalization constant that cancels the divergences in Eq. (7.37) is

ZC = 1 +
CFαs(µ)

4π

[
− 2

ε2
− 3

ε
+

2

ε
ln

(
−Q2 − i0

µ2

)]
. (7.39)

Taking the difference between the renormalized matrix elements in full QCD and SCET,

(QCD sum)ren =
αs(µ)CF

4π

[
−2 ln2 p

2

Q2
− 3 ln

p2

Q2
− 1− 2π2

3

]
ū(pn) Γi v(pn̄) , (7.40)

(SCET sum)ren =
αs(µ)CF

4π

[
−2 ln2 p

2

Q2
+ ln2 −Q2

µ2
− 3 ln

p2

Q2
− 3 ln

−Q2

µ2
+ 7− 5π2

6

]
ūnΓivn̄ ,

we obtain the matching result for Wilson coefficient of the operator in Eq. (5.37) at one-loop order

C(Q,µ) = 1 +
CFαs(µ)

4π

[
− ln2

(
−Q2 − i0

µ2

)
+ 3 ln

(
−Q2 − i0

µ2

)
− 8 +

π2

6

]
. (7.41)

If we choose the renormalization scale to be equal to Q, we find that all logarithms vanish

C(Q,Q) = 1 +
CFαs(Q)

4π

[
−8 +

7π2

6
− 3iπ

]
. (7.42)
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7.3 Summing Sudakov Logarithms

As all perturbative objects that require renormalization, the Wilson coefficient in Eq. (7.41) depends on
the renormalization scale µ. Since the Wilson coefficient depends dynamicallly only on a single scale Q,
the only dependence on µ is through logarithms of the ratio of the renormalization scale to the hard scale
Q. This dependence signals that it captures offshell physics from the hard scale Q that we are integrating
out. One can show that for each order in perturbation theory two extra powers of logarithms of µ/Q arise.
If we were to choose a renormalization scale that was very different from the hard scale Q, the logarithms
would become numerically very large and could destroy the convergence of the perturbative expansion.

As already seen, by choosing µ = Q, all logarithmic dependence vanishes, making the perturabative
expansion at this scale choice well behaved. To obtain the Wilson coefficient at a different scale, one can
now use renormalization group evolution, which sums the logarithms to all orders in perturbation theory.

With the information from either of the last two sections, we can calculate the anomalous dimensions
of the opertors or Wilson coefficients. Taking

0 = µ
d

dµ
Cbare(ε) = µ

d

dµ

[
ZC(µ, ε)C(µ)

]
=
[
µ
d

dµ
ZC(µ, ε)

]
C(µ) + ZC(µ, ε)

[
µ
d

dµ
C(µ)

]
, (7.43)

we see that the anomalous dimension is defined by a derivative of the counterterm

µ
d

dµ
C(µ) = −Z−1

C (µ, ε)
[
µ
d

dµ
ZC(µ, ε)

]
C(µ) ≡ γC(µ)C(µ) . (7.44)

To calculate the µ derivative we should recall the result for the derivative of the strong coupling in d
dimensions

µ
d

dµ
αs(µ, ε) = −2ε αs(µ, ε) + β[αs] , (7.45)

where β[αs] is the standard d = 4 QCD beta function written in terms of αs(µ, ε).

Lets apply this to our two examples in turn. The counterterm for the b→ sγ current is

ZγC = 1− αs(µ)CF
4π

(
1

ε2
+

2

ε
ln
µ

ω
+

5

2ε

)
. (7.46)

Using the definition of γC in Eq. (7.44) we find

γγC(µ, ω, ε) = µ
d

dµ

CFαs(µ, ε)

4π

(
1

ε2
+

2

ε
ln
µ

ω
+

5

2ε

)
=
CFαs(µ, ε)

4π

(
−2

ε
− 4 ln

µ

ω
− 5 +

2

ε

)
+O(α2

s) ,

= −αs(µ)

4π

(
2CF ln

µ2

ω2
+ 5CF

)
, (7.47)

where we differentiated both αs(µ) and the explicit ln(µ), noting that the 1/ε terms cancel to yield a well
defined anomalous dimension in the ε→ 0 limit which is given on the last line.

Similarly, the counterterm for the e+e− → dijets current is

Z2jet
C = 1 +

CFαs(µ)

4π

[
− 2

ε2
− 3

ε
+

2

ε
ln
(−Q2 − i0

µ2

)]
, (7.48)
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so the anomalous dimension is obtained by

γ2jet
C (µ,Q, ε) = µ

d

dµ

CFαs(µ, ε)

4π

[
2

ε2
+

3

ε
+

2

ε
ln
( µ2

−Q2 − i0

)]
=
CFαs(µ, ε)

4π

[
−4

ε
− 6− 4 ln

( µ2

−Q2 − i0

)
+

4

ε

]
+O(α2

s) ,

= −αs(µ)

4π

[
4CF ln

( µ2

−Q2 − i0

)
+ 6CF

]
. (7.49)

Again in the last line we have taken the ε → 0 limit. Note the similarity in the form of the anomalous
dimensions for our two examples of Wilson coefficients. Both anomalous dimension equations for C(µ) are
homogeneous linear differential equations because in both cases the operator mixes back into itself. They
both take the form

µ
d

dµ
lnC(ωC , µ) =

αs(µ)

4π

[
ρC
2

Γq0 ln
( µ2

ω2
C

)
+ γC0

]
, (7.50)

where Γq0 = 4CF . For b→ sγ we have

ργC = −1 , γγC0 = −5CF , ωγC = ω (7.51)

while for e+e− → 2jets we have

ρ2jet
C = −2 , γ2jet

C0 = −6CF , ω2jet
C =

√
−Q2 − i0 (7.52)

An interesting feature of the anomalous dimensions in Eq. (7.50) is the presence of a single logarithm,
ln(µ2), and we will show in Sec. 9 that no terms with more than a single logarithm can appear in the
hard anomalous dimensions. The coefficient of this single logarithm is related to the cusp anomalous
dimension that governs the renormalization of Wilson lines that meet at a cusp angle βij between lines
along the four vectors ni and nj , where coshβij = ni · nj/[|ni||nj |]. In the light-like limit n2

i , n
2
j → 0 we

have βij → ∞. The cusp anomalous dimension is linear in βij in this limit, which yields a logarithmic
dependence on 2ni ·nj/[|ni||nj |] since coshβij ' eβij/2. In SCET, this divergence has been handled by the
renormalization procedure, and hence has become a ln(µ2). Indeed, if we consider making the BPS field

redefinition for the dijet current we get Y †nYn̄, so it is clear that our ultrasoft diagrams involve two light-like
Wilson lines meeting at a cusp. In the case of the collinear diagrams we have a Wilson line Wn that meets
up with a collinear quark ξn, and in doing so also effectively forms a cusp. Due to this relationship of the
single logarithm in the anomalous dimension to the cusp of two Wilson lines we have made the coefficient
of this logarithm proportional to Γq0, which is the cusp anomalous dimension of two fundamental Wilson
lines at leading order.

We begin by solving the generic anomalous dimension with only the logarithmic term (in other words
where γC = 0. Ignoring the running of the coupling constant, this equation is trivial to solve and one finds

C(ωC , µ) = exp

[
αs
4π

ρC
8

Γq0 ln2

(
µ2

ω2
C

)]
. (7.53)

This result involves an exponential of a double logarithm, and is often referred to as the Sudakov form
factor. Since ρC is negative, this amounts to a suppression that is related to the restrictions in phase
space that are intrinsic for the allowed types of radiation that our operators can emit. The Sudakov form
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factor also gives the probability of evolving without branching in a parton shower. For QCD we must also
account for the running of the coupling, and at LL order we can use the LL β-function,

µ
d

dµ
αs(µ) = −β0

2π
α2
s(µ) , β0 =

11

3
CA −

4

3
TF nf . (7.54)

Together Eqs. (7.50) and (7.54) are a coupled set of differential equations. The easiest way to solve these
two equations is to use Eq. (7.54) to write

d lnµ =
dαs
β[αs]

= −2π

β0

dαs
α2
s

, ln
( µ

ωC

)
= −2π

β0

∫ αs(µ)

αs(ωC)

dα

α2
. (7.55)

and to use this result in Eq. (7.50). Using the boundary condition C(µ0, ωC) = 1 +O(αs) we then have

lnC(ωC , µ) =
(2π

β0

)2 Γq0 ρC
4π

∫ αs(µ)

αs(µ0)

dαs
αs

∫ αs

αs(ωC)

dα

α2

=
Γq0 ρC π

β2
0

∫ αs(µ)

αs(µ0)

dαs
αs

[
− 1

αs
+

1

αs(ωC)

]
=

Γq0 ρC π

β2
0

[
1

αs(µ)
− 1

αs(µ0)
+

1

αs(ωC)
ln
( αs(µ)

αs(µ0)

)]
=

Γq0 ρC π

β2
0 αs(µ0)

(1

r
− 1 + ln r

)
+

Γq0 ρC
2β0

ln
(ωC
µ0

)
ln r , (7.56)

where we used 1/αs(ωC) = 1/αs(µ0) + β0

2π ln(ωC/µ0), and defined

r ≡ αs(µ)

αs(µ0)
. (7.57)

The solution is therefore

C(ωC , µ) = exp

[
Γq0 ρC π

β2
0 αs(µ0)

(1

r
− 1 + ln r

)](ωC
µ0

)Γq0 ρC ln r/(2β0)
. (7.58)

This result sums the infinite tower of leading-logarithms in the exponent which are of the form, C ∼
exp(−αsL2−α2

sL
3−α3

sL
4− . . .), where the coefficients here are schematic and L = ln(µ/µ0) is a potentially

large logarithm. Again this result is called the Sudakov form factor with a running coupling. Note that
the form of the series obtained by expanding in the argument of the exponent is much simpler than what
we would obtain by expanding the exponent itself. At each order in resummed perturbation theory the
terms that are determined by solving the anomalous dimension equation can be classified by the simpler
series that appears in the exponential as follows

lnC ∼
[
− L

∑
k

(αsL)k
]

LL
+
[∑
k

(αsL)k
]

NLL
+
[∑
k

αs(αsL)k
]

NNLL
+ . . . (7.59)

Including the γC0 term modifies the above equation to give

C(ωC , µ) = exp

[
Γq0 ρC π

β2
0 αs(µ0)

(1

r
− 1 + ln r

)
+
γC

2β0
ln r

](ωC
µ0

)Γq0 ρC ln r/(2β0)
. (7.60)

This term contributes to the NLL series, but in order to get the full NLL series one needs to include the
2-loop coefficient to the term multiplying the logarithm of µ in the anomalous dimension. In the next
subsection we give the general result for the solution to the renormalizaton group equation.
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A natural question to ask is how generic are the two examples treated so far in this section? It turns
out that much of the structure here is quite generic for cases like our examples, where the ω variables are
fixed by external kinematics. This will occur for any operator that involves only one building block, χn or
Bµn⊥, for each collinear direction n. For example, with four collinear directions we have the operator∫

dω1 dω2 dω3 dω4 C(ω1, ω2, ω3, ω4)
[
χn1,ω1

Γµν Bµn2⊥,ω2
Bνn3⊥,ω3

χn4,ω4

]
(7.61)

and again the ωi’s will be fixed by momenta that are external to collinear loops. An example where this
would not be true is if we had the same collinear direction n in two or more of our building blocks, such as∫

dω1 dω2 C(ω1, ω2)
[
χn,ω1

n̄/ χn,ω2

]
. (7.62)

For this operator one combination of ω1 and ω2 will be fixed by momentum conservation, while the other
combination will involve collinear loop momenta. This will lead to anomalous dimension equations of a
more complicated form, involving convolutions such as

µ
d

dµ
C(µ, ω) =

∫
dω′γ(µ, ω, ω′)C(µ, ω′) . (7.63)

Indeed, the operator in Eq. (7.63) is responsible for several classic evolution equations: i) DIS where
we have DGLAP evolution for the parton distribution functions fi/p(ξ), ii) hard exclusive processes like
γ∗π0 → π0 where we have Brodsky-Lepage evolution for the light-cone meson distributions φπ(x), and iii)
the deeply virtual Compton scattering process γ∗p → γp′ where the evolution is a combination of both
of theses. It is interesting that all of these processes are sensitive to different projections of the evolution
of the single operator given in Eq. (7.63). We will carry out an example of an evolution equation with a
convolution in the Sec. 10, where we consider DIS and the DGLAP equation.

7.4 RGE solution to higher orders

The all orders form for the anomalous dimension of our two example currents of the previous section can
be written as

γC(sC , µ) =
ρC
j

Γcusp[αs(µ)] ln
(µj
sC

)
− γC [αs(µ)] ,

Γicusp[αs] =
∞∑
k=1

(αs
4π

)k
Γik , γC [αs] =

∞∑
k=1

(αs
4π

)k
γCk , (7.64)

where Γicups[αs] is the cusp-anomalous dimension for quarks (i = q) or gluons (i = g), and the one-loop
result has Γq1 = 4CF and Γg1 = 4CA. The constant prefactor ρC , the variable sC with dimension j, and
the non-cusp anomalous dimension γC [αs] all depend on the particular current under consideration. In
order to solve the anomalous dimension equation we should decide what terms must be kept at each order
in perturbation theory that we would like to consider. Counting αs ln(µ) ∼ 1 , the correct grouping for
obtaining the leading-log (LL), next-to-leading log (NLL), etc., results is

γC(sC , µ) ∼
[
αs ln(µ)

]
LL

+
[
αs + α2

s ln(µ)
]
NLL

+
[
α2
s + α3

s ln(µ)
]
NNLL

+ . . . . (7.65)

This confirms the statement already made in the prevoius section, namely that the cusp-anomalous dimen-
sion with the ln(µ) is required at one-higher order than the non-cusp anomalous dimension. (Typically
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this is not a problem due to the universal form of the cusp contribution, and the fact that its coefficients
are known to 3-loop order for QCD) To solve the first order differential equation involving γC we also must
specify a boundary condition for C(µ, ω). At both LL and NLL order the tree-level boundary condition
suffices, while at NNLL we need the one-loop boundary condition, etc.

The general solution is given by

C(sC , µ) = C(sC , µ0) eKC(µ,µ0)

(
µj0
sC

)ωC(µ,µC)

(7.66)

with

ωC(µ, µ0) =
ρC
j

∫ αs(µ)

αs(µ0)

dα

β[α]
Γcusp[α]

KC(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γC [αs] + ρF

∫ αs(µ)

αs(µ0)

dα

β[αs]
Γcusp[αs]

∫ αs

αs(µ0)

dα′s
β[α′s]

(7.67)

The logarithmic counting of the solution to this RGE is usually performed for lnC, such that it is
helpful to write

lnC(sC , µ) = lnC(sC , µ0) +KC(µ, µ0) + ωC ln

(
µ0

sC

)
(7.68)

One now expands lnC in powers of αs, but holding αs ln(µ/µ0) fixed. This gives

lnC(sC , µ) = ln
µ

µ0
fLL

[
αs(µ0) ln

µ

µ0

]
+ fNLL

[
αs(µ0) ln

µ

µ0

]
+ αs(µ0) fNNLL

[
αs(µ0) ln

µ

µ0

]
(7.69)

To NLL accuracy, one can therefore write

ωC(µ, µ0) = −ρC Γ0

2 j β0

{
[ln r]LL +

[
αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

]
NLL

+ . . .

}
, (7.70)

and

KC(µ, µ0) =− ρF Γ0

4β2
0

{[
4π

αs(µ0)

(
ln r +

1

r
− 1
)]

LL

+

[(Γ1

Γ0
− β1

β0

)
(r − 1− ln r)− β1

2β0
ln2 r − γC0

2β0
ln r

]
NLL

+ . . .

}
. (7.71)

Here r = αs(µ)/αs(µ0) and the results are expressed in terms of series expansion coefficients of the QCD
β function β[αs], of Γ[αs] which is given by a constant of proportionality times the QCD cusp anomalous
dimension, and of a non-cusp anomalous dimension γ[αs],

β[αs] = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, (7.72)

Γ[αs] =

∞∑
n=0

Γn

(αs
4π

)n+1
, γ[xαs] =

∞∑
n=0

γn

(αs
4π

)n+1
.

Their values can be found in Appendix ??.
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8 POWER CORRECTION IN SCET

Type Momenta pµ = (+,−,⊥) Fields (f) Scaling (ef ) Operator Scaling

collinear pµ ∼ (λ2, 1, λ) ξn,p λ n̄·P, Wn λ0

(A+
n,p, A

−
n,p, A

⊥
n,p) (λ2,1,λ) Pµ⊥ λ

soft pµ ∼ (λ, λ, λ) qs,p λ3/2 Sn λ0

Aµs,p λ Pµ λ

usoft kµ ∼ (λ2, λ2, λ2) qus λ3 Yn λ0

Aµus λ2

Table 7: Power counting for SCET momenta and fields as well as momentum label operators and Wilson

lines.

8 Power correction in SCET

In this section, we explain how power corrections to SCET can be included. Power corrections can arise
from two sources: power suppressed terms in the SCET Lagrangian, and power corrections to the external
operators mediating a given transition. In this section we derive the power suppressed Lagrangian in
SCET, and also describe how power corrections to the external operators can be constructed. Before that,
however, we derive a general power counting formula, which estimates the size of the contribution to a
given process.

8.1 Power Counting Formula for SCETI [Needs Cutting down]

In this section, we will derive a general power counting formula for an aribtirary graph in SCET. This is
a shortened discussion of what can be found in [?], and we refer the reader to that paper for more details.
We begin by summarizing the scaling of the fields, momenta, label operators and Wilson lines in SCET
in Table 8.1. Interactions in SCET appear either in the effective theory action or in external operators
(which are often operators or currents generated by electromagnetic or weak interactions). The full action
of SCET can be divided into four pieces

S = SU + SS + SC + SUC , (8.1)

where SU has purely usoft interactions, SS contains interactions with one or more soft fields, SC contains
interactions with one or more collinear fields, and SUC contain possible mixed usoft-collinear terms. Mixed
interactions between soft and collinear fields or usoft and soft fields do not appear in the Lagrangian at any
order. After the BPS field redefinition, interactions that mix ultrasoft and collinear fields do not appear
in the leading order Lagrangian, such that to that order SUC vanishes and SU , SS , and SC are the order
λ0 kinetic terms for the usoft, soft, and collinear fields. For any external operator, a scaling λk can be
immediately assigned by adding up the factors of λ associated with the scaling of its fields, derivatives,
and label operators.

Both interactions from the action and as well as from external operators appear in Feynman diagrams
as vertices. To derive a power counting of a given Feynman diagram, one needs to know how many vertices
of a given power counting are included. Thus, we introduce indexes V i

k which count operators in a graph.
Here V i

k counts the number of operators that scale as λk and are of type i, where the type depends on the
field content. The four vertex indexes we require are:

V C
k for vertices involving only collinear and usoft fields ,
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8.1 Power Counting Formula for SCETI [Needs Cutting down]8 POWER CORRECTION IN SCET

V S
k for vertices involving only soft and usoft fields ,

V SC
k for vertices with both soft and collinear fields ,

V U
k for vertices with only usoft fields.

Note the important point that the mixed soft-collinear operators require a separate index. As an example
of how these indexes work consider the purely collinear DIS operator [?]

O1 =
1

Q
ξ̄n,p′Wn

n̄/

2
C(n̄·P+, n̄·P−, Q, µ)W †n ξn,p . (8.2)

where n̄·P± = n̄·P†± n̄·P and C a Wilson coefficient. It is the proton matrix element of O1 that leads to a
convolution involving the quark or antiquark parton distribution functions. Since ξ ∼ λ and Wn ∼ λ0 this
operator scales as λ2. Thus k = 2, and since the operator only involves collinear fields a single insertion of
O1 makes the index V C

2 = 1. Note that all vertices arising from the SCET action always have k ≥ 4.

Now consider an arbitrary loop graph built out of insertions of external operators along with propaga-
tors and interactions from S. We show that such a graph scales as λδ, where

δ = 4u+ 4 +
∑
k

(k − 4)
(
V C
k + V S

k + V SC
k ) + (k − 8)V U

k . (8.3)

Here u = 1 if the graph is purely usoft and u = 0 otherwise. We will refer to Eq. (8.3) as the vertex power
counting formula. This result applies to any physical process whose infrared structure can be described
by the fields in Table 8.1. Eq. (8.3) expresses the important result that the power of λ associated with an
arbitrary diagram can be determined entirely by the scaling of operators at its vertices.

Direct Power Counting and the Derivation of Eq.(5)

An intuitive method of power counting diagrams involves counting powers of λ for the loop measures,
propagators, vertices, and external lines. We will refer to this as the “direct” method of power counting
and use it as our starting point. For this method it it is more intuitive to begin with indexes Ṽ j

k′ which

are analogous to the V j
k , but do not include the scaling for the fields. Thus, Ṽ j

k′ directly count the scaling

of the vertex Feynman rules. For example, an operator ξ̄n ∂
2
⊥ ξn would be Ṽ C

2 = 1, whereas ξ̄nA
⊥ 2
n,q ξn is

Ṽ C
0 = 1.

Consider an arbitrary graph containing Li loops and Ii propagators of type i with i ∈ {C, S, U}, Ṽ j
k

vertices of type j, and Ef external lines of type f , where f runs over the fields in Table 8.1 and df denotes
the scaling of a given field from the table. Counting the powers of λ associated with the vertices, loop
measures, propagators, and external lines we find that the graph scales as λδ with

δ =
∑
k′

k′
(
Ṽ C
k′ +Ṽ

S
k′+Ṽ

SC
k′ +Ṽ U

k′ ) + 4LC+ 4LS+ 8LU − ηαIC− 2IS− 4IU +
∑
f

efEf ,

(8.4)

which we refer to as the direct power counting formula. Note that we have included a factor ηα, which
encodes that the scaling of the gluon propagator is gauge dependent. In Feynman gauge ηα = 2 for all
collinear particles, however in a general covariant gauge ηα = 2 for fermions, but the gluon propagator

Aµn A
ν
n =⇒ −i

p2

(
gµν + α

pµpν

p2

)
, (8.5)

gives ηα = {0, 1, 2, 2, 3, 4} for the {++,+⊥,+−,⊥⊥,−⊥,−−} components. We will see that the ηα gauge
dependence in Eq. (8.4) is cancelled by a similar dependence in Ṽ C

k′ .
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To proceed we switch to the V i
k indexes. The difference between the two types of vertex indexes is the

powers of λ associated with the fields in an operator. For example, both ξ̄n ∂
2
⊥ ξn and ξ̄nA

⊥ 2
n,q ξn count as

V C
4 = 1. Since the fields in a vertex are either contracted with another field or correspond to an external

line we have ∑
k,i

k V i
k =

∑
k′,i

k′ Ṽ i
k′ + (4−ηα)IC + 2IS + 4IU +

∑
f

efEf . (8.6)

For each internal line two fields are contracted and eliminated for a momentum space propagator. The
difference in scaling of the two fields and the propagator induces the Ii correction terms in Eq. (8.6). For
instance two collinear fermion fields scale as λ2 on the LHS. If they are contracted then a (4 − ηc)IC =
(4 − 2)IC = 2IC term accounts for them on the RHS. The Ef terms account for them if they are not
contracted. In a similar way, each soft propagator or external line is also accounted for. The most non-
trivial contraction is that of two collinear gluon fields Aµn Aνn since their scaling is inhomogeneous. However,
it is straightforward to see, for example in a general covariant gauge, that these contractions are correctly
encoded by the (4− ηα)IC term in Eq. (8.6). Using Eq. (8.6) to eliminate the Ṽ i

k′ ’s from Eq. (8.4) leaves

δ =
∑
k

k
(
V C
k + V S

k + V SC
k + V U

k ) + 4LC + 4LS + 8LU − 4IC − 4IS − 8IU , (8.7)

whose terms are now explicitly gauge independent. Eq. (8.7) can be further simplified by using Euler
topological identities, which connect the number of loops, lines and vertices in an arbitrary graph. For the
complete graph we have

(E1):
∑
k

(V C
k + V S

k + V SC
k + V U

k ) + (LS + LC + LU )− (IS + IC + IU ) = 1 . (8.8)

Using this result to remove the LU − IU factor from Eq. (8.7) leaves

δ = 8 +
∑
k

(k − 8)
(
V C
k + V S

k + V SC
k + V U

k )− 4LC − 4LS + 4IC + 4IS . (8.9)

To proceed further we consider two cases, i) graphs with purely usoft fields, and ii) graphs with ≥ 1 soft
or collinear field. In case i) LC = LS = IC = IS = V C

k = V S
k = V SC

k = 0 and Eq. (8.9) gives the final
result which is δ = 8 +

∑
k(k − 8)V U

k . In case ii) we can use the hierarchy in p2 of the modes in Table
I to derive additional Euler relations by removing modes one at a time, starting with those propagating
over the longest distance [?]. This is possible since the graph must stay connected when probed at the
shorter distance scales. Thus, by removing all the usoft lines in the graph one can draw a reduced graph
containing only soft and collinear modes, also of course keeping vertices that are not purely usoft. The
Euler identity for this reduced graph reads

(E2):
∑
k

(V C
k + V S

k + V SC
k ) + (LS + LC)− (IS + IC) = 1 . (8.10)

It is easy to see that (E2) can be used to eliminate the remaining terms in Eq. (8.9) that depend on the
loop measures and internal lines. Using (E2) in Eq. (8.9) leaves the final result (for graphs with at least
one soft and/or collinear field, ie. case ii),

δ = 4 +
∑
k

(k − 4)
(
V C
k + V S

k + V SC
k ) + (k − 8)V U

k . (8.11)
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Together cases i) and ii) reproduce Eq. (8.3) which is the main result of this paper. It should be noted
that the derivation of Eq. (8.3) would not be possible if offshell degrees of freedom had been retained since
the power counting for fields generating offshell fluctuations is ambiguous [?].

The power of this power counting formula is that one can immediately determine what contributions
need to be included to obtain an answer at a given order in the power counting. First, vertices with only
collinear or only soft fields contribute with strength k − 4, while vertices with only usoft fields contribute
with k − 8. The interactions in the leading order collinear, soft and usoft Lagrangian have scaling k = 4,
k = 4 and k = 8, respectively, such that one immediately finds the sensible result that one can insert an
arbitrary number of such vertices without changing the power counting of a diagram. Each interaction of a
subleading Lagrangian, which has larger values of k, will lead to a suppression of the overall result, so only
a finite number of such insertions are required to a given order. Only external operators can have k < 4,
such as in the DIS operator in Eq. (8.2). Furthermore, physical considerations always limit the number
of external operator insertions (usually to just 1). For example, in DIS multiple insertions of O1 would
require multiple electromagnetic interactions. Thus, at leading order in λ only graphs built out of a fixed
number of external operators plus V C

4 , V S
4 , V SC

4 , and V U
8 vertices need to be included. These vertices are

exactly those described by the interactions contained in the leading order Lagranginans. At one higher
order in λ we only need to add a single vertex with a higher power of k to the vertices included above. For
instance, a single V C

5 . From this discussion the utility of Eq. (8.3) for describing higher and higher orders
in λ should be fairly evident.

8.2 Power Suppressed SCETI Lagrangians [Check Words, Add Ghosts]

Starting at O(λ) we have several contributions to the subleading SCET Lagrangian

L(1) = L(1)
ξn

+ L(1)
An

+ L(1)
ξnψus

. (8.12)

The operators that contribute to these Lagrangians scale as λ5. The collinear fermion and gluon La-
grangians at O(λ) in our notation are [17, 7, 18] (TODO) TODO: Add

ghost terms
from Appendix
into this same
notation here

L(1)
ξn

= χ̄n

(
i /Dus⊥

1

in̄ · ∂n
i /Dn⊥ + i /Dn⊥

1

in̄ · ∂n
i /Dus⊥

) /̄n
2
χn ,

L(1)
An

=
2

g2
Tr
([
iDµns, iDνn⊥

][
iDnsµ, iDus⊥ ν

])
+ L(1)

An,gf . (8.13)

In a covariant gauge, the gauge fixing terms at subleading power are [19]

L(1)
An,gf =

2

α
Tr
([
iDµ

us⊥, An⊥µ
][
i∂νns, Anν

])
+ ghosts . (8.14)

Here, the covariant derivative iDµ
s⊥ = i∂µs⊥ + gAµs⊥ and the other covariant derivatives contain Wilson

lines that ensure collinear gauge invariance, and were defined in Eq. (??). The complete subleading SCET
Lagrangian at O(λ) for fermions, gauge bosons and scalars also contains an additional Lagrangian that
permits soft fermion emission,

L(1)
ξnψs

= (ξ̄nWn)
1

in̄ · ∂n
g/Bn⊥ψus + h.c., (8.15)

where ψus ∼ λ3 is the ultrasoft fermion field.

At O(λ2) the sub-subleading SCET Lagrangian contains the terms,

L(2) = L(2)
ξn

+ L(2)
An

+ L(2)
ξnψus

. (8.16)
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The operators that contribute to these Lagrangians scale as λ6. At this order the collinear fermion and
gluon Lagrangians in our notation are [7, 18]

L(2)
ξn

= χ̄n

(
i /Dus⊥

1

in̄ · ∂n
i /Dus⊥ − i /Dn⊥

in̄ ·Dus

(in̄ · ∂n)2
i /Dn⊥

)
/̄n

2
χn , (8.17)

L(2)
An

=
1

g2
Tr
([
iDµns, iD⊥νus

][
iDnsµ, iD⊥sν

])
+

1

g2
Tr
([
iDµ

us⊥, iD
ν
us⊥
][
iD⊥nµ, iD⊥nν

])
+

1

g2
Tr
([
iDµns, in · Dns

][
iDnsµ, in̄ ·Dus

])
+

1

g2
Tr
([
iDµ

us⊥, iD
ν
n⊥
][
iD⊥nµ, iD⊥usν

])
+ L(2)

An,gf .

In a covariant gauge, the gauge fixing terms at sub-subleading power are [19]

L(2)
An,gf =

1

α
Tr
([
iDµ

us⊥, An⊥µ
][
iDν

us⊥, An⊥ν
])

+
1

α
Tr
([
in̄ ·Dus, n ·An

][
i∂µns, Anµ

])
+ ghosts . (8.18)

At this order there are also O(λ2) Lagrangians involving soft fermions, which is the higher order version
of Eq. (8.15)

L(2)
ξnψs

= (8.19)

For later purposes it will also be useful to consider the form that the subleading Lagrangians take after
the BPS field redefinition in Eq. (??). The field redefinition introduces Wilson lines Yn which factor from

the collinear fields in a manner so that they always sandwich the soft covariant derivatives, Y †nD
µ
s Yn. In

the process use of in · DsYn = 0 causes soft gauge fields to drop out of the mixed covariant derivatives,
iDµ

ns → iDµ
n and iDµns → iDµn. In order to fully factor the soft and collinear fields we also want to separate

out terms where the derivative in Dµ
us acts on collinear fields, which we can do with the identity

Y †n iD
µ
usYn = i∂µus +

[
Y †n iD

µ
usYn

]
= i∂µus + TAgBAµ

us(n) , (8.20)

where the covariant derivative acts only on terms within the square brackets, and

gBAµ
us(n) =

[ 1

in · ∂us
nνiF

Bνµ
us YBAn

]
. (8.21)

Here FBνµus is the soft field strength, and Yn is the soft Wilson line in the adjoint representation. This
allows us to write the sum of all subleading Lagrangians in a factorized form as

L(1) =
∑
n

[
K̂(1)
n + K̂(1)κ

nµ T κAgBAµ
us(n)

]
, (8.22)

L(2) =
∑
n

[
K̂(2)
n + K̂(2)κ

nµ T κAgBAµ
us(n) + K̂(2)κκ′

nµν T κAT κ
′BgBAµ

us(n)gB
Bν
us(n)

]
.

Here T κA is the A’th component of the color generator in the κ representation upon which the iDµ
s acted.

The various K̂
(1)
n and K̂

(2)
n terms contain only n-collinear quark and gauge bosons, plus i∂µu derivatives,

and can be written down explicitly with the results given above. All terms involving ultrasoft fields have
been made explicit in the gBAµ

us(n) factors.8

8Note that here the superscripts (1) or (2) on the K̂ns denote the Lagrangian that these terms came from rather than their
power of λ.

82



8.3 Power Counting Formula for SCETII [Empty] 9 SCET FOR E+E− COLLIDER OBSERVABLES

8.3 Power Counting Formula for SCETII [Empty]

Need to explain why there is only a single power of log in the anomalous dimensions.

9 SCET for e+e− Collider Observables

One of the most important applications for SCET is to describe observables at lepton or hadron colliders
is the production of jets. In this section, we will discuss the production of jets at an e+e− collider. The
production of leptons and jets at a hadron collider will be discussed in Sec. 11.

The production of jets at an e+e− collider has historically been very important. Measurements of
various jets in e+e− collisions were used to validate QCD as the correct theory of the strong interaction,
and to this day, even 10 years after the LEP has been turned off, measurements of event shape distributions
are being used to study the nature of the strong interaction and to determine fundamental constants of
nature such as the coupling constant of the strong interaction.

The dominant kinematical situation in e+e− → jets is to produce two jets, but of course a larger
number of jets can be obtained by the emission of additional hard strongly interacting particles. In this
section we will discuss the production of two jets in e+e− collisions, which is to say the production of
energetic particles in two back-to-back directions, accompanied only by usoft radiation in arbitrary regions
of phase space.

Clearly, the question whether we have 2 or more jets has to be determined on an event by event basis,
and there are many possible observables which can distinguish 2-jet events from events with more than
2 jets. The most natural definition might be to use a jet finding algorithm, and select those events with
exactly two hard jets as defined by this algorithm. However, there is another set of observables which
can be used to identify 2-jet events, and which are much easier to analyze theoretically. This class of
observables are called event shapes, with the most well known event shape variable being thrust. In this
section, we will only discuss the thrust distribution in e+e− collisions, but it should be clear from the
discussion how one can extend the results to other event shape variables or other 2-jet observables.

9.1 Kinematics, Expansions, and Regions

The thrust of an event is defined as follows:

T = max~nT

∑
i |~pi · ~nT |∑
i |~pi|

(9.1)

The sum over i runs over all particles in the final state, and the direction ~nT is called the thrust axis. To
fully understand this equation, let’s first ignore the max~nT and pick a fixed direction ~nT .Thrust is then
defined by summing the absolute value of the projections of the momenta of all particles onto the thrust
axis, and divide by the sum over the magnitude of all momenta. In the situation where the momenta of all
particles are aligned (or anti-aligned) exactly with the thrust axis, the magnitude of the projection onto
the thrust axis is exactly equal to the magnitude of the momentum itself, such that one obtains T = 1.
Thus, energetic particles that are collinear or anti-collinear to the thrust axis give T ≈ 1. Soft particles
with vanishing momentum do not contribute to the the thrust, since their contributions vanish in the
numerator and denominators. Thus, events with T ≈ 1 only contain particles which are either collinear or
anti-collinear to the thrust axis, or are usoft, and are therefore 2-jet like and can be described by SCETI.
For later convenience we will often choose the variable

τ = 1− T (9.2)
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instead of T itself. In this case the 2-jet case corresponds to τ → 0, while τ away from zero corresponds to
three or more jets.

To make the connection of thrust with SCET even more obvious, we will define the two four-vectors

nµ = (1, ~nT ) , n̄µ = (1,−~nT ) (9.3)

Using this definition, we can write for T

T =
Q−

∑
i∈R n · pi −

∑
i∈L n̄ · pi

Q
(9.4)

or alternatively for τ

τ =

∑
i∈R n · pi +

∑
i∈L n̄ · pi

Q
(9.5)

9.2 Factorization: Hard, Jet and Soft functions [fix notation]

The thrust distribution in the full theory is given by summing over all final states in the event, and
projecting each event onto its value of thrust, defined by (9.1)

dσ

dτ
=

1

2Q2

∑
X

∣∣M(e+e− → X)
∣∣2 (2π)4δ4(q − pX)δ(τ − τ(X)) . (9.6)

Here M(e+e− → X) is the full QCD matrix element to produce the final state X from the collisions of an
e+e− pair. ∣∣M(e+e− → X)

∣∣2 =
∑
i=V,A

Liµν 〈0| j
µ†
i |X〉 〈X| j

ν
i |0〉 , (9.7)

where we have defined the vector and axial currents,

jµi = q̄afΓµi q
a
f , (9.8)

with ΓµV = γµ and ΓµA = γµγ5. The leptonic tensor is given by

LVµν = − e4

3Q2

(
gµν −

qµqν
Q2

)[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)v

2
f

(Q2 −M2
Z)2

]
(9.9a)

LAµν = − e4

3Q2

(
gµν −

qµqν
Q2

)
Q4(v2

e + a2
e)a

2
f

(Q2 −M2
Z)2

, (9.9b)

where fermion f has electric charge Qf in units of e, and vector and axial charges vf , af given by

vf =
1

2 sin θW cos θW
(T 3
f − 2Qf sin2 θW ), af =

1

2 sin θW cos θW
T 3
f . (9.10)

In Eq. (9.8) a sum over colors a and flavors f is understood.

Writing the four-momentum conserving delta function as the integral of an exponential, and using the
dependence on pX in the exponential to translate one of the two currents to the position x we can write
the distribution as

dσ

dτ
=

1

2Q2

∑
X

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0| j
µ†
i (x) |X〉 〈X| jνi (0) |0〉 δ(τ − τ(X)) . (9.11)
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Following the discussion in Section 7.2 we match the full theory current onto the effective theory current
given in Eq. (5.37) to obtain

dσ

dτ
=

1

2Q2

∑
n

Cn(Q2;µ)
∑
X

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0|
[
χ̄n̄Γ̄iµχn

]
(x) |X〉 〈X|

[
χ̄nΓiνχn̄

]
(0) |0〉 δ(τ − τ(X)) .

(9.12)

This is the equivalent of the hard factorization discussed in Section 6.2.

As a next step in the deriving the factorization formula, one can eliminate the sum over the final state
X. As was shown in [20], one can define an operator τ̂ such that

τ̂ |X〉 = τ(X) |X〉 (9.13)

This allows us to write ∑
X

δ(τ − τ(X)) |X〉 〈X| = δ(τ − τ̂) (9.14)

such that we obtain

dσ

dτ
=

1

2Q2

∑
n

Cn(Q2;µ)

∫
d4x eiq·x

∑
i=V,A

Liµν 〈0|
[
χ̄n̄Γ̄iµχn

]
(x)δ(τ − τ̂)

[
χ̄nΓiνχn̄

]
(0) |0〉 . (9.15)

To complete the factorization of the differential cross section, we use the ultrasoft-collinear factorization
introduced in Section 6.1 and the fact that the operator τ̂ is linear in the energy momentum tensor, which
allows us to write [20]

τ̂ = τ̂n + τ̂n̄ + τ̂s , (9.16)

which allows us to write

δ(τ − τ̂) =

∫
dτndτn̄dτsδ(τ − τn − τn̄ − τs)δ(τn − τ̂n)δ(τn̄ − τ̂n̄)δ(τs − τ̂s) . (9.17)

Inserting these results into Eq. (9.15) one finds

dσ

dτ
=

1

6Q2

∑
n̂

∣∣Cn(Q2;µ)
∣∣2 ∫ d4x

∫
dτn dτn̄ dτs δ(τ − τn − τn̄ − τs) (9.18)

× 1

N2
C

Tr 〈0|χn(x)βδ(τn − τ̂n)χ̄n(0)γ |0〉Tr 〈0| χ̄n̄(x)αδ(τn̄ − τ̂n̄)χn̄(0)δ |0〉

×Tr 〈0|Y †n̄(x)Y †n (x)δ(τs − τ̂s)Yn(0)Y n̄(0) |0〉
∑
i=V,A

Li(Γ̄µi )αβ(Γiµ)γδ ,

where Li = gµνLiµν , the traces are over colors, and we now make the spin indices explicit.

The collinear matrix elements define jet functions Jn,n̄ according to

1

NC
Tr 〈0|χn(x)βδ(τn − τ̂n)χ̄n(0)γ |0〉 ≡

∫
dk+dk−d2k⊥

2(2π)4
e−ik·xJn(τn, k

+;µ)

(
n/

2

)
βγ

(9.19a)

1

NC
Tr 〈0| χ̄n̄(x)αδ(τn̄ − τ̂n̄)χn̄(0)δ |0〉 ≡

∫
dl+dl−d2l⊥

2(2π)4
e−il·xJn̄(τn̄, l

−;µ)

(
n̄/

2

)
δα

, (9.19b)
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while the usoft matrix element defines a soft function

1

NC
Tr 〈0|Y n̄(x)Y †n (x)δ(τs − τ̂s)Yn(0)Y n̄(0) |0〉 ≡

∫
d4r

(2π)4
e−ir·xS(τs, r;µ) . (9.20)

Furthermore, we can use that Jn(τn, k
+;µ) depends only on single light-cone component k+ ≡ n·k of the

residual momentum, as only in · ∂ appears in the n-collinear SCET Lagrangian [2] at leading-order in λ.
Similarly Jn̄(τn̄, l

−;µ) depends only on l− ≡ n̄·l.
Because the jet functions are independent of the residual transverse momenta, it is natural to change

variables to their sum and difference: K⊥ ≡ k⊥+ l⊥, κ⊥ = (1/2)(k⊥− l⊥). The integral over the sum gives
(2π)2δ2(x⊥). In this notation, the formula (9.18) for the event shape distribution can now be written as

dσ

dτ
=

NC

6Q2
L
∑
n

∫
d2κ⊥

∣∣Cn(Q2;µ)
∣∣2 ∫ d4x

∫
dτn dτn̄ dτs δ(τ − τn − τn̄ − τs)

×δ
(
x+

2

)
δ

(
x−

2

)
δ2(x⊥)

∫
dk+dl−

4(2π)4

∫
d4r

(2π)4
e−i(r

++k+)x−/2−i(r−+l−)x+/2−ir⊥·x⊥

×Jn(τn, k
+;µ)Jn̄(τn̄, l

−;µ)S(τs, r;µ) , (9.21)

where the factor L is defined

L ≡ LV Tr

(
n/

2
γµ⊥
n̄/

2
γ⊥µ

)
+ LATr

(
n/

2
γµ⊥γ5

n̄/

2
γ⊥µ γ5

)
. (9.22)

In Eq. (9.21) we have integrated over k−, l+, and K⊥ to generate delta functions setting all components of
x to zero. This allows us to perform the integrals over x.

There remains a sum over label directions n and an integral over the residual momenta κ⊥, which
combined are simply an integral over total solid angle [21],∑

~n

d2κ⊥ =
Q2

4
dΩ , (9.23)

where the overall factor arises from the magnitude of the label three-momentum of the jet in direction ~n,

which is
∣∣∣~̃p∣∣∣ = Q/2.

As a final step, we define jet and soft functions integrated over all momenta

Jn(τn;µ) ≡
∫
dk+

2π
Jn(τn, k

+;µ) (9.24a)

Jn̄(τn̄;µ) ≡
∫
dl−

2π
Jn̄(τn̄, l

−;µ) (9.24b)

S(τs;µ) ≡
∫

d4r

(2π)4
S(τs, r;µ) . (9.24c)

as well as a hard function, which is simply the square of the absolute value of the matching coefficient

H2(Q;µ) ≡ |C2(Q;µ)|2 . (9.25)

This gives the final formula

dσ

dΩdτ
=
dσB
dΩ

H2(Q;µ)

∫
dτn dτn̄ dτs δ(τ − τn − τn̄ − τs)Jn(τn;µ)Jn̄(τn̄;µ)S(τs;µ) . (9.26)

where the differential Born cross section, including the full γ − Z interference is given by

dσB
dΩ

=
α2

em

4Q2
(1 + cos θ2)NC

∑
f

[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)(v

2
f + a2

f )

(Q2 −M2
Z)2

]
, (9.27)

86



9.3 Perturbative Results [fix notation] 9 SCET FOR E+E− COLLIDER OBSERVABLES

9.3 Perturbative Results [fix notation]

The hard function can immediately be obtained from the result of the Wilson coefficient given in Eq. (7.41).
One finds

H2(Q;µ) = 1 +
αsCF

2π

[
−4 log2 Q

µ
+ 6 log

Q

µ
− 8 +

7π2

6

]
(9.28)

The jet and soft functions can be calculated from its definition as the vacuum matrix element of a
two-point collinear function. Using Eqs. (9.24) and (9.19) together with the fact that τ = l±/Q, one can
show that the jet-function can be written as

Jn(τn;µ) = Q

∫
d4xeix·rTr 〈0|χn(x)

n̄/

4NC
χ̄n(0) |0〉

=
Q

2π
Disc

[∫
d4xeix·rTr 〈0|Tχn(x)

n̄/

4NC
χ̄n(0) |0〉

]
(9.29)

where we have used the optical theorem in the last line to write the jet function in terms of the discontinuity
of a forward matrix element of a time ordered product. The soft function is given by

S(τs;µ) =
1

NC
Disc

[∫
d4xeix·rTr 〈0|TY n̄(x)Y †n (x)Yn(0)Y n̄(0) |0〉

]
(9.30)

At leading order in perturbation theory both are equal to a delta function of τ . At next to leading
order, one needs to include both the virtual and real contributions. Adding everything together one finds
for the renormalized jet and soft functions

J(τ ;µ) = δ(τ) +
αsCF

4π

[(
2 log2 Qξ

µ2
− 3 log

Qξ

µ2
+ 7− π2

)
δ(τ) +

(
4 log

Qξ

µ2
− 3

)
1

ξ
L0

(
τ

ξ

)
+ 4

1

ξ
L1

(
τ

ξ

)]
S(τ, µ) = δ(τ) +

αsCF
4π

[(
−8 log2 ξ

µ
+
π2

3

)
δ(τ)− 16 log

ξ

µ

1

ξ
L0

(
τ

ξ

)
− 16

1

ξ
L1

(
τ

ξ

)]
, (9.31)

where ξ is a dummy dimensionful variable and we have defined

L−1(x) = δ(x) (9.32)

and for n ≥ 0

Ln>−1(x) =

(
θ(x) logn−1 x

x

)
+

(9.33)

One can easily check that the dependence on ξ cancels for both the jet and the soft function.

As for any renormalized quanity, one can derive a renormalization group equation and for the jet and
soft funtions they are given by

µ
d

dµ
J(τ, µ) =

∫
dτ ′ γJ(τ − τ ′, µ) J(τ ′, µ)

µ
d

dµ
S(τ, µ) =

∫
dτ ′ γS(τ − τ ′, µ)S(τ ′, µ) (9.34)
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Inserting these expressions, and choosing ξ = Q, one reproduces the well known expression for the
differential thrust spectrum

dσ

dΩdτ
= δ(τ) +

αsCF
2π

[(
−1− π2

3

)
δ(τ)− 3

(
1

τ

)
+

− 4

(
log τ/Q

τ

)
+

]
. (9.35)

The cumulative distribution, defined as

dσ

dΩ
(τ) ≡

∫ τ

0
dτ ′

dσ

dΩdτ ′
(9.36)

is given by

dσ

dΩ
(τ) = 1 +

αsCF
2π

[
1− π2

3
− 3 log

τ

Q
− 2 log

τ

Q

]
(9.37)

Examining the differential thrust spectrum and the cumulative thrust distribution one immediately
notices the presence of the logarithmic terms which depend on the ratio τ/Q. For small values of this
ratio, these logarithms become large, increasing the numerical size of the αs correction. By calculating to
higher orders in perturbative theory, one finds that each additional order in perturbation theory brings
two extra powers of log τ/Q, such that the entire perturbative series stops converging for small enough
values of τ . As discussed in Sections ??, these logarithms can be resummed using the renormalization
group evolution of the hard, jet and soft functions.

9.4 Results with Resummation

From the NLO expressions of the hard, jet and soft functions given in Eqs (9.28) and (??), one can see the
presence of logarithmic terms. In Appendix ??, where these functions are given to NNLO, one can cearly
see that two extra powers of such logarithms occur at each order in perturbation theory. An important
point, however, is that each of these functions, besides the renormalization scale, depend on a single scale
only. The hard function for example only depends on µ, such that all logarithms are of the form logQ/µ.
Choosing ξ ∼ τ , all logarithms in jet function are of the form logQτ/µ2, and those in the soft function of
the form log τ/µ. Thus, by evaluating each of these functions at the respective scales

µH ∼ Q , µJ ∼
√
Qτ , µS ∼ τ , (9.38)

the perturbative expressions contain no large logarithms. One can then use the renormalization group
evolution to evolve each of these functions to the common scale µ.

Which logarithms are important and which are not, depends on the relative size of log τ/Q relative to
the size of αs. One typically uses the scaling αs log2 τ/Q ∼ 1 for which add more.

The running of the hard function can be obtained from the result in Eq. (7.58)

H2(Q;µ) = exp

[
− 16πCF
β2

0αs(µ0)

(1

z
− 1 + ln z

)
− 6CF

β0
ln z

](Q
µ

)−8CF ln z/β0

. (9.39)

where z = αs(µ
FO)/αs(µ). Solving the renormalization group equation for the jet and soft functions, the

functions at one scale are given by a convolution between the functions at a different scale and an evoultion
kernel that sums the logariths of the ratio of scales.

The renormalization group equation for the jet and soft funtions are given by

J(s1, µ) =

∫
ds′1 J1(s1 − s′1, µJ1)UJ1(s′1, µJ1 , µ) (9.40)

88



10 DEEP INELASTIC SCATTERING [DRAFT NEEDS WORK]

matching (singular) nonsingular γx Γcusp β PDF

LO LO LO - - 1-loop LO
NLO NLO NLO - - 2-loop NLO
NNLO NNLO NNLO - - 3-loop NNLO

LL LO - - 1-loop 1-loop LO
NLL LO - 1-loop 2-loop 2-loop LO
NNLL NLO - 2-loop 3-loop 3-loop NLO
NLL′+NLO NLO NLO 1-loop 2-loop 2-loop NLO
NNLL+NNLO (N)NLO NNLO 2-loop 3-loop 3-loop NNLO

NNLL′+NNLO NNLO NNLO 2-loop 3-loop 3-loop NNLO
N3LL+NNLO NNLO NNLO 3-loop 4-loop 4-loop NNLO

Table 8: The order counting we use in fixed-order and resummed perturbation theory. The last two rows
are beyond the level of our calculations here, but are discussed in the text.

10 Deep Inelastic Scattering [Draft Needs Work]

DIS is a rich subject. A textbook introduction to DIS will often discuss the derivation of the leading
power cross section by performing an operator product expansion with the infinite class of operators whose
relevance is organized by twist. The leading twist operators give an operator formalism which justifies the
parton model. The analysis of perturbative corrections in this OPE formalism is notational cumbersome.

We will see that in SCET the infinite set of leading twist operators is encoded in a single non-local
operator: O(ω) = ξ̄nWnδ(ω − n̄ ·P)W †nξn. The forward proton matrix element of this operator is the
parton distribution function (PDF). For brevity we restrict our discussion of DIS to only those aspects
related to factorization and the renormalization group evolution with SCET. In particular we will derive
the factorization theorem for DIS that yields hard coefficients (partonic cross sections) convoluted with
the PDF operators, C(ω) ⊗ O(ω). We will also derive the DGLAP RGE equation by renormalizing the
operator O(ω).

10.1 DIS Factorization: Hard and Parton Distributions

The e−p→ e−X DIS scattering process is depicted by the amplitude shown in Fig. 14. The hard scale Q
of the process is defined by the photon momentum qµ

q2 = −Q2 (10.1)

and satisfies Q2 � Λ2. Our Bjorken variable x is defined in the standard way

x =
Q2

2p · q
(10.2)

and with momentum conservation defined by pµ + qµ = pµX , we have

p2
X =

Q2

x
(1− x) +m2

p. (10.3)
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Figure 14: Deep Inelastic Scattering Amplitude

With this result we may determine the various energy regions of the process

Regions Description(
1
x − 1

)
∼ 1 =⇒ p2

X ∼ Q2 Standard OPE Region(
1
x − 1

)
∼ Λ

Q =⇒ p2
X ∼ QΛ Endpoint Region(

1
x − 1

)
∼ Λ2

Q2 =⇒ p2
X ∼ Λ2 Resonance Region

Describe Parton Variables

We will consider our scattering process in the standard OPE region so that the final state has p2
X of

order Q2 and can consequently be integrated out. Conversely, the proton with its comparatively small
invariant mass p2 ∼ Λ2 may be treated as a collinear field. We analyze the process in the Breit Frame in
which the perpendicular momentum component of qµ is zero with

qµ =
Q

2
(n̄µ − nµ). (10.4)

The proton and final state momentum are then

pµ =
nµ

2
n̄ · p+

n̄µ

2
n · p (10.5)

=
nµ

2
n̄ · p+

n̄µ

2

m2
p

n̄ · p
(10.6)

=
nµ

2

Q

x
+ · · · (10.7)

pµX = pµ + qµ (10.8)

=
nµ

Q
+
n̄µ

2
Q

(1− x)

x
. (10.9)

The cross section for DIS in terms of leptonic and hadronic tensors is

dσ =
d3k′

2|~k′|(2π)3

πe4

sQ4
Lµν(k, k′)Wµν(p, q) (10.10)

(10.11)
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where k and k′ are the incoming and outgoing lepton momenta, respectively, and we have defined q ≡ k′−k,
and s ≡ (p+ k)2. Lµν(k, k′) is the leptonic tensor computed using standard QFT methods and Wµν(p, q)
is the hadronic tensor which will occupy us in this section. Wµν is related to the imaginary part of the
DIS scattering amplitude by

Wµν(p, q) =
1

π
ImTµν (10.12)

where

Tµν(p, q) =
1

2

∑
spin

〈p| T̂µν(q) |p〉 T̂µν(q) = i

∫
d4xeiqxT [Jµ(x)Jν(0)]. (10.13)

Taking Jµ to be an electromagnetic current, we may write

Tµ,ν(p, q) =

(
−gµν +

qµqν
q2

)
T1(x,Q2) +

(
pµ +

qµ
2x

)(
pν +

qν
2x

)
T2(x,Q2). (10.14)

which satisfies current conservation, P, C, and T symmetries. Matching the T̂µν(q) onto the most general
leading order SCET operator for collinear fields in the nµ direction and satisfying current conservation
qµT̂µν we have

T̂µν →
gµν⊥
Q

(
O

(i)
1 +

Og1
Q

)
+

(nµ + n̄µ)(nν + n̄ν)

Q

(
O

(i)
2 +

Og2
Q

)
(10.15)

where

O
(i)
j = ξin,pW

/̄n

2
C

(i)
j (P+,P−)W †ξin,p (10.16)

Ogj = Tr[W †Bλ
⊥W Cgj (P+,P−)W †B⊥λW ] (10.17)

(10.18)

with igBλ
⊥ and P± defined as

igBλ
⊥ ≡ [in̄ ·Dn, iD

λ
n,⊥], P± = P†±P. (10.19)

The subscripts j in O
(i)
j are arbitrary labels, similar to those found in (10.14), which differentiate the two

parts of of T̂µν . The superscript (i) defines the flavor (u, d, s, etc.) of quarks and the superscript g in Ogj

stands for a gluon. In accord with their labels, O
(i)
j will lead to the quark and anti-quark PDF and Ogj

will lead to the gluon PDF. The placement of factors of 1
Q is done in order to yield dimensionless Wilson

coefficients. The fact that these Wilson coefficients are dimensionless can be understod by realizing that
according to (10.13), T̂µν has mass dimension 2.

In (10.15) there are both quark and gluon operators. However, with T̂µν defined in terms of an
electromagnetic current we can focus on the quarks and treat the gluons as an higher order contribution
so that T̂µν becomes

T̂µν →
gµν⊥
Q
O

(i)
1 +

(nµ + n̄µ)(nν + n̄ν)

Q
O

(i)
2 . (10.20)
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Returning to the quark operator O
(i)
j , we may introduce a convolution to separate the hard coefficients

from the long distance operators

O
(i)
j =

∫
dω1dω2C

(i)
j (ω+, ω−)[(ξnW )ω1δ(ω1 − P

†
)
/̄n

2
(W †ξn))ω2δ(ω2 − P)] (10.21)

where ω± = ω1 ± ω2. Our hope is to connect this operator to the PDF as a clear demonstration of
factorization. The PDF for quarks is given by

fi/p(ξ) =

∫
dye−2iξn̄·py 〈p| ξ(y)W (y,−y)/̄nξ(y) |p〉 (10.22)

and the PDF for anti-quarks is simply f i/p(ξ) = −fi/p(−ξ). In momentum space, we can write the matrix
element in (10.22) as

〈p| ξ(y)W (y,−y)/̄nξ(y) |p〉 = 〈p| (ξnW )ω1
/̄n(W †ξn))ω2 |p〉 (10.23)

= 4n̄ · p
∫ 1

0
dξ δ(ω−) (10.24)

× [δ(ω+ − 2ξn̄ · p)fi/p(ξ)− δ(ω+ + 2n̄ · p)f i/p(ξ)]. (10.25)

The delta function over ω− sets ω1 = ω2. The other set of delta functions ensure that for ω+ > 0 we use
quark PDF fi/p(z). and for ω+ < 0 we use anti-quark PDF f i/p(z). Using these results we may rewrite

our operator O
(i)
j including spin averages as

1

2

∑
spin

〈p|O(i)
j |p〉 =

1

4

∫
dω1dω2C

(i)
j (ω+, ω−)[(ξnW )ω1δ(ω1 − P

†
)/̄n(W †ξn))ω2δ(ω2 − P)] (10.26)

=
1

4

∫
dω1dω2C

(i)
j (ω+, ω−)4n̄ · p (10.27)

×
∫ 1

0
dξ δ(ω−)[δ(ω+ − 2ξn̄ · p)fi/p(ξ)− δ(ω+ + 2n̄ · p)f i/p(ξ)] (10.28)

= n̄ · p
∫ 1

0
[Cij(2n̄ · pξ, 0)fi/p(ξ)− Cij(−2n̄ · pξ, 0)f i/p(ξ)]. (10.29)

Now, by charge conjugation invariance (reference), we have C(−ω+, ω−) = −C(ω+, ω−) so that the final
form of the spin averaged matrix element is

1

2

∑
spin

〈p|O(i)
j |p〉 = n̄ · p

∫ 1

0
Cij(2n̄ · pξ, 0)[fi/p(zξ) + f i/p(zξ)]. (10.30)

We note that although we are using SCETII no soft gluons have appeared in our analysis. This fact can
be understood by observing that our original operator

O
(i)
j = ξin,pW

/̄n

2
C

(i)
j (P+,P−)W †ξin,p

is a color singlet and therefore decouples from any color-charge changing (i.e. gluon) interactions. With
(10.30) we have the necessary result for a demonstration of factorization. Now all that is left to do is
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perform the matching of the full field theoretic operators T1(x,Q2) and T2(x,Q2) onto the operators O
(i)
j .

Recalling our formula for Tµν in terms of T̂µν , we have

Tµν =
1

2

∑
spin

〈p| T̂µν |p〉 (10.31)

=
gµν⊥
Q

1

2

∑
spin

〈p|O(i)
j |p〉+

4nµnν

Q

1

2

∑
spin

〈p|O(i)
j |p〉 . (10.32)

This is the SCET amplitude. The QCD amplitude is

TSCETµ,ν (p, q) =

(
−gµν +

qµqν
q2

)
T1(x,Q2) +

(
pµ +

qµ
2x

)(
pν +

qν
2x

)
T2(x,Q2) (10.33)

Writing this result in light-cone coordinates and using the Ward Identity (qνL
µν = qµL

µν = 0), and the

fact that all terms proportional to (n̄µ − nµ) =
2qµ
Q become zero upon contraction with Lµν , we have

TQCDµν = −gµν⊥T1(x,Q2) + nµν

(
Q2

4x2
T2(x,Q2)− T1(x,Q2)

)
(10.34)

We refer the reader to [?] for a full derivation of this result. Matching TQCD onto TSCET , yields the
relations

− 1

2Q

∑
spin

〈p|O(i)
j |p〉 = T1(x,Q2) (10.35)

2

Q

∑
spin

〈p|O(i)
j |p〉 =

(
Q2

4x2
T2(x,Q2)− T1(x,Q2)

)
(10.36)

which, upon inversion, gives

T1(x,Q2) = − 1

2Q

∑
spin

〈p|O(i)
j |p〉 (10.37)

= −1

x

∫ 1

0
dξCi1(2n̄ · pξ, 0)[fi/p(ξ) + f i/p(ξ)] (10.38)

T2(x,Q2) =
8x2

Q3

∑
spin

〈p|O(i)
j |p〉 −

2x2

Q3

∑
spin

〈p|O(i)
j |p〉 (10.39)

=
4x

Q2

∫ 1

0
dξ
(

4C
(i)
2 (2n̄ · pξ, 0)− C(i)

1 (2n̄ · pξ, 0)
)

[fi/p(ξ) + f i/p(ξ)]. (10.40)

(10.41)

where in the Breit Frame x = Q2

2p·q = Q2

n̄·pn·q = Q
n̄·p . With the definition

Hj(z) ≡ Cj(2Qz, 0, Q, µ), (10.42)

where the hard scale Q and the µ dependence has been made explicit, we have the final result

T1(x,Q2) = −1

x

∫ 1

0
dξ H

(i)
1

(
ξ

x

)
[fi/p(ξ) + f i/p(ξ)] (10.43)

T2(x,Q2) =
4x

Q2

∫ 1

0
dξ

[
4H

(i)
2

(
ξ

x

)
−H(i)

1

(
ξ

x

)]
[fi/p(ξ) + f i/p(ξ)] (10.44)
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where the sum over i is implicit.
Remarks

• This result represents the general (to all orders in αs) factorization for DIS. As promised we have
the computable hard coefficients Hi weighted by the universal non-perturbative PDFs fi/p and f i/p.

• The coefficients Cj are dimensionless and can therefore only have αs(µ) ln(µ/Q) dependence on Q.
This result is in accord with Bjorken Scaling.

• The µ in Hi(µ) and fi/p(µ) is typically called the factorization scale µ = µF . There is also the
renormalization scale as in αs(µR). In SCET µ is both the renormalization and factorization scale,
since the same parameter µ is responsible for the running of the EFT coupling αs(µ) and for the
EFT coupling Cj(µ).

• When we consider the tree level matching onto the wilson coefficients we find that C2 = 0 implying
the Callan-Gross relation

W1

W2
=

Q2

4x2
(10.45)

and that

C1(ω+) = 2e2Q2
i

[
Q

(ω+ − 2Q) + iε
− Q

(−ω+ − 2Q) + iε

]
(10.46)

H1 = −e2Q2
i δ

(
ξ

x
− 1

)
(10.47)

10.2 Renormalization of PDF

(ROUGH) In this section we calculate the anomalous dimension of the parton distribution function. We
define the PDF as

fq(ξ) = 〈pn|χn(0)
/n

2
χn,ω(0) |pn〉 (10.48)

where ω = ξ n̄ · pn > 0. Since we have a forward matrix element there is no need to consider a momentum
label ω′ on χn, by momentum conservation it would be fixed to ω′ = ω. We renormalize our PDF in our
EFT framework with dimensional regularization, noting that there are only collinear fields an no ultrasoft
interactions for this example. Collinear loop processes can change ω (or ξ) and also the type of parton.
The renormalized PDF operators are given in terms of bare operators as

fbare
i (ξ) =

∫
dξ′ Zij(ξ, ξ

′)fj(ξ
′, µ). (10.49)

The µ independence of the bare operators f barei (ξ) yields an RGE for the renormalized operators in MS,

µ
d

dµ
fi(ξ, µ) =

∫
dξ′γij(ξ, ξ

′)fj(ξ
′, µ) (10.50)

where

γij = −
∫
dξ′′Z−1

ii′ (ξ, ξ′′)µ
d

dµ
Zi′j(ξ

′′, ξ′) . (10.51)
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At 1-loop we can take Z−1
ii′ (ξ, ξ′′) = δii′δ(ξ − ξ′′) + · · · so that

γ1-loop
ij = −µ d

dµ

[
Zij(ξ, ξ

′)
]1-loop

(10.52)

Computing the PDF at tree level, we obtain

= un
/̄n

2
un︸ ︷︷ ︸

p−

δ(ω − p−) = δ(1− ω/p−) (10.53)

At the 1-loop level there are multiple contributions the first contribution yields the computation

= −ig2CF

∫
ddl

p−(d− 2)l2⊥
[l2 + i0]2[(l − p)2 + i0]

δ(l− − ω)
µ2εeεγE

(4π)ε
(10.54)

=
2g2

(4π)2
(1− ε)2Γ(ε)eεγE (1− z)θ(z)θ(1− z)

(
A

µ2

)−ε
(10.55)

=
αsCF
π

(1− z)θ(z)θ(1− z)
[

1

2ε
− 1− 1

2
ln
(
A/µ2

)]
(10.56)

where A = −p+p−z(1− z) with z = ω/p− The next contribution is given by

=2ig2CF

∫
ddl un

/̄n
2
/n
2 n̄ · l/̄nun

(l− − p−)l2(l − p)2
[

real︷ ︸︸ ︷
δ(l− − ω)−

virtual︷ ︸︸ ︷
δ(p− − ω)] (10.57)

=
CFαs(µ)

π
eεγEΓ(ε)

[
zθ(z)θ(1− z)

(1− z)1+ε

(
−p−p+z − i0

µ2

)−ε
(10.58)

−δ(1− z)
(
−p−p+z − i0

µ2

)−ε
Γ(2− ε)Γ(−ε)

Γ2− 2ε

]
(10.59)

We can simplify this result with use of the distribtuion identity.

θ(1− z)
(1− z)1+ε

= −δ(1− z)
ε

+ L0(1− z)− εL1(1− z) + · · · (10.60)

where the plus function Ln(x) is defined as

Ln(x) =

[
θ(x) lnn(x)

x

]
(10.61)

and satisfies the following identities∫ 1

0
dxLn(x) = 0,

∫ 1

0
Ln(x)g(x) =

∫ 1

0
dx

lnn x

x
[g(x)− g(0)]. (10.62)

With this replacement we find that the 1/ε2 terms in the real and virtual terms cancel and the remaining
1/ε is UV divergent. In the end the explicit contribution of this process is

=
CFαs(µ)

π

[
{δ(1− z) + zθ(z)L0(1− z)}

(
1

ε
+ ln

µ2

−p+p−z − i0

)
(10.63)

−zL2(1− z)θ(z) + δ(1− z)
(

2− π2

6

)]
. (10.64)
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The last conrtibution to the renormalized PDF is the wavefunction renormalization of the external
fermions.

Fig() = δ(1− z)(Zψ − 1) =
αsCF
π

[
− 1

4ε
− 1

4
− 1

4
ln

(
µ2

−p+p− − i0

)]
δ(1− z) (10.65)

There are additional contributions from diagrams such as those in (), but we will ignore these by assuming
that the operator is not a flavor singlet. Summing the various contributions, we have

Sum =
CFαs(µ)

π

[{
3

4
δ(1− z) + zθ(z)L0(1− z)+

+
(1− z)

2
θ(z)θ(1− z)

}(
1

ε
+ ln

µ2

−p+p−zi0

)
+ finite function of z

]

=
CFαs(µ)

π

 1

2

(
1 + z2

1− z

)
+︸ ︷︷ ︸

Determines Z1-loop
qq

(
1

ε
+ ln

µ2

−p+p−zi0

)
+ · · · finite function of z

 (10.66)

If we let the total momentum of the hadronic state be p̂−. Then define p−/p̂− = ξ−. So that

z =
ω

p−
=
ξp̂−

ξ′p̂−
=
ξ

ξ′
(10.67)

Then our Z1-loop
qq becomes

Z1-loop
qq = δ(1− z) +

1

ε

αs(µ)

2π
CF θzθ(1− z)

(1 + z2

1− z

)
+
. (10.68)

And usng

γij = −µ d

dµ
Zij(z, µ), µ

d

dµ
αs(µ) = −2εαs(µ) + β[αs(µ)] (10.69)

we then obtain the our final result

γqq(ξ, ξ
′) =

CFαsµ

π

θ(ξ′ − ξ)θ(1− ξ′)
ξ′

(
1 + z2

1− z

)
+

(10.70)

which is the Aliterelli - Parisi (DGLAP) quark anomalous dimension at one-loop.

11 SCET for pp Collider Observables [Needs Lots of Work]

11.1 Kinematics

(ROUGH) Our final example will be the Drell-Yan (DY) process pp̄ → Xl+l−. This is a protype LHC
process. The kinematics of this process can be described by the following set of equations.

pA + pB = pX + q (11.1)

E2
cm = (pA + pB)2 Collision Energy (11.2)

q2 : Hard scale of the problem (11.3)

τ ≡ q2/E2
cm ≤ 1 (11.4)

Y =
1

2
ln

(
pb · q
pa · q

)
Total lepton rapidity (angular variable) (11.5)
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And the analogs of the Bjorken Variables from DIS:

xa ≡
√
τeY , xb ≡

√
τe−Y , (11.6)

where τ ≤ xa,b ≤ 1. We study this process int three distinct energy regions

·Inclusive: τ ∼ 1 p2
x ∼ q2 ∼ E2

cm xa, b ∼ 1, ξa, b ∼ 1
·Endpoint: τ → 1 p2

x << q2 → E2
cm xa, b → 1, ξa, b → 1

·Isolated: τ → 0 p2
x >> q2 xa, b → 0, ξa, b → 0

(11.7)

We now analyze these specific processes in detail.

11.2 Inclusvive Drell-Yan: pp→ Xl+l−

In this case this process represents an SCETI problem of hard-collinear factorization. we have a 4-quark

operator in SCET, which after a Fierz Identity becomes,

[(ξ̄nWn)
/̄n

2
(W †nξn)][(ξ̄n̄Wn̄)

/n

2
(W †n̄ξn̄)] (11.8)

Remarks:

• TA ⊗ TA octet structure vanishes under 〈pn| | · | |pn〉

• When we take ξn → Ynξn for coupling to soft gluons, the soft wilson lines cancel out.

• This operator encodes information about the PDF because both

〈pn| |χn,ω
/̄n

2
χn,ω′ | |pn〉 and 〈pn̄| |χn̄,ω

/n

2
χn̄,ω′ | |pn̄〉 (11.9)

are defined as PDFs. These PDFs contribute to the differential cross section for this process:

1

σ0

dσ

dq2dY
=
∑
i,j

∫ 1

xa

dξa
ξa

∫ 1

xb

dξb
ξb
H incl
ij

(
xa
ξa
,
xb
ξb
, q2, µ

)
fi(ξa, µ)fj(ξb, µ) (11.10)

=

[
1 +O

(
ΛQCD√

q2

)]
. (11.11)

• As a last important caveat, we not that Glauber Gluons cancel out at leadind order. However,
proving this result is out of the scope of our current discussion.

11.3 Threshold Drell-Yan: pp→ Xl+l−

In the threshold limit only the terms of H incl
ij most singular in 1− τ contribute.

H incl
ij → Sthr

qq̄

[√
q2

(
1− τ

qaqb

)
, µ

]
Hij(q

2, µ) [1 +O(1− τ)] (11.12)

where i, j = uū, dd̄, . . .. The interpretation when we take ξa,b → 1 is that one parton in each proton carries
all the momentum. This is not the dominant LHC region.
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11.4 Beam thrust in Drell-Yan: pp→ Xl+l−

The isolated case of DY allows forward jets to carry away part of Ecm, so ξa,b → 1. It also restricts
thr central region to still only have soft radiation (the signal region is background free). To guarantee
this requires an experimental observation. Observable: pX = Ba + Bb. There are two hemispheres
perpendicular to the beam axis.

B+
a = na ·Ba =

∑
kεa

na · pk (11.13)

=
∑
kεa

Ek(1 + tanhYk)e
−2Yk (11.14)

We expect the plus momenta for n- collinear radiation to be small. We find that this is indeed the case
becuase

B+
a ≤ Qe−2Y ωt << Q (11.15)

and there is an identical expression for B+
b . For the n-collinear proton (a) and jet (a), we do not merely

get a PDF from the hard-collinear-soft factorization. We get something new called a beam function. The
differential cross section for this process can be written as

1

σ0

dσ

dq2dY dB+
a dB

+
b

=
∑
ij

Hij(q
2, µ)

∫
dk+

a dk
+
b Q

2Bi[ωa(B
+
a − k+

a ), xa, µ]Bj [ωb(B
+
b − k

+
b ), xb, µ]

× Si hemi(k
+
a , k

+
b , µ)

[
1 +O

(
ΛQCD
Q

,

√
Ba,bωa,b

Q

)]
(11.16)

where ωa,b = xa,bEcm andBi is defined as our ”Beam Function.”

Bq(ωb
+, ω/p̂−, µ) =

θ(ω)

ω

∫
dy−

4π
eib

+y/2
〈
pn(p̂−)

∣∣ |χ̄n(y−
n

2
)δ(ω − P̄)

/̄n

2
χn(0)|

∣∣pn(p̂−)
〉

(11.17)

We recll the definitions of jet function

〈0| |χ̄n, ω(y−
n

2
)
/̄n

2
χn(0)| |0〉 (11.18)

and pdf

〈p| |χ̄n, ω(0)
/̄n

2
χn(0)| |p〉 (11.19)

We see that the Jet Function is a mix of both. The proton is a collinear field in SCETII and the jet is
collinear in SCETI. Matching SCETI to SCETII gives us

Bi(t, x, µ) =
∑
i

∫ 1

x

dξ

ξ
Iij(t,

x

ξ
, µ)fj(ξ, µ)

[
1 +O

(
Λ2
QCD

t

)]
(11.20)

bµa = (ξ − x)Ecm
na
2

+ b+a
n̄a
s

+ ba⊥ (11.21)

98



11.5 pp Jet Factorization:: Hard, Beam, Jet, Soft Functions12 MORE SCETI APPLICATIONS (REMOVE)

At tree level the Beam Function is simply

Bi(t, x, µ) = δ(t)fi(x, µ) (11.22)

as in the pdf case we can write the RGE for the beam function

µ
d

dµ
Bi(t, x, µ) =

∫
dt′γi(t− t′, µ)Bi(t

′, x, µ) (11.23)

Like the jet function Bi is independent of mass evolution. The RGE sums ln2(t/µ), is independent of x
and has no mixing.

11.5 pp Jet Factorization:: Hard, Beam, Jet, Soft Functions

12 More SCETI Applications (Remove)

(ROUGH)

In this section we will apply the SCET formalism developed in previous sections to a few additional
processes that either use SCETI or a combination of both SCETI and SCETII (where the more complicated
part of the factorization occurs within SCETI). In particular we will consider

• B → Xsγ

• Drell-Yan pp→ l+l−X: inclusive, endpoint, and isolated factorization theorems

12.1 B → Xsγ [Remove?]

(ROUGH) In this section we treat the incluzive weak radiative decay B → Xsγ. This decay is defined
by the effective Hamiltonian

H = −4GF√
2
VtbV

∗
tsC7O7, O7 =

e

16π2
mbsσµνF

µνPRb (12.1)

with Fµν the electromagnetic field tensor and PR = 1
2(1 + γ5). The decay is defined such that the photon

momentum is opposite the collinear jet i.e. qµ = Eγn̄µ.
The photon energy spectrum of the decay is

1

Γ0

dΓ

dEγ
=

4Eγ
m3
b

(
− 1

π

)
ImT (Eγ) (12.2)

where

T (Eγ) =
i

mb

∫
d4x e−iqx

〈
Bv

∣∣TJ†µ(x)Jµ(0)
∣∣Bv

〉
(12.3)

Is the forward scattering amplitude with EM current Jµ = siσµνq
νPRb.

We will consider the endpoint region of the decay in which nearly all of the final state energy is in the
photon. Analyzing this process in the rest frame of B, we find that the final momentum X

pµX = pµB − q
µ (12.4)

=
mb

2
(nµ + n̄µ)− Eγn̄µ (12.5)

= mb
n̄µ

2
+
n̄µ

2
(mb − 2Eγ). (12.6)
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Defining our endpoint region by

mb

2
− Eγ ≤ ΛQCD (12.7)

gives us a mass squared scale of

p2
X ' mbΛ = m2

b

Λ

mb
= m2

bλ
2 (12.8)

where in the last line we took λ =
√

Λ
mb

. Taking mb as Q it is clear that this process is described by SCETI.

Specifically, X will be represented by collinear gluons and quarks while B will be represented by heavy
(usoft) quark. Our principal goal is to demonstrate how the effects of momentum scales are factorized in
the formula for the photon energy spectrum. To this end we will prove that (12.2) can be factorized as

1

Γ0

dΓ

dEγ
= H(mb, µ)

∫ Λ

2Eγ−mb
dk+ S(k+, µ)J(k+ +mb − 2Eγ , µ) (12.9)

where H(mb, µ) is a calculable quantity arising from hard scale dynamics; S(k+, µ) is a non-perturbative
soft function; and J(k+) represents collinear gluons and quarks and is called the jet function.

We begin by matching the QCD current onto SCET to obtain

Jµ = −Eγei(P
n
2

+P⊥−mbv)·xC(P, µ)ξn,pWγ⊥µ PLhv (12.10)

= −EγC(mb, µ)ξn,pWγ⊥µ PLhv (12.11)

where in the second line we used the label momentum conservation to set P = mb and P⊥ = 0. Inserting
this result into (12.3), we may write

4Eγ
m3
b

T (Eγ) ≡ H(mb, µ)Teff(Eγ , µ) (12.12)

where

Teff = i

∫
d4x ei(mb

n̄
2
−q)·x 〈Bv

∣∣TJµeff(x)Jµ eff

∣∣Bv

〉
. (12.13)

This gives us a hard amplitude of

H(mb, µ) =
4E3

γ

m3
b

|C(mb, µ)|2. (12.14)

Next, we decouple usoft gluons from collinear fields by implementing the standard field redefinitions

ξn,p → Y ξ(0)
n,p W → Y W (0)Y † (12.15)

thus giving us a new effective current:

Jµeff = ξ
(0)
n W (0)γ⊥µ PLY

†hv. (12.16)

Substituting this result into (12.13) gives us

Teff = i

∫
d4x ei(mb

n̄
2
−q)·x 〈Bv

∣∣T[hvY PRγ
⊥
µW

(0)†ξ(0)
n,p](x)[ξ

(0)
n,pW

(0)γµ⊥PLY
†hv](0)

∣∣Bv

〉
(12.17)

= −
∫
d4x

∫
d4k

(2π)4
ei(mb

n̄
2
−q−k)·x 〈Bv

∣∣T[hvY ](x)PRγ
⊥
µ
/n

2
γµ⊥PL[Y †hv](0)

∣∣Bv

〉
JP (k) (12.18)

=
1

2

∫
d4x

∫
d4k

(2π)4
ei(mb

n̄
2
−q−k)·x 〈Bv

∣∣T[hvY ](x)[Y †hv](0)
∣∣Bv

〉
JP (k), (12.19)
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13 SCET II

where we defined

i

∫
d4k

(2π)4
〈0|T[W (0)†ξ(0)

n,p](x)[ξ
(0)
n,pW

(0)](0) |0〉 (12.20)

with the label P representing the sum of the label momentum carried by the collinear fields. (Additional
Derivation)? Now, noting that JP only depends on the k+ component of residual momentum k, we may
do the k− and k+ integrals thus putting x on the light cone

Teff =
1

2

∫
d4x ei(mb

n̄
2
−q)·xδ(x+)δ(x⊥)

∫
dk⊥
2π

e−
i
2
k+x−

〈
Bv

∣∣T[hvY ](x)[Y †hv](0)
∣∣Bv

〉
JP (k+)

=
1

2

∫
dk+JP (k+)

∫
dx−

4π
e−

i
2

(2Eγ−mb+k+)x−
〈
Bv

∣∣T[hvY ]
(n

2
x−
)

[Y †hv](0)
∣∣Bv

〉
. (12.21)

Focusing on the heavy fields, we may then define

S(k+) ≡ 1

2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣T[hvY ](
n

2
x−)[Y †hv](0)

∣∣Bv

〉
(12.22)

=
1

2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣Tex− n2 ·∂ [hvY ](0)[Y †hv](0)
∣∣Bv

〉
=

1

2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣T[hvY ](0)e−x
− n

2
·∂ [Y †hv](0)

∣∣Bv

〉
=

1

2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣ThvY e ix−2 n·∂Y †hv
∣∣Bv

〉
=

1

2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣Thveix−2 (in·Dus)hv
∣∣Bv

〉
=

1

2

〈
Bv

∣∣hvδ(in ·Dus − l†)hv
∣∣Bv

〉
. (12.23)

The Soft function S(k+) is non-perturbative and encodes information about the usoft dynamics of the
B meson. (12.22) shows that we may interpret this result as giving the probability of finding a heavy
quark b inside the B meson carrying a residual momentum of k+. Defining J(k+) = − 1

π ImJP (k+) and
using(12.12),(12.21), (12.22) in (12.2), we have the final result

1

Γ0

dΓ

dEγ
= H(mb, µ)︸ ︷︷ ︸

p2∼m2
b Hard

∫ Λ

2Eγ−mb
dl+ S(l+)︸ ︷︷ ︸

p2∼Λ2 Usoft

J(l+ +mb − 2Eγ)︸ ︷︷ ︸
p2∼mbΛ Collinear

(12.24)

13 SCET II

13.1 Deriving SCETII operators by using SCETI

We may construct SCET operators by another method using SCETI. The basis of the procedure comes
from the fact that soft-modes in SCETII and usoft modes in SCET I have the same momentum; it is only
the collinear fields which have distinct momentuma. The exact procedure for obtaining SCETII is

1. Match QCD onto SCETI

2. Redefine fields with the usoft wilson line Yn so that usoft interactions are only present in currents
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13.2 Rapidity Divergences [EMPTY] 14 SCETII APPLICATIONS

3. Match SCETI onto SCETII by taking Yn → Sn.

As an example of the above procedure we may construct the SCETII current postulate above.

1. Matching QCD onto SCETI

J = uΓµb → JI = (ξnW )Γµhv (13.1)

2. Redefining fields so that usoft interactions are only present in currents

JI = (ξ
(0)
n W (0))ΓµY †hv (13.2)

3. Matching SCETI onto SCETII by taking Yn → Sn.

JII = (ξ
(0)
n W (0))ΓµS†hv (13.3)

13.2 Rapidity Divergences [EMPTY]

14 SCETII Applications

In this section we will apply SCETII to various processes to illustrate the formalism. The examples we will
treat include

• γ∗γ → π0

• B → Dπ

• The Massive Gauge Boson Sudakov Form Factor

• pT distribution in Higgs production

• Jet broadening

A distinguishing feature of these processes is whether they involve a new type of divergence that requires
a renormalization procedure, known as rapidity divergences. The first two processes do not, while the last
three do. We will discuss these divergences in detail for the massive gauge boson form factor, and then be
very brief about the last two examples.

14.1 γ∗γ → π0 [Remove?]

14.2 B → Dπ [Needs Work]

(ROUGH) As another exclusive scattering process, we analyze B → Dπ. We may use the SCET frame-
work here because the hard scales Q = {mb,mc, Eπ} � ΛQCD. At the scale µ ∼ mb the QCD operators
represented by the weak Hamiltonian are

HW =
4GF√

2
V †udVcb[C

F
0 (µ0)O0(µ0) + CF8 (µ0)O8(µ0)] (14.1)
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14.2 B → Dπ [Needs Work] 14 SCETII APPLICATIONS

where

O0 = [cγµPLb][dγµPLu] (14.2)

O8 = [cγµPLT
ab][dγµPLT

au]. (14.3)

We want to factorize the matrix element 〈Dπ|O0,8 |B〉. We can represent this factorization diagrammat-
ically as (INSERT FIG) where there are no gluons between π quarks and B/D quarks. For this process
we expect a B → D form factor (Isgur-Wise form factor) and a pion wavefunction/distribution. This fac-
torization will be possible because the particles B and D have soft momentum scaling and π has collinear
scalings. Specifically p2

c ∼ Λ2 and we therefore use SCETII to describe this process.
First, matching the QCD Hamiltonian onto SCET we need the operators

Q1,5
0 = [h

(c)
v′ Γ1,5

h h(b)
v ] [ξ

(d)
n,p′WΓlC0(P+)W †ξ(u)

n,p] (14.4)

Q1,5
8 = [h

(c)
v′ Γ1,5

h T ah(b)
v ] [ξ

(d)
n,p′WΓlC8(P+)T aW †ξ(u)

n,p] (14.5)

where Γ1
h = /n

2 , Γ5
h = /n

2γ5 and Γl = /̄n
4 (1 − γ5). Note that the two operators O0 and O8 can both produce

any of the Q1,5
0,8 operators. Now, implementing field redefinitions to factor usoft effects (remember we can

start with SCETI to derive SCETII results) we have

ξn,p = Y ξ(0)
n,p

W = YW (0)Y † (14.6)

These redefinitions are easily implemented in Q1,5
0 . They simply take

[ξ
(d)
n,p′WΓlC0(P+)W †ξ(u)

n,p]→ [ξ
(d)(0)
n,p′ W

(0)ΓlC0(P+)W (0)†ξ(u)(0)
n,p ] (14.7)

where we used the fact that Y commutes with the wilson coefficient C0(P+). This argument cannot be
applied to Q1,5

8 because Y , containing generators of its own, does not commute with T a. However, by
making use of the color identity

T a ⊗ Y †T aY = Y T aY † ⊗ T a (14.8)

then we may move all usoft wilson lines into the usoft part of the operator yielding

Q1,5
8 = [h

(c)
v′ Γ1,5

h Y T aY †h(b)
v ] [ξ

(d)
n,p′WΓlC8(P+)T aW †ξ(u)

n,p]. (14.9)

Matching this SCETI result onto SCETII by the replacements Y → S and ξ(0) → ξ, W (0) →W , we have

Q1,5
0 = [h

(c)
v′ Γ1,5

h h(b)
v ] [ξ

(d)
n,p′WΓlC0(P+)W †ξ(u)

n,p] (14.10)

Q1,5
8 = [h

(c)
v′ Γ1,5

h Y T aY †h(b)
v ] [ξ

(d)
n,p′WΓlC8(P+)T aW †ξ(u)

n,p]. (14.11)

Now, taking the matrix elements between the appropriate hadronic states we have

〈
π−n
∣∣ ξnWΓC0(P+)W †ξn |0〉 =

i

2
fπEπ

∫ 1

0
dxC(2Eπ(2x− 1))φπ(x) (14.12)〈

Dv′π
−
n

∣∣hv′Γhv |B〉 = N ′ξ(ω0, µ). (14.13)
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14.3 Massive Gauge Boson Form Factor & Rapidity Divergences [Empty]14 SCETII APPLICATIONS

We are able to achieve this factorization because with B, D purely soft and π purely collinear there are
no contractions between soft and collinear fields. So we find that our final factorization result is

〈πD|HW |B〉 = iNξ(ω0, µ)

∫ 1

0
C(2Eπ(2x− 1), µ)φπ(x, µ) +O(Λ/Q) (14.14)

where ξ(ω0, µ) is the Isgur-Wise function at maximum recoil and

ω0 =
m2
B −m2

D

2mB
(14.15)

This result also applies to other B decays such as

B
0 → D+π−, B

0 → D∗+π−, B
0 → D+ρ−

B
− → D0π−, B− → D∗0π−, B

0 → D+ρ−

14.3 Massive Gauge Boson Form Factor & Rapidity Divergences [Empty]

14.4 pT Distribution for Higgs Production & Jet Broadening [Remove]
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A LSCET AND SCET FEYNMAN RULES

A LSCET and SCET Feynman rules

A.1 Summary of Notation for Derivatives

Various types of SCET derivatives and covariant derivatives were used in the text. We summarize them
all here for easy reference:

iDµ
n ≡ i∂µn + gAµn , i∂µn ≡

n̄µ

2
in · ∂ +

nµ

2
P + Pµ⊥ , (A.1)

iDµ
us ≡ i∂µ + gAµus ,

iDµ
ns ≡ iDµ

n +
n̄µ

2
gn ·Aus , i∂µns ≡ i∂µn +

n̄µ

2
gn ·Aus .

iDµn⊥ = W †niD
µ
n⊥Wn = Pµn⊥ + gBµn⊥ ,

iDµns = W †niD
µ
nsWn .

In addition we have the combinations that are invariant under type-0 RPI and collinear gauge covariant

iDµ
⊥ ≡ iD

µ
n⊥ +WniD

µ
us⊥W

†
n , in̄ ·D ≡ in̄ ·Dn +Wnin̄ ·DusW

†
n , (A.2)

as well as those that are invariant under type-0 RPI and collinear gauge invariant

W †niD
µ
⊥Wn = iDµn⊥ + iDµ

us⊥ , W †nin̄ ·DWn = P + in̄ ·Dus . (A.3)

The terms in Eq. (A.3) act only on collinear objects that do not transform under a local collinear gauge
transformation.

A.2 Massless and Massive SCET at Leading Power

With a sum over distinct collinear sectors the leading order SCET Lagrangian is

L(0) = L(0)
us +

∑
n

(
L(0)
nξ + L(0)

ng

)
. (A.4)

Here L(0)
soft is simply the Yang-Mills Lagrangian with usoft fermion fields ψs and soft gluon fields Aµs . The

leading power Lagrangians for collinear quarks and gluons are [2, 6]

L(0)
nξ = ξ̄n

(
in ·Dns + i /Dn⊥

1

in̄ ·Dn
i /Dn⊥

) /̄n
2
ξn , (A.5)

L(0)
ng =

1

2g2
Tr
{

([iDµ
ns, iD

ν
ns])

2
}

+ τ Tr
{

([i∂µns, Anµ])2
}

+ 2 Tr
{
cn[i∂nsµ, [iD

µ
ns, cn]]

}
.

where we used a general covariant gauge for the collinear gluons with gauge fixing parameter τ . The gauge
fixing terms are gauge invariant with respect to the ultrasoft field which acts like a background field. An

independent gauge fixing term is specified for the ultrasoft gluons in the gluon action in L(0)
us .

The Feynman rules that follow from the leading order collinear quark Lagrangian are shown in Fig. 15.
Each collinear line carries momenta (p, pr) with label momenta pµ = n̄·pnµ/2+pµ⊥ and residual momentum
pµr . Only one momentum p or p′ is indicated for lines where the Feynman rule depends only on the label
momentum. The Feynman rules between collinear gluons and ultrasoft gluons are shown in Fig. 16.

If we add a mass the leading power collinear quark Lagrangian becomes

L(0)
nξ = ξ̄n

[
in·Dns + (iD/n⊥ −m)

1

in̄·Dn
(iD/n⊥ +m)

]
n̄/

2
ξn , (A.6)

and the modified Feynman rules are shown in Fig. 17.
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(p, pr)
= i

n/
2

n̄·p
n·pr n̄·p+ p2⊥+i0

 μ , A

= ig TA nµ
n̄/
2

p pɂ

μ , A

= ig TA

[
nµ +

γ⊥µ p/⊥
n̄·p +

p ′/⊥γ
⊥
µ

n̄·p ′ − p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µ

]
n̄/
2

p pɂ

μ , A ν , B

q

= ig2 TA TB

n̄·(p−q)

[
γ⊥µ γ

⊥
ν −

γ⊥µ p/⊥
n̄·p n̄ν −

p ′/⊥γ
⊥
ν

n̄·p ′ n̄µ + p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

+ ig2 TB TA

n̄·(q+p′)

[
γ⊥ν γ

⊥
µ −

γ⊥ν p/⊥
n̄·p n̄µ −

p ′/⊥γ
⊥
µ

n̄·p ′ n̄ν + p ′/⊥p/⊥
n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

Figure 15: Order λ0 Feynman rules: collinear quark propagator with label p and residual momentum
pr, and collinear quark interactions with one soft gluon, one collinear gluon, and two collinear gluons
respectively.
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a, μ b, ν

(q, k)

= −i
n̄·q n·k + q2

⊥ + i0

(
gµν − (1− τ)

qµqν
n̄·q n·k + q2

⊥

)
δa,b

b, ν c, λ

a, μ

q2q1

= gfabcnµ
{
n̄ · q1 gνλ − 1

2(1− 1
τ )[n̄λq1ν + n̄νq2λ]

}
a, μ b, ν

c, λd, ρ

= −1
2 ig

2nµ

{
fabef cde(n̄λgνρ − n̄ρgνλ)

+fadef bce(n̄νgλρ − n̄λgνρ) + facef bde(n̄νgλρ − n̄ρgνλ)

}
a, μ b, ν

c, λ d, ρ
= 1

4 ig
2nµnν n̄ρn̄λ(1− 1

α)
{
facef bde + fadef bce

}

Figure 16: Collinear gluon propagator with label momentum q and residual momentum k, and the order
λ0 interactions of collinear gluons with the usoft gluon field. Here usoft gluons are springs, collinear gluons
are springs with a line, and τ is the covariant gauge fixing parameter in Eq. (4.57).

A.3 Massless SCET at Subleading Power

In this subsection Lagrangians and Feynman rules are given at subleading power in SCETI. There are
several contributions to the subleading SCETI Lagrangian at O(λ) and O(λ2) [17, 7, 18],

L(1) =
∑
n

(
L(1)
nξ + L(1)

ng + L(1)
ξnq

+ L(1)
gf

)
, (A.7)

L(2) =
∑
n

(
L(2)
nξ + L(2)

ng + L(2)
ξnq

+ L(2)
gf

)
.

For the O(λ) subleading Lagrangians we have

L(1)
ξnψus

= χ̄n
1

n̄·P
g/Bn⊥ψs + h.c., (A.8)

L(1)
nξ = χ̄n

(
i /Ds⊥

1

n̄·P
i /Dn⊥ + i /Dn⊥

1

n̄·P
i /Ds⊥

) /̄n
2
χn ,

L(1)
ng =

2

g2
Tr
([
iDµns, iDνn⊥

][
iDnsµ, iDs⊥ ν

])
,

L(1)
gf = 2τ Tr

([
iDµ

s⊥, An⊥µ
][
i∂νns, Anν

])
+ 2 Tr

(
c̄n
[
iDµ

s⊥,
[
iD⊥nµ, cn

]])
+ 2 Tr

(
c̄n
[
Pµ⊥,

[
WniD

⊥
sµW

†
n, cn

]])
.
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(p, pr)
= i

n/
2

n̄·p
n·pr n̄·p+ p2⊥−m2+iε

 μ , A

= ig TA nµ
n̄/
2

p pɂ

μ , A

= ig TA

[
nµ +

γ⊥µ (p/⊥+m)

n̄·p +
(p ′/⊥−m)γ⊥µ

n̄·p ′ − (p ′/⊥−m)(p/⊥+m)
n̄·p n̄·p ′ n̄µ

]
n̄/
2

p pɂ

μ , A ν , B

q

= ig2 TA TB

n̄·(p−q)

[
γ⊥µ γ

⊥
ν −

γ⊥µ (p/⊥+m)

n̄·p n̄ν − (p ′/⊥−m)γ⊥ν
n̄·p ′ n̄µ + (p ′/⊥−m)(p/⊥+m)

n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

+ ig2 TB TA

n̄·(q+p′)

[
γ⊥ν γ

⊥
µ −

γ⊥ν (p/⊥+m)
n̄·p n̄µ −

(p ′/⊥−m)γ⊥µ
n̄·p ′ n̄ν + (p ′/⊥−m)(p/⊥+m)

n̄·p n̄·p ′ n̄µn̄ν

]
n̄/
2

Figure 17: Order λ0 Feynman rules as in Fig. 15, but with a collinear quark mass.

For the O(λ2) subleading Lagrangians we have

L(2a)
ξnψus

= χ̄n
n̄/

2

[
W †nin·DWn

]
ψus + h.c. , (A.9)

L(2b)
ξnψus

= χ̄n
n̄/

2
i /Dn⊥

1

n̄·P
ig/B n⊥ψus + h.c. ,

L(2)
nξ = χ̄n

(
i /Ds⊥

1

n̄·P
i /Ds⊥ − i /Dn⊥

in̄ ·Ds

(n̄·P)2
i /Dn⊥

)
/̄n

2
χn ,

L(2)
ng =

1

g2
Tr
([
iDµns, iD⊥νs

][
iDnsµ, iD⊥sν

])
+

1

g2
Tr
([
iDµ

s⊥, iD
ν
s⊥
][
iD⊥nµ, iD⊥nν

])
+

1

g2
Tr
([
iDµns, in · Dns

][
iDnsµ, in̄ ·Ds

])
+

1

g2
Tr
([
iDµ

s⊥, iD
ν
n⊥
][
iD⊥nµ, iD⊥sν

])
L(2)
gf = τ Tr

([
iDµ

s⊥, An⊥µ
][
iDν

s⊥, An⊥ν
])

+ τ Tr
([
in̄ ·Ds, n ·An

][
i∂µns, Anµ

])
+ 2 Tr

(
c̄n
[
iDµ

s⊥,
[
WniD

⊥
sµW

†
n, cn

]])
+ Tr

(
c̄n
[
in̄ ·Ds,

[
in ·D, cn

]])
+ Tr

(
c̄n
[
n̄·P,

[
Wnin̄ ·DsW

†
n, cn

]])
.

The RPI connections for the gauge fixing and ghost terms do not follow the same rules as other contributions
since they are not collinear gauge invariant. Therefore in addition to the usual connections, in the results
above we use RPI and ultrasoft gauge invariance to connect i∂µn⊥ + iDµ

s⊥ and n̄ ·P + in̄ · Ds. Note that
all of these Lagrangians are listed prior to making the BPS field redefinition. The subleading power gauge
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µ , a

(p, k)
(q, t) = ig T a

[
γ⊥µ − n̄µ

q/⊥
n̄·q

]

µ , i,

q2

(p, k)

a b

(    , t  )2q(    , t  )11
= ig2 T

bT a

n̄·q1

[
n̄µn̄ν p/

⊥

n̄·p
− γ⊥ν n̄µ

]
+ ig2 T

aT b

n̄·q2

[
n̄µn̄ν p/

⊥

n̄·p
− γ⊥µ n̄ν

]
Figure 18: Feynman rules for the subleading usoft-collinear Lagrangian L(1)

ξq with one and two collinear

gluons (springs with lines through them). The solid lines are usoft quarks while dashed lines are collinear
quarks. For the collinear particles we show their (label,residual) momenta. (The fermion spinors are
suppressed.)

fixing terms at subleading power were discussed in [19], but using a different organization of the subleading
operators than what we use here.

All Feynman rules for L(i)
ξq involve at least one collinear gluon. From L(1)

ξq we obtain Feynman rules

with zero or one A⊥n gluons and any number of n̄·An gluons. The one and two-gluon results are shown in

Fig. 18. For L(2a)
ξq we have Feynman rules with zero or one n·An gluon and any number of n̄·An gluons.

The one and two-gluon results are shown in Fig. 19. Finally, for L(2b)
ξq one finds Feynman rules with zero,

one, or two A⊥n gluons and any number of n̄·An gluons. In this case the one and two gluon Feynman rules
are shown in Fig. 20.

For the Lagrangian L(1,2)
nξ all terms have two collinear quarks. There are terms with no gluons that yield

kinematic corrections induced by the multipole expansion on soft momenta flowing through propagators.
There are also terms with only usoft gluons. Finally there are are terms with one or more collinear gluons.
A few of the lowest order Feynman rules are summarized in Figs. 21 and 22.

The Mixed Collinear 3-gluon vertex is:

= g fABC
[
gνρ⊥

{(
1− 1

α

)
pµn −

(
1 +

1

α

) n̄µ
2
n · ps −

p2
n n̄

µ

n̄ · pn

}
− 2gµνpρn⊥

+ gµρ⊥

{(
1− 1

α

)
pνn −

p2
n n̄

ν

n̄ · pn

}
+
(
n̄µpνn + n̄νpµn +

1

2
n̄µn̄νn · ps

) pρn⊥
n̄ · pn

]
×
(
g⊥ρα −

nρ p
⊥
sα

n · ps

)
(A.10)

A.4 Subleading Heavy-to-Light Currents

Here we give Feynman rules for the O(λ) heavy-to-light currents J (1a) and J (1b) in Eq. (??) which are valid
in a frame where v⊥ = 0 and v ·n = 1.

For the subleading currents the zero and one gluon Feynman rules for J (1a) and J (1b) are shown in
Figs. 23 and 24 respectively. (From the results in the previous sections the Feynman rules for the currents
with v⊥ 6= 0 and v ·n 6= 1 can also be easily derived.) For J (1a) the Wilson coefficients depend only on
the total λ0 collinear momentum, while for J (1a) the coefficients depend on how the momentum is divided
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µ , a

(p, k)
(q, t) = ig T a

n̄/

2

(
nµ −

n̄µ n·t
n̄·q

)

µ , i ,a b

(p, k)
(q, t) =

−g2fabcT c

n̄·q
n̄/

2
n̄µnν

µ , i,

q2

(p, k)

a b

(    , t  )2q(    , t  )11 =

ig2 T
aT b

n̄·q2

[
− nµn̄ν + n̄µn̄ν

n·(t1 + t2)

n̄·p

]
n̄/

2

+ ig2 T
bT a

n̄·q1

[
− nν n̄µ + n̄µn̄ν

n·(t1 + t2)

n̄·p

]
n̄/

2

Figure 19: Feynman rules for the O(λ2) usoft-collinear Lagrangian L(2a)
ξq with one and two gluons. The

spring without a line through it is an usoft gluon. For the collinear particles we show their (label,residual)
momenta, where label momenta are p, q, qi ∼ λ0,1 and residual momenta are k, t, ti ∼ λ2. Note that the
result is after the field redefinition made in Ref. [?].

µ , a

(p, k)
(q, t) = ig

T a

n̄·q
n̄/

2

[
q/⊥γ

⊥
µ − n̄µ

q2
⊥

n̄·q

]

µ , i,

q2

(p, k)

a b

(    , t  )2q(    , t  )11 =

ig2 T
aT b

n̄·q2

n̄/

2

[
γ⊥µ γ

⊥
ν −

p/⊥
n̄·p

(γ⊥µ n̄ν+γ⊥ν n̄µ)−
γ⊥µ n̄ν q/2⊥

n̄·q2

+n̄µn̄ν

(
p2
⊥

(n̄·p)2
+

p/⊥ q/2⊥
n̄·p n̄·q2

)]
+
[
(a, µ, q1, t1)↔ (b, ν, q2, t2)

]

Figure 20: Feynman rules for the O(λ2) usoft-collinear Lagrangian L(2b)
ξq with one and two gluons. For

the collinear particles we show their (label,residual) momenta, where label momenta are p, q, qi ∼ λ0,1 and
residual momenta are k, t, ti ∼ λ2.

between the quark and gluons. The J (1a) current has non-vanishing Feynman rules with zero or one A⊥n
gluon and any number of n̄·An gluons. The possible gluons that appear in the J (1b) currents are similar,
but the current vanishes unless it has one or more collinear gluons present.
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(p̃, pr) (1)

= i
n̄/
2

2p⊥·p⊥r
n̄·p

p

 μ , A

= ig TA
n̄/
2

2pµ⊥
n̄·p

p pɂ

μ , A

= ig TA
n̄/
2

[
γ⊥µ p/

⊥
r

n̄·p +
p ′/ ⊥
r γ⊥µ
n̄·p ′ + n̄µp/⊥r p/

⊥

n̄·q n̄·p −
n̄µp ′/⊥p ′/⊥

r

n̄·q n̄·p′ −
n̄µp ′/⊥

r p/
⊥

n̄·q n̄·p′ + n̄µp ′/⊥p/⊥r
n̄·q n̄·p

]

p pɂ

μ , A ν , B

q

= ig2 TA TB n̄/
2

[
γ⊥µ γ

⊥
ν · · ·

]
+ ig2 TB TA n̄/

2

[
γ⊥ν γ

⊥
µ · · ·

]

Figure 21: Order λ1 Feynman rules with two collinear quarks from L(1)
ξξ .
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(p̃, pr) (2)

= i
n̄/
2
p2r⊥
n̄·p

 μ , A

= ig TA
n̄/
2

[
2p⊥µr
n̄·p −

n̄µp2⊥
(n̄·p)2

]

p pɂ

μ , A

= ig TA
n̄/
2

[
n̄µp 2

r⊥
n̄·p −

n̄µp′ 2r⊥
n̄·p′ −

γ⊥µ p/⊥n̄·pr
(n̄·p)2 −

p ′/⊥γ
⊥
µ n̄·pr

(n̄·p ′)2 −
n̄µp ′/⊥p/⊥n̄·pr
n̄·q(n̄·p)2 + n̄µp ′/⊥p/⊥n̄·pr

n̄·q(n̄·p ′)2

]

p pɂ

μ , A ν , B

q

= ig2 TA TB n̄/
2

[
γ⊥µ γ

⊥
ν · · ·

]
+ ig2 TB TA n̄/

2

[
γ⊥ν γ

⊥
µ · · ·

]

Figure 22: Order λ2 Feynman rules with two collinear quarks from L(2)
ξξ .

(p, k)

J 1a)(

= −i B(d)
i (n̄·p̂) p

⊥
α Υ

(d)α
i

n̄·p

µ , a

(p, k)

(q, t)

J 1a)(

= −i B(d)
i

(
n̄·(p̂+q̂)

) g T a

n̄·(p+q)

[
Υ

(d)µ
i +

n̄µ p⊥αΥ
(d)α
i

n̄·q

]

Figure 23: Feynman rules for the O(λ) currents J (1a) in Eq. (??) with zero and one gluon (the fermion
spinors are suppressed). For the collinear particles we show their (label,residual) momenta, where label
momenta are p, q ∼ λ0,1 and residual momenta are k, t ∼ λ2. Momenta with a hat are normalized to mb,
p̂ = p/mb etc.

B Wilson line Identities and Feynman Rules

Some useful Wilson line identities include the connection between fundamental and adjoint lines

W †nT
AWn =WAB

n TB , WnT
AW †n = TBWBA

n , (B.1)

where the unitary and orthogonal conditions for these lines are

W †nWn = WnW
†
n = 1 , WAC

n WBC
n = δAB .
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(p, k)

J 1b)(

= 0

(p, k)

(q, t)

J

µ , a

1b)(

= i B
(d)
i

(
n̄·p̂, n̄·q̂

) g T a
mb

[
Θ

(d)µ
i − n̄µ q⊥αΘ

(d)α
i

n̄·q

]

Figure 24: Feynman rules for the O(λ) currents J (1b) in Eq. (??) with zero and one gluon. For the
collinear particles we show their (label,residual) momenta, where label momenta are p, q, qi ∼ λ0,1 and
residual momenta are k, t ∼ λ2. Momenta with a hat are normalized to mb, p̂ = p/mb etc.

In momentum space for a gluon with incoming momentum k the Feynman rules can be read off from

Wn = 1−
g TA n̄ ·AAn,k

n̄ · k
+ . . . , W †n = 1 +

g TA n̄ ·AAn,k
n̄ · k

+ . . . , (B.2)

WAB
n = δAB +

g ifCAB n̄ ·ACn,k
n̄ · k

+ . . . , (W†n)AB = δAB −
g ifCAB n̄ ·ACn,k

n̄ · k
+ . . . ,

by replacing the gluon field by the gluon-polarization vector εAn . With the fundamental gluon building
block in SCET

gBµ
n⊥ = [W †niD

µ
n⊥Wn] =

[ 1

P̄
W †n[in̄ ·Dn, iD

µ
n⊥]Wn

]
= gBAµ

n⊥ T
A , (B.3)

gBAµ
n⊥ =

[ 1

P̄
n̄νiG

Bνµ⊥
n WBA

n

]
,

we have

W †niD
µ
n⊥Wn = Pµn⊥ + gBµ

n⊥ . (B.4)

For some applications it is also useful to define fields that are matrices in the color octet space which we
denote with a tilde

B̃ABµ
n⊥ = −ifABCBC

n⊥ (B.5)

C Mathematical Identities

C.1 Loop Integral Formula
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C.1 Loop Integral Formula C MATHEMATICAL IDENTITIES

C.1.1 Loop Integral Tricks

The following Feynman parameter tricks are useful when combining quadratic propagator denominators
of loop integrals:

a−1 b−1 =

∫ 1

0
dx
[
a+ (b− a)x

]−2
, (C.1)

a−m b−n =
Γ(n+m)

Γ(n)Γ(m)

∫ 1

0
dx

xn−1(1− x)m−1

[a+ (b− a)x]n+m
,

a−1 b−1 c−1 = 2

∫ 1

0
dx

∫ 1−x

0
dy
[
c+ (a− c)x+ (b− c)y

]−3

= 2

∫ 1

0
dx

∫ 1

0
dy x

[
a+ (c− a)x+ (b− c)xy

]−3
,

a−1
1 · · · a

−1
n = (n− 1)!

∫ 1

0
dx1 · · · dxn δ

(∑
xi − 1

) (∑
xiai

)−n
,

(am1
1 · · · a

mn
n )−1 =

Γ(
∑
mi)

Γ(m1) · · ·Γ(mn)

∫ 1

0
dx1 · · · dxn δ

(∑
xi − 1

) (∑
xiai

)−n∏
xmi−1
i .

To get the fourth line from the third we let x′ = 1− x and y′ = y/x. For integrals involving a propagator
that is linear in the loop momentum, it is convenient to combine it using the Georgi parameter trick:

a−1 b−1 =

∫ ∞
0
dλ
[
a+ bλ

]−2
, (C.2)

a−q b−1 = q

∫ ∞
0
dλ
[
a+ bλ

]−(q+1)
= 2q

∫ ∞
0
dλ
[
a+ 2bλ

]−(q+1)
,

a−q b−p =
2p Γ(p+ q)

Γ(p)Γ(q)

∫ ∞
0
dλ λp−1

[
a+ 2bλ

]−(p+q)
,

a−1 b−1 c−1 = 2

∫ ∞
0
dλ dλ′

[
c+ aλ′ + bλ

]−3
= 8

∫ ∞
0
dλ dλ′

[
c+ 2aλ′ + 2bλ

]−3
.

The Schwinger trick can also be useful, particularly for higher order loop integrals with many eikonal
propagators:

A−ν =
(−1)ν

Γ(ν)

∫ ∞
0
dα αν−1 exp

[
αA
]
. (C.3)

Massive propagators can be expressed in terms of massless ones using the Melles-Barnes trick:

(k2 −m2)−ν =
1

2πi

1

Γ(ν)

∫ i∞

−i∞
ds

(−m2)s

(k2)ν+s
Γ(−s)Γ(ν + s) . (C.4)

Finally, for easy reference, we note the theta function identity:

θ(z) =
1

2πi

∫ +∞

−∞
dω

eiwz

w − i0
(C.5)
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C.1.2 Parameter Integrals

Useful parameter integrals include:∫ 1

0
dx xa−1(1− x)b−1 =

Γ(a)Γ(b)

Γ(a+ b)
(C.6)∫ 1

0

dx

ax+ b
=

1

a
ln
[a+ b

b

]
6= 1

a
[ln(a+ b)− ln b]∫ 1

0
dx

∫ 1

0
dy xc−1(1− x)m−1yb−1(1− y)c−b−1(1− xy)−a =

Γ(b)Γ(m)Γ(c− b)Γ(c+m− a− b)
Γ(c+m− a)Γ(c+m− b)∫ ∞

0
dλ (aλ+ b)−p =

b1−p

a(p− 1)∫ ∞
0
dλ

λp

(λ2 + aλ)q
=

∫ ∞
0
dλ

λp−q

(λ+ a)q
=
a1+p−2q Γ(1 + p− q)Γ(−1− p+ 2q)

Γ(q)

Another useful integral for increasing the convergence:∫
dλ (λ2 + 2bλ+ a)α =

(λ+ b)(λ2 + 2bλ+ a)α

1 + 2α
+

2α(a− b2)

1 + 2α

∫
dλ (λ2 + 2bλ+ a)α−1 (C.7)

C.1.3 d-dimensional Integrals

The d-dimensional phase space can be decomposed as

dnp = dp pn−1dΩn = dp pn−1d(cos θ) (sin θ)n−3dΩn−1 , (C.8)

where
∫
dΩn = 2πn/2/Γ(n/2). Including 2πs, if the integrand does not depend on some of the angular

variables, then those integrals can be performed, which (progressively) gives

−dnp =
dnp

(2π)n
=

(2/
√
π)

(4π)n/2Γ(n2 −
1
2)

dp pn−1d(cos θ) (sin θ)n−3 =
2

(4π)n/2Γ(n2 )
dp pn−1 . (C.9)

The basic Euclidean integral appearing at 1-loop is∫
−dnqe

(q2
e)
α

(q2
e +A)β

=
1

(4π)n/2
Γ(n/2 + α)

Γ(n/2)

Γ(β − α− n/2)

Γ(β)
An/2+α−β , (C.10)

and the Minkowski version is∫
−dnq

(q2)α

(q2 −A)β
=
i(−1)α−β

(4π)n/2
Γ(n/2 + α)

Γ(n/2)

Γ(β − α− n/2)

Γ(β)
An/2+α−β . (C.11)

When we use the Schwinger trick we encounter the exponential integrals:∫
−dnq exp

[
Aq2 + 2B · q

]
=

i

(4π)d/2
A−d/2 exp

[
−B2/A

]
, (C.12)∫

−dnq qµ exp
[
Aq2 + 2B · q

]
=

i

(4π)d/2

(−Bµ

A

)
A−d/2 exp

[
−B2/A

]
,∫

−dnq qµqν exp
[
Aq2 + 2B · q

]
=

i

(4π)d/2

(BµBν

A2
− gµν

2A

)
A−d/2 exp

[
−B2/A

]
.
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For massive propagators the euclidean Fourier transform is sometimes useful:

V (~R,m) =

∫
−dnk

ei
~k·~R

~k2 +m2
=

2π−1/2

(4π)n/2Γ
(
n−1

2

) ∫ ∞
0
dk

kn−1

k2+m2

∫ 1

−1
dx (1−x2)

n−3
2 eikRx

=
1

(2π)n/2
mn/2−1R1−n/2K1−n/2(mR). (C.13)

where Kν(x) is the modified Bessel function of the second kind. Note that Kν(x) = K−ν(x). For n = 3,
V (~R,m) = e−mR/(4πR). Inverse transforms

1

~k2 +m2
=

∫
dnR e−i

~k·~R V (~R,m) ,
1

(~k2 +m2)α
=

∫
dnR e−i

~k·~R Vα(~R,m) , (C.14)

where the generalized transform for power α is

Vα(~R,m) =
21−α

(2π)n/2Γ(α)

(m
R

)n/2−α
Kn/2−α(mR). (C.15)

C.2 One Loop SCET Integrals

C.3 Useful Function Identities

The fractional Γ identity is

Γ(x2 )Γ(x+1
2 )

Γ(x)
= 21−x√π (C.16)

and conversion to trig is

Γ(x)Γ(1− x) =
π

sin(πx)
(C.17)

Polylog identities for any complex x are

Li2(x) = −Li2(1− x) +
π2

6
− ln(x) ln(1− x)

Li2(x) = −Li2

(1

x

)
− π2

6
− 1

2
ln2(−x) (C.18)

Hypergeometric identites:

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− tz)−a (C.19)

2F1(a, b, c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

An identity for the incomplete Beta function:

βz(a, b) =

∫ z

0
dt ta−1(1− t)b−1 =

za

a
2F1(a, 1− b, 1 + a, z) (C.20)
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Some logarithm identities

ln(ab) = ln a+ ln b+ 2πi
[
θ(−=a)θ(−=b)θ(=ab)− θ(=a)θ(=b)θ(−=ab)

]
,

ln(ab) = ln a+ ln b if sign(=a) 6= sign(=b) or a > 0 is real ,

ln
(z + iλ

z − iλ

)
= ln(z + iλ)− ln(z − iλ) , ln(z2 + λ2) = ln(z + iλ) + ln(z − iλ) ,

arctan(w) =
i

2
ln
(1− iw

1 + iw

)
, arctanh(w) =

1

2
ln
(1 + w

1− w

)
(C.21)

C.4 Convolution identities

In calculations involving massless quarks and gluons, the +-function distribution frequently appears. Here
we summarize identities for the +-function following Ref. [22]. We define a general plus distribution for
some function q(x), which is less singular than 1/x2 as x→ 0, as[

q(x)
][x0]

+
≡
[
θ(x)q(x)

][x0]

+
(C.22)

= lim
ε→0

d

dx

[
θ(x− ε)Q(x, x0)

]
= lim

ε→0

[
θ(x− ε) q(x) + δ(x− ε)Q(x, x0)

]
,

with

Q(x, x0) =

∫ x

x0

dx′ q(x′) . (C.23)

The point x0 can be thought of as a boundary condition for the plus distribution since Q(x0, x0) = 0.
Integrating the +-function against a test function f(x), we have∫ xmax

−∞
dx [θ(x) q(x)]

[x0]
+ f(x) (C.24)

=

∫ xmax

0
dx q(x) [f(x)− f(0)] + f(0)Q(xmax, x0) .

Taking f(x) = 1 in Eq. (C.24) one sees that the integral of the plus distribution vanishes only when
integrated over a range with xmax = x0, ∫ x0

0
dx[θ(x) q(x)]

[x0]
+ = 0 . (C.25)

Plus distributions with different boundary conditions are related to each other by[
θ(x) q(x)

][x0]

+
=
[
θ(x) q(x)

][x1]

+
+ δ(x)Q(x1, x0) . (C.26)

Below and in the text we exclusively use the boundary condition x0 = 1, and will always drop the superscript
[x0] on the plus distributions when this default choice is used. The general discussion is included here
because it is sometimes needed when comparing results in the literature.

A special case the often occurs is a power q(x) = 1/x1−a with a > −1, for which we define

La(x) ≡
[
θ(x)

x1−a

]
+

= lim
ε→0

d

dx

[
θ(x− ε) x

a − 1

a

]
. (C.27)
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Here La(x) for a = 0 reduces to the standard definition of [θ(x)/x]+. Another common case is q(x) =
lnn x/x with integer n ≥ 0, for which we define

Ln(x) ≡
[
θ(x) lnn x

x

]
+

= lim
ε→0

d

dx

[
θ(x− ε) lnn+1 x

n+ 1

]
. (C.28)

Since both La(x) and Ln(x) have the same x0 = 1 boundary condition, they are related by

Ln(x) =
dn

dan
La(x)

∣∣∣∣
a=0

. (C.29)

Thus we can derive identities involving Ln(x) from identities involving La(x) by taking derivatives with
respect to a. Finally, for the general case involving both powers and logarithms we define

Lan(x) ≡
[
θ(x) lnn x

x1−a

]
+

=
dn

dbn
La+b(x)

∣∣∣∣
b=0

, (C.30)

which satisfies L0
n(x) ≡ Ln(x) and La0(x) ≡ La(x). To provide continuity in various formulas it is also

convenient to define

L−1(x) ≡ La−1(x) ≡ δ(x) . (C.31)

The following identities are also useful

Lm+n(x) =
dm

dam
Lan(x)

∣∣∣∣
a=0

, (C.32)

Lm+n+1(x) = (m+ 1)
dm

dam
Lan(x)− Ln(x)

a

∣∣∣∣
a=0

,

Lam+1(x) = (m+ 1)
dm

dbm
La+b(x)− La(x)

b

∣∣∣∣
b=0

,

d

d lnx
xLn(x) = n xLn−1(x) .

The La(x) satisfies the rescaling identity (for λ > 0)

λLa(λx) = lim
ε→0

d

dx

[
θ(x− ε) (λx)a − 1

a

]
= λaLa(x) +

λa − 1

a
δ(x) , (C.33)

from which we can obtain the rescaling identity for Ln(x),

λLn(λx) =
dn

dan
λaLa(x)

∣∣∣∣
a=0

+
lnn+1λ

n+ 1
δ(x) =

n∑
k=0

(
n

k

)
lnkλLn−k(x) +

lnn+1λ

n+ 1
δ(x) . (C.34)

We will also need convolutions of two plus distributions,∫
dyLa(x− y)Lb(y) = lim

ε→0

d

dx

{
θ(x− ε)

[
xa+b

a+ b
V (a, b) +

xa − 1

a

xb − 1

b

]}
=
(
La+b(x) +

δ(x)

a+ b

)
V (a, b) +

(1

a
+

1

b

)
La+b(x)− 1

b
La(x)− 1

a
Lb(x) . (C.35)
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In the second step we used the definition in Eq. (C.27). Here V (a, b) is defined by

V (a, b) =
Γ(a) Γ(b)

Γ(a+ b)
− 1

a
− 1

b
, (C.36)

which satisfies V (0, 0) = 0. Taking derivatives with respect to a and b we can get the corresponding
formulas for convolutions involving Ln,∫

dyLa(x− y)Ln(y) =
dn

dbn

(
La+b(x) +

δ(x)

a+ b

)
V (a, b)

∣∣∣∣
b=0

+
Lan+1(x)

n+ 1
+
Lan(x)− Ln(x)

a

≡ 1

a

n+1∑
k=−1

V n
k (a)Lak(x) − 1

a
Ln(x) ,∫

dyLm(x− y)Ln(y) =
dm

dam
dn

dbn

(
La+b(x) +

δ(x)

a+ b

)
V (a, b)

∣∣∣∣
a=b=0

+
( 1

m+ 1
+

1

n+ 1

)
Lm+n+1(x)

≡
m+n+1∑
k=−1

V mn
k Lk(x) . (C.37)

The coefficients V n
k (a) and V mn

k are related to the Taylor series expansion of V (a, b) around a = 0 and
a = b = 0. The nonzero terms for n ≥ 0 are

V n
k (a) =



a
dn

dbn
V (a, b)

a+ b

∣∣∣∣
b=0

, k = −1 ,

a

(
n

k

)
dn−k

dbn−k
V (a, b)

∣∣∣∣
b=0

+ δkn , 0 ≤ k ≤ n ,

a

n+ 1
, k = n+ 1 .

(C.38)

The term δkn in V n
k (a) and the last coefficient V n

n+1(a) arise from the boundary terms in the convolution
integral. The V mn

k are symmetric in m and n, and the nonzero terms for m,n ≥ 0 are

V mn
k =



dm

dam
dn

dbn
V (a, b)

a+ b

∣∣∣∣
a=b=0

, k = −1 ,

m∑
p=0

n∑
q=0

δp+q,k

(
m

p

)(
n

q

)
dm−p

dam−p
dn−q

dbn−q
V (a, b)

∣∣∣∣
a=b=0

, 0 ≤ k ≤ m+ n ,

1

m+ 1
+

1

n+ 1
, k = m+ n+ 1 .

(C.39)

The last coefficient V mn
m+n+1 again contains the boundary term. Using Eq. (C.31) we can extend the results

in Eq. (C.37) to include the cases n = −1 or m = −1. The relevant coefficients are

V −1
−1 (a) = 1 , V −1

0 (a) = a , V −1
k≥1(a) = 0 , V −1,n

k = V n,−1
k = δnk . (C.40)

C.5 Laplace transform Identities

The main equation to calculate the Laplace transform of the generalized distributions introduced above is
the relation (

νµj
)−ω

=
1

Γ(ω)

∫ ∞
0

dt e−νt
[

1

µj
Lω
(
t

µj

)
+

1

ω
δ(t)

]
(C.41)
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where t is a variable of mass dimension j, while ν is a conjugate variable with mass dimension −j. Using
the identities in Eq. (C.29) one can perform a Taylor series in ω of the right hand side of this equation to
find

eγEωΓ(ω)(ν̃µj)−ω =

∫ ∞
0

dte−νt

[
1

ω
δ(t) +

∞∑
k=0

ωk

k!

1

µj
Lk
( t

µj

)]
(C.42)

where γE is Euler’s constant and

ν̃ ≡ eγEν (C.43)

By also performing a Taylor series of the left hand side of this equation one can obtain the Laplace transform
for any Lk. The first few terms are∫ ∞

0
dt e−νt

1

µj
L−1

(
t

µj

)
= 1 ,∫ ∞

0
dt e−νt

1

µj
L0

(
t

µj

)
= − ln

(
ν̃µj
)
,∫ ∞

0
dt e−νt

1

µj
L1

(
t

µj

)
=

log2
(
ν̃µj
)

2
+
π2

12
,∫ ∞

0
dt e−νt

1

µj
L2

(
t

µj

)
= −

log3
(
ν̃µj
)

3
− π2

6
log
(
ν̃µj
)
− 2 ζ3

3
,∫ ∞

0
dt e−νt

1

µj
L3

(
t

µj

)
=

log4
(
ν̃µj
)

4
+
π2 log2

(
ν̃µj
)

4
+ 2 ζ3 log

(
ν̃µj
)

+
3π4

80
. (C.44)

One can also easily invert the Laplace transform. The relevant general identity is

1

2πi

∫ c+i∞

c−i∞
dν eνt

(
νµj
)−ω

=
1

Γ(ω)

[
1

µj
Lω
(
t

µj

)
+

1

ω
δ(t)

]
, (C.45)

where c is any constant that gives a convergent integral.

C.6 Plus functions from Imaginary parts

Sometimes it is convenient to calculate functions appearing in factorization theorems by taking the imagi-
nary part of a forward scattering graph. An example is the inclusive hemisphere jet function. The following
identities for a dimensionless variable x are useful for these calculations,

Im

[
lnn(−x−i0)

π(−x−i0)

]
= cos2

(nπ
2

)(−π2)n/2

n+ 1
δ(x) +

[n−1
2 ]∑
j=0

(−1)j n!π2j

(2j+1)!(n−2j−1)!
Ln−2j−1(x) , (C.46)

where [p] on the sum is the greatest integer not exceeding p, sometimes also called the Gauss bracket of p.
For the first few orders this gives

1

π
Im

[
1

x+ i0

]
= −δ(x),

1

π
Im

[
ln(−x− i0)

x+ i0

]
= −L0(x), (C.47)

1

π
Im

[
1

(x+ i0)2

]
= δ′(x),

1

π
Im

[
ln2(−x− i0)

x+ i0

]
=
π2

3
δ(x)− 2L1(x).
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D QCD SUMMARY

D QCD Summary

D.1 Fields and Feynman Rules

The SU(Nc) QCD Lagrangian without gauge fixing is

L = ψ̄(i /D −m)ψ − 1

4
GAµνG

µνA , GAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν (D.1)

iDµ = i∂µ + gAAµT
A , [iDµ, iDν ] = igGAµνT

A .

Note our sign convention for g. The equations of motion and Bianchi identity are

(i /D −m)ψ = 0 , ∂µGAµν = −gfABCABµGCµν − gψ̄γνTAψ , εµνλσ(DνGλσ)A = 0. (D.2)

Useful color identities include

[TA, TB] = ifABCTC , Tr
[
TATB

]
= TF δ

AB , T̄A = −TA∗ = −(TA)T ,

TATA = CF1 , fACDfBCD = CAδ
AB , fABCTBTC =

i

2
CAT

A ,

TATBTA =
(
CF −

CA
2

)
TB , dABCdABC =

40

3
, dABCdA

′BC =
5

3
δAA

′
, (D.3)

where CF = (N2
c − 1)/(2Nc), CA = Nc, TF = 1/2, and CF − CA/2 = −1/(2Nc). The color reduction

formula and Fierz formula are

TATB =
δAB

2Nc
1 +

1

2
dABCTC +

i

2
fABCTC , (TA)ij(T

A)k` =
1

2
δi`δkj −

1

2Nc
δijδk` . (D.4)

The Feynman gauge Feynman rules for fermion, gluon, ghost propagators, and the Fermion-gluon vertex
are

i(/p+m)

p2 −m2 + i0
,

−igµνδAB

k2 + i0
,

i

k2 + i0
, +igγµTA . (D.5)

The triple gluon and ghost Feynman rules in covariant gauge for {AAµ (k), ABν (p), ACρ (q)} all with incoming

momenta, and c̄A(p)ABµ c
C with outgoing momenta p are:

gfABC
[
gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν

]
, −gfABCpµ . (D.6)

In a general covariant gauge we have the gauge fixing Lagrangian and gluon propagator

Lgf = −(∂µA
µ)2

2ξ
, Dµν(k) =

−i
k2 + i0

(
gµν − (1− ξ)k

µkν

k2

)
, (D.7)

where Feynman gauge is ξ → 1 and Landau gauge is ξ → 0. In background field covariant gauge Lgf =
−(DA

µQ
A
µ )2/(2ξ), where QAµ is the quantum gauge field and AAµ in DA

µ is a background gauge field. Here

the triple gluon Feynman rule for {AAµ (k), QBν (p), QCρ (q)} is:

gfABC
[
gµν
(
k − p− q

ξ

)ρ
+ gνρ(p− q)µ + gρµ

(
q − k +

p

ξ

)ν]
. (D.8)
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D.2 QCD β-Function

In d = 4− 2ε dimensions the MS coupling constant obeys

µ
d

dµ
αs(µ) = −2ε αs(µ) + β(αs) , (D.9)

where β(αs) is the QCD β-function. Expanding it in powers of αs we have

β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, (D.10)

where the coefficients to three loops are [?, 23]

β0 =
11

3
CA −

4

3
TF nf ,

β1 =
34

3
C2
A −

(20

3
CA + 4CF

)
TF nf ,

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(11

9
CF +

79

54
CA

)
4T 2

F n
2
f . (D.11)

Here β2 depends on our choice of the MS scheme, while β0,1 are scheme independent within massless
renormalization schemes. The term involving ε in Eq. (D.9) is needed when deriving anomalous dimensions,
but we can take ε → 0 when defining the physical coupling constant and solving this equation for the
running coupling. At leading logarithmic order we keep only the β0 term and have the solution

αs(µ) =
αs(µ0)

1 + β0

2παs(µ0) ln µ
µ0

=
2π

β0 ln µ
ΛQCD

,
1

αs(µ)
=

1

αs(µ0)
+
β0

2π
ln

µ

µ0
. (D.12)

In the first case we write the boundary condition in terms of the QCD scale parameter ΛQCD (defined
at this order), while in the second case we use the coupling specified at a fixed reference scale µ0 as the
boundary condition. Extending the solution to three-loops gives

1

αs(µ)
=

X

αs(µ0)
+

β1

4πβ0
lnX +

αs(µ0)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

( lnX

X
+

1

X
− 1
)]
, (D.13)

where X ≡ 1 + αs(µ0)β0 ln(µ/µ0)/(2π). Using the analytic solution in Eq. (D.13) gives results that agree
very well with numerically integrating Eq. (D.9) at 3-loops with ε = 0.

D.3 QCD Cusp Anomalous Dimensions

Operators that involve Wilson lines that meet at an angle, where at least one line involves a light-like
direction vector, will have renormalization group equations that involve the universal cusp anomalous
dimension Γcusp. Taking i = q, g for fundamental quark induced lines or adjoint gluon induced lines
respectively, we can expand the cusp anomalous dimension in powers of αs as

Γicusp(αs) =

∞∑
n=0

Γin

(αs
4π

)n+1
. (D.14)
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Up to three loop order the cusp anomalous dimension has been proven to be universal and obey Casmir
scaling, so that the difference between the quark and gluon cases is an overall color factor. The coefficients
of the quark and gluon cusp anomalous dimensions in MS are [?]

Γq0 =
CF
CA

Γ0
g , Γg0 = 4CA , (D.15)

Γq1 =
CF
CA

Γ1
g , Γg1 = 4CA

[(67

9
− π2

3

)
CA −

20

9
TF nf

]
,

Γq2 =
CF
CA

Γ2
g , Γg2 = 4CA

[(245

6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
C2
A +

(
−418

27
+

40π2

27
− 56ζ3

3

)
CA TF nf

+
(
−55

3
+ 16ζ3

)
CF TF nf −

16

27
T 2
F n

2
f

]
.

E General All-Orders Resummation Formula

E.1 Simple multiplicative RGE

In this section we give the generic solution for a simple multiplicative renormalization group equation of
the form

µ
d

dµ
F (s, µ) = γF (s, µ)F (s, µ) , γF (s, µ) =

ρF
j

Γcusp[αs] ln

(
µj

s

)
+ γF [αs] . (E.1)

Here s is a variable of mass dimension j, Γcusp is the cusp anomalous dimension given in Sec. D.3, and ρF
is a constant that varies depends on the function F being considered.

Integrating Eq. (E.1) from µ0 to µ by changing variables to αs with d lnµ = dαs/β[αs] gives the solution

ln
[ F (s, µ)

F (s, µ0)

]
= ωF (µ, µ0) ln

(
µj0
s

)
+KF (µ, µ0) , (E.2)

where we define

ωF (µ, µ0) =
ρF
j
ηΓ(µ, µ0) , KF (µ, µ0) = KγF (µ, µ0) + ρFKΓ(µ, µ0) , (E.3)

which are given in terms of

ηΓ(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
Γcusp[α] , KγF (µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
γF [α] ,

KΓ(µ, µ0) =

∫ αs(µ)

αs(µ0)

dα

β[α]
Γcusp[α]

∫ α

αs(µ0)

dα′

β[α′]
. (E.4)

Thus, exponentiating Eq. (??), we can write the solution to the RGE in terms of the boundary condition
F (s, µ0) by

F (s, µ) = UF (s, µ, µ0)F (s, µ0) , (E.5)

with the evolution kernel

UF (s, µ, µ0) = eKF (µ,µ0)

(
µj0
s

)ωF (µ,µ0)

. (E.6)
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E.2 RGE with a Convolution E GENERAL ALL-ORDERS RESUMMATION FORMULA

This solution is correct to all orders in perturbation theory.

Taking the expansions for β[αs] and Γcusp[αs] from Eqs. (D.10) and (D.14), and writing

γF [αs] =
∞∑
n=0

γFn

(αs
4π

)n+1
, (E.7)

we can solve for KΓ(µ, µ0), ηΓ(µ, µ0), and Kγ(µ, µ0) order by order in resumed perturbation theory in
terms of the coefficients βn, Γn, and γFn. For simplicity we suppress the i superscript on Γin. Up to NNLL
order the solutions are

KΓ(µ, µ0) = − Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(1− r2

2
+ ln r

)
+

(
β1Γ1

β0Γ0
− β2

1

β2
0

)
(1− r + r ln r)

−
(

Γ2

Γ0
− β1Γ1

β0Γ0

)
(1− r)2

2

]}
,

ηΓ(µ, µ0) = − Γ0

2β0

[
ln r +

αs(µ0)

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1) +

α2
s(µ0)

16π2

(
Γ2

Γ0
− β1Γ1

β0Γ0
+
β2

1

β2
0

− β2

β0

)
r2 − 1

2

]
,

KγF (µ, µ0) = − γ0

2β0

[
ln r +

αs(µ0)

4π

(
γF1

γF0
− β1

β0

)
(r − 1)

]
. (E.8)

Here r = αs(µ)/αs(µ0).

E.2 RGE with a Convolution

In this appendix we solve the general anomalous dimension equation

µ
d

dµ
F (t, µ) =

∫ +∞

−∞
dt′ γF (t−t′, µ) F (t′, µ) , γF (t, µ) = −ρFΓcusp[αs]

j

1

µj
L0

( t

µj

)
+ γF [αs] δ(t) , (E.9)

where t and t′ are variables of mass-dimension j. To solve Eq. (E.9) we take the Laplace transform which
yields a simple multiplicative RGE in the Laplace space variable y:

µ
d

dµ
F̃ (y, µ) = γ̃F (y, µ)F̃ (y, µ) , γ̃F (y, µ) =

ρFΓcusp[αs]

j
ln(y µj eγE ) + γF [αs] . (E.10)

where the Laplace transforms are defined by

F̃ (y, µ) =

∫ ∞
0

dt e−y t F (t, µ) , γ̃F (y, µ) =

∫ ∞
0

dt e−y t γF (t, µ) . (E.11)

The form in Eq. (E.10) matches that of Eq. (E.1) with the replacement yeγE = 1/s, so we have already
obtained the solution in Eq. (E.6). To obtain the solution in t space we can take the inverse Laplace
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transform, using Eq. (C.45), to find

F (t, µ) =
1

2πi

∫ c+i∞

c−i∞
dy ey t

[
eKF (µ,µ0)

(
y µj0 e

γE
)ωF (µ,µ0)

F (y, µ0)
]

= eKF (µ,µ0) 1

2πi

∫ c+i∞

c−i∞
dy ey t

(
y µj0 e

γE
)ωF (µ,µ0)

∫ ∞
0

dt′ e−y t
′
F (t′, µ0)

= eKF (µ,µ0)

∫ ∞
0

dt′ F (t′, µ0)
1

2πi

∫ c+i∞

c−i∞
dy ey(t−t′) (y µj0 eγE)ωF (µ,µ0)

=

∫ ∞
0

dt′ UF (t− t′, µ, µ0) F (t′, µ0) , (E.12)

where the evolution kernel is

UF (t, µ, µ0) =
eγEωF (µ,µ0) eKF (µ,µ0)

Γ
[
− ωF (µ, µ0)

] [
1

µj0
L−ωF (µ,µ0)

(
t

µj0

)
− 1

ωF (µ, µ0)
δ(t)

]
. (E.13)

For the cases with convolutions a few additional identities are useful. The evolution kernels obey∫
dr′ UF (r − r′, µ, µI) UF (r′ − r′′, µI , µ0) = UF (r − r′′, µ, µ0) , (E.14)

which states that it is equivalent to evolve through an intermediate scale, µ0 → µI → µ, or directly from
µ0 → µ. To verify Eq. (E.14) one needs∫

dr′′L−ω1

(
r−r′′

µjI

)
L−ω2

(
r′′−r′

µj0

)
=

Γ(−ω1)Γ(−ω2)

(µ−jI )Γ(−ω1−ω2)

(
µjI
µj0

)ω1

L−ω1−ω2

(
r−r′

µj0

)
,

KF (µ, µI) +KF (µI , µ0) = ω1 ln

(
µj0
µjI

)
+KF (µ, µ0) , (E.15)

where here ω1 = ωF (µ, µI) and ω2 = ωF (µI , µ0). The first result in Eq. (E.15) is straightforward to
derive using the Fourier transform. Another useful identity simplifies the convolution of two U ’s that have
the same renormalization scales, but variables with different mass-dimension, and different anomalous
dimension coefficients∫

dr′ UF
(
Q′(r−r′), µ, µ0; j′,Γ′, γ′, ω1

)
UF
(
r′−r′′, µ, µ0; j,Γ, γ, ω2

)
=

1

Q′

(
(µ0)j

′−j

Q′

)ω1

UF
(
r−r′′, µ, µ0; j,Γ′+Γ, γ′+γ, ω1+ω2

)
. (E.16)

Here the variables after the semicolon denote parameter dependence, and Q′ simply denotes a variable with
mass dimension j′ − j. Also here ω1 = ω(µ, µ0; Γ′/j′) and ω2 = ω(µ, µ0; Γ/j) are simply the ω’s obtained
from the other parameters. The final useful identity is

lim
ω′→0

UF (r−r′, µ, µ0; j,Γ, γ, ω′) = eKF (µ,µ0;Γ,γ) δ(r−r′) . (E.17)

F Hard, Jet, Beam, and Soft Functions

In this section we give the expression of the inclusive collinear jet and beam functions, as well as the soft
function for two Wilson lines. These are universal perturbative functions that are common ingredients
appearing in factorization theorems.
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F.1 Hard Functions, q and g Form Factors

In this section we discuss the hard Wilson coefficients for two-quark and two-gluon operators in SCET.
These are related to the quark and gluon form factors for massless quarks in the MS scheme, which are
made infrared finite by converting them to Wilson coefficients in SCET.

Loop graphs generated with the QCD vector quark current Jµ = ψ̄γµψ are often referred to as the
massless quark form factor, which we will consider in the time-like region. They are ultraviolet finite
since this is a conserved current in QCD, but are infrared divergent. Similarly for gluons we can consider
the scalar current J = GµνGµν which appears for example when integrating out top quarks for the Higgs
coupling to two gluons. Again we consider this current in the time-like region. In this case is not conserved,
and has an anomalous dimension also in the full theory. By matching these form factor amplitudes onto
the SCET operator with two quark or two gluon building block fields in different collinear directions, we
can extract an infrared finite result for the Wilson coefficient Cq(Q) and Cg(Q), where the SCET operators
are

Cq(Q) χ̄nγ
µ
⊥χ
′
n , Cg(Q) Bµn⊥ Bn⊥µ . (F.1)

The SCET diagrams have the same infrared divergences as those for the QCD currents, but are also UV
divergent. These UV divergences are canceled by coefficient counterterm ZiC that appears when defining
the renormalized Wilson coefficients Ci(Q,µ)

Cibare(Q, ε) = ZiC(Q,µ, ε)Ci(Q,µ) . (F.2)

Although displayed here, for simplicity we will almost always suppress the ε argument for bare coefficients
and Z-factors. The Hard functions for these quark and gluon bilinear operators are then defined by the
square of this renormalized Wilson coefficient

H i(Q2, µ) =
∣∣Ci(Q,µ)

∣∣2 . (F.3)

While the coefficients Ci(Q,µ) are in general complex, the hard functions H i(Q,µ) are always real. In
order to provide complete information we will present complete results for the Ci and only briefly mention
how the corresponding results appear for the H i.

Since the bare coefficients in Eq. (F.2) are µ-independent, we can take µd/dµ of both sides and rearrange
the result to give

µ
d

dµ
Ci(Q,µ) = γiC(Q,µ)Ci(Q,µ) , (F.4)

where the anomalous dimension is defined by

γiC(Q,µ) = −(ZiC)−1(Q,µ)

[
µ

d

dµ
ZiC(Q,µ)

]
, (F.5)

and has a finite ε→ 0 limit. The general all orders form for this anomalous dimension is [24, 25]

γiC(Q,µ) = Γicusp(αs)LQ + γiC(αs) . (F.6)

where for convenience we have defined the logarithm

LQ = ln

(
−Q2 − i0

µ2

)
. (F.7)
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The analogous equations for the hard functions are then

µ
d

dµ
H i(Q,µ) = γiH(Q,µ)H i(Q,µ) , γiH(Q,µ) = 2Re

[
γiC(Q,µ)

]
. (F.8)

The term multiplying LQ in Eq. (F.6) is known as the cusp anomalous dimension, and its αs expansion
coefficients Γin to 3-loops are given in Sec. D.3. Expanding the non-cusp anomalous dimensions as a series
in αs we can write

γiC(αs) =
∞∑
n=0

γiC n

(αs
4π

)n+1
. (F.9)

Results for the numerical coefficients γiC n will be given below.

The results for the counterterm ZC can be expressed as a series in αs(µ), LQ, and 1/ε, and can be
expressed entirely in terms of coefficients of the anomalous dimensions, Γin, γiC n and the β-function, βi.
Up to two loops we have

ZiC = 1 +
αs(µ)

4π

{
− Γi0

2ε2
+

(LQΓi0 + γiC 0)

2ε

}
(F.10)

+

(
αs(µ)

4π

)2{(Γi0)2

8ε4
−
[
2LQ(Γi0)2 + 2γiC 0Γi0 − 3Γi0β0

]
8ε3

+

[
L2
Q(Γi0)2 + 2LQΓi0(γiC 0 − β0)− Γi1 + (γiC 0)2 − 2γiC 0β0

]
8ε2

+
[LQΓi1 + γiC ]

4ε

}
.

Since the coefficients of the LQ dependent terms in the renormalized Wilson coefficients are related to the
1/ε UV divergences in ZiC they are also determined by the anomalous dimension coefficients and lower
order information. Up to two loop order from the quark vector form factor we have [?, ?]

Cq(Q,µ) = 1 +
αs(µ)

4π

[
− Γq0

4
L2
Q −

γqC 0

2
LQ + cqC 1

]
(F.11)

+

(
αs(µ)

4π

)2[(Γq0)2

32
L4
Q +

Γq0(3γqC 0 + 2β0)

24
L3
Q +

[
(γqC 0)2 + 2β0γ

q
C 0 − 2Γq1 − 2Γq0 c

q
C 1

]
8

L2
Q

−
[γqC 1 + γqC 0 c

q
C 1 + 2β0c

q
C 1]

2
LQ + cqC 2

]
.

(For simplicity we have not included contributions from massive quark loops in this result.) From the
gluon scalar form factor we include only the corrections from integrating out a massive top quark loop,

Cg(Q,µ) = αs(µ)F (0)(qt)

[
1 +

αs(µ)

4π

{
−Γg0

4
L2
Q −

[γgC 0 + 2β0]

2
LQ + cgC 1(qt)

}
(F.12)

+

(
αs(µ)

4π

)2{(Γg0)2

32
L4
Q +

Γg0(3γgC 0+8β0)

24
L3
Q +

[
(γgC 0)2+6β0γ

g
C 0+8β2

0−2Γg1−2Γg0 c
g
C 1(qt)

]
8

L2
Q

−
[γgC 1 + γgC 0 c

g
C 1(qt) + 4β0c

g
C 1(qt) + 2β1]

2
LQ + cgC 2(qt)

}]
,

where the dependence on the top quark mass appears in some coefficients through dependence on qt ≡
Q2/(4m2

t ).
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The MS anomalous dimension for the hard function can be obtained [26, 27] from the IR divergences
of the on-shell massless quark form factor which are known to three loops [28],

γqC 0 = −6CF ,

γqC 1 = −CF
[(82

9
− 52ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(65

9
+ π2

)
β0

]
,

γqC 2 = −2CF

[(66167

324
− 686π2

81
− 302π4

135
− 782ζ3

9
+

44π2ζ3

9
+ 136ζ5

)
C2
A

+
(151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CFCA

+
(29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+
(
−10781

108
+

446π2

81
+

449π4

270
− 1166ζ3

9

)
CAβ0

+
(2953

108
− 13π2

18
− 7π4

27
+

128ζ3

9

)
β1 +

(
−2417

324
+

5π2

6
+

2ζ3

3

)
β2

0

]
. (F.13)

The anomalous dimension coefficients for the gluon hard Wilson coefficient to three loops are [?, 29, 26]

γgC 0 = −2β0 ,

γgC 1 =
(
−118

9
+ 4ζ3

)
C2
A +

(
−38

9
+
π2

3

)
CA β0 − 2β1 ,

γgC 2 =
(
−60875

162
+

634π2

81
+

8π4

5
+

1972ζ3

9
− 40π2ζ3

9
− 32ζ5

)
C3
A

+
(7649

54
+

134π2

81
− 61π4

45
− 500ζ3

9

)
C2
A β0 +

(466

81
+

5π2

9
− 28ζ3

3

)
CA β

2
0

+
(
−1819

54
+
π2

3
+

4π4

45
+

152ζ3

9

)
CA β1 − 2β2 . (F.14)

The constants that appear in the quark Wilson coefficient in Eq. (F.11) are

cqC 1 = CF

[
− 8 +

π2

6

]
, (F.15)

cqC 2 = C2
F

[255

8
+

7π2

2
− 30ζ3 −

83π4

360

]
+ CFCA

[
− 51157

648
− 337π2

108
+

313ζ3

9
+

11π4

45

]
+ CFTFnf

[4085

162
+

23π2

27
+

4ζ3

9

]
.

while for the gluon Wilson coefficient in Eq. (F.12) we have the functions

F (0)(qt) =
3

2qt
− 3

2qt

∣∣∣∣1− 1

qt

∣∣∣∣
{

arcsin2(
√
qt) , 0 < qt ≤ 1 ,

ln2[−i(√qt +
√
qt − 1)] , qt > 1 ,

cgC 1(qt) = CA
π2

6
+ F (1)(qt) , cgC 2(qt) = F (2)(qt) , (F.16)

Here, F (0)(qt) encodes the mt dependence of the leading-order gg → H cross section from the virtual
top-quark loop. The full analytic mt dependence of the virtual two-loop corrections to gg → H in terms of
harmonic polylogarithms were obtained in refs. [?, ?]. Since the corresponding exact expression for F (1)(qt)
is long, we quote results expanded in Q2/m2

t from ref. [?]. These suffice for practical purposes since the
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expansion converges quickly. We also quote the first few terms in the expanded result for F (2)(qt), while
further terms can be obtained from the original literature [?, ?],

F (1)(qt) =
(

5− 38

45
qt −

1289

4725
q2
t −

155

1134
q3
t −

5385047

65488500
q4
t

)
CA

+
(
−3 +

307

90
qt +

25813

18900
q2
t +

3055907

3969000
q3
t +

659504801

1309770000
q4
t

)
CF +O(q5

t ) ,

F (2)(qt) =
(
7C2

A + 11CACF − 6CFβ0

)
ln(−4qt − i0) +

(
−419

27
+

7π2

6
+
π4

72
− 44ζ3

)
C2
A

+
(
−217

2
− π2

2
+ 44ζ3

)
CACF +

(2255

108
+

5π2

12
+

23ζ3

3

)
CAβ0 −

5

6
CATF

+
27

2
C2
F +

(41

2
− 12ζ3

)
CFβ0 −

4

3
CFTF +O(qt) . (F.17)

In the mt → ∞ limit we have F (0)(0) = 1 and F (1)(0) = 5CA − 3CF , while F (2)(qt → 0) has the terms
displayed in Eq. (F.17).

The solution of the RGE in Eq. (F.6) yields for the evolution of the hard function (TODO) TODO: Fix
this equation

H i(Q,µ) = H i(Q,µ0)UH(Q,µ0, µ) , UH(Q,µ0, µ) =
∣∣∣eKH(µ0,µ)

(−Q2 − i0
µ2

0

)ηH(µ0,µ)∣∣∣2 ,
KH(µ0, µ) = −2Kq

Γ(µ0, µ) +KγqH
(µ0, µ) , ηH(µ0, µ) = ηqΓ(µ0, µ) , (F.18)

where the functions Ki
Γ(µ0, µ), ηiΓ(µ0, µ) and Kγ are given below in Eq. (??). TODO: Fix

this paragraph,
change
notations, etc.

(TODO) To minimize the large logarithms in CggH we should evaluate Eq. (??) at the hard scale
µH with |µ2

H | ∼ q2 ∼ m2
t . For the simplest choice µ2

H = q2 the double logarithms of −q2/µ2
H are not

minimized since they give rise to additional π2 terms from the analytic continuation of the form factor
from spacelike to timelike argument, ln2(−1−i0) = −π2, which causes rather large perturbative corrections.
These π2 terms can be summed along with the double logarithms by taking µH = −i

√
q2 or in our case

µH = −imH [?, 30, ?, ?]. For Higgs production this method was applied in Refs. [31, 32], where it was
shown to improve the perturbative convergence of the hard matching coefficient. Starting at NNLO, the
expansion of CggH contains single logarithms ln(m2

t /µ
2
H), which in Eq. (??) are contained as lnxH in C(2)

with a compensating − ln(−4z− i0) in F (2)(z), which are not large since mH/mt ' 1. In Eq. (??), αs(µH)
is defined for nf = 5 flavors. When written in terms of αs(µH) with nf = 6 flavors similar ln(m2

t /µ
2
H)

terms would already appear at NLO. The additional terms that are induced by using an imaginary scale
in these logarithms are small, because the imaginary part of αs(−imH) is much smaller than its real part.

F.2 Jet Function

The operator definition of the quark jet function was already given in Eq. (9.29). For quarks and gluons
the inclusive jet functions can be defined by

Jq(t) = Im

[
−i

4πNCω

∫
d4x eix·r

〈
0
∣∣∣T χ̄n,ω,0⊥(0)n̄/χn(x)

∣∣∣0〉] , (F.19)

gµν⊥ Jg(t) = Im

[
−i

π(NC−1)

∫
d4x eix·r

〈
0
∣∣∣TBµan⊥,ω,0⊥(0)Bνan⊥(x)

∣∣∣0〉] ,
where rµ = n · r n̄µ/2 and the invariant mass t = ω n · r. (This becomes t = ω n · r − ~ω2

⊥ if ω⊥ momentum
is injected.)
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The renormalized jet function J i(s, µ), for i = q or g, is related to the bare jet function through the
definition

J i,bare(s) =

∫
ds′ ZiJ(s− s′, µ) J i(s′, µ) , (F.20)

and the inverse of the ZiJ factor is defined such that

δ(s) =

∫
ds′
[
ZiJ
]−1

(s− s′, µ)ZiJ(s′, µ) . (F.21)

Since J i,bare is µ-independent, the dependence on µ is described by the renormalization group equation

µ
d

dµ
J i(s, µ2) =

∫
ds′ γiJ(s− s′, µ)J iJ(s′, µ) , (F.22)

where the µ dependence of ZiJ appears through the UV finite anomalous dimension,

γiJ(s, µ) = −
∫

ds′
[
ZiJ
]−1

(s− s′)
[
µ

d

dµ
ZiJ(s′)

]
, (F.23)

where we can take ε→ 0.

As already discussed in Sec. E.2, a general anomalous dimension for an RGE with convolution takes
the form given in Eq. (E.9). The jet function anomalous dimension can be obtained from this by using

j = 2 , ρJ = 4 . (F.24)

Thus, to all orders in perturbation theory, the jet function’s anomalous dimension has the form

γiJ(s, µ) = −2Γicusp(αs)
1

µ2
L0

( s
µ2

)
+ γiJ(αs) δ(s) , (F.25)

where the distribution L0(s/µ2) were defined in Sec. C.4. The cusp anomalous dimension, which multiplies
L0(s/µ2) is known to three loop order, and is given in given in Sec. D.3. The non-cusp anomalous
dimensions multiplying the delta function has the general expansion

γiJ(αs) =
∞∑
n=0

γiJ n

(αs
4π

)n+1
. (F.26)

The coefficients γiJ n are known for both the quark and gluon jet functions to three loop order, and are
given below.

Both the renormalized jet function and the ZiJ factor can again be written to all orders in perturbation
theory in terms of the distributions defined in Sec. D.3

J i(s, µ) =

∞∑
k=−1

J ik(αs)
1

µ2
Lk(s/µ2) , ZiJ(s, µ) =

∞∑
k=−1

ZiJ,k(αs)
1

µ2
Lk(s/µ2) , (F.27)

To a given order in perturbation theory O(αls) the coefficients J ik(αs) with k > 2l − 1 vanish, while the
coefficients ZiJ,k with k > 2l−1 vanish. The renormalization function ZiJ is completely determined through
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its relation to the anomalous dimension. To two loop order the coefficients are given by

ZiJ,−1 = 1 +
αs
4π

[
Γicusp 0

ε2
+
γiJ0

2ε

]
+
(αs

4π

)2
[

(Γicusp 0)2

2ε4
+

Γicusp 0

(
2γiJ0 − 3β0

)
4ε3

+
3γiJ0

(
γiJ0 − 2β0

)
− 2π2 (Γicusp 0)2 + 6 Γicusp 1

24ε2
+
γiJ1

4ε

]
,

ZiJ,0 =
αs
4π

[
−

Γicusp 0

ε

]
+
(αs

4π

)2
[
−

(Γicusp 0)2

ε3
+

Γicusp 0

(
β0 − γiJ0

)
2ε2

−
Γicusp 1

2ε

]
,

ZiJ,1 =
(αs

4π

)2
[

(Γicusp 0)2

ε2

]
. (F.28)

For the renormalized jet function, the coefficients J ik for k ≥ −1 are all related to the divergent structure and
therefore again determined by the anomalous dimension coefficients. The only extra piece of information
is the matching coefficient J i−1, which has to be calculated at each order in perturbation theory. To second
order in perturbation theory, one finds

J i−1 = 1 +
αs
4π
ciJ1 +

(αs
4π

)2
ciJ2 ,

J i0 =
αs
4π

(
−
γiJ0

2

)
+
(αs

4π

)2
[
−ciJ1

(
β0 +

γiJ0

2

)
−
γiJ1

2
+
π2γiJ0Γicusp 0

12
+
(
Γicusp 0

)2
ζ3

]
,

J i1 =
αs
4π

(
Γicusp 0

)
+
(αs

4π

)2
[
ciJ1Γicusp 0 +

β0γ
i
J0

2
+

(γiJ0)2

4
−
π2(Γicusp 0)2

6
+ Γicusp 1

]
,

J i2 =
(αs

4π

)2
[
−Γicusp 0

2β0 − 3γiJ0

4

]
,

J i3 =
(αs

4π

)2 (Γicusp 0)2

2
. (F.29)

To two loop order, the expressions for the non-cusp anomalous dimension γiJ for quarks (i = q) and gluons
(i = g) are given by

γqJ 0 = 6CF ,

γqJ 1 = CF

[(146

9
− 80ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(121

9
+

2π2

3

)
β0

]
,

γqJ 2 = 2CF

[(52019

162
− 841π2

81
− 82π4

27
− 2056ζ3

9
+

88π2ζ3

9
+ 232ζ5

)
C2
A

+
(151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CACF

+
(29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+
(
−7739

54
+

325

81
π2 +

617π4

270
− 1276ζ3

9

)
CAβ0

+
(
−3457

324
+

5π2

9
+

16ζ3

3

)
β2

0 +
(1166

27
− 8π2

9
− 41π4

135
+

52ζ3

9

)
β1

]
. (F.30)
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and

γgJ 0 = 2β0 ,

γgJ 1 =
(182

9
− 32ζ3

)
C2
A +

(94

9
− 2π2

3

)
CA β0 + 2β1 ,

γgJ 2 =
(49373

81
− 944π2

81
− 16π4

5
− 4520ζ3

9
+

128π2ζ3

9
+ 224ζ5

)
C3
A

+
(
−6173

27
− 376π2

81
+

13π4

5
+

280ζ3

9

)
C2
A β0 +

(
−986

81
− 10π2

9
+

56ζ3

3

)
CA β

2
0

+
(1765

27
− 2π2

3
− 8π4

45
− 304ζ3

9

)
CA β1 + 2β2 . (F.31)

The constant coefficients appearing in the quark jet function are given by

cqJ 1 =
(

7− π2
)
CF ,

cqJ 2 =
(205

8
− 67π2

6
+

14π4

15
− 18 ζ3

)
C2
F +

(53129

648
− 208π2

27
− 17π4

180
− 206ζ3

9

)
CFCA

−
(4057

162
− 68π2

27
− 16 ζ3

9

)
CFTRnf , (F.32)

while those for the gluon jet function are

cgJ 1 = CA

(
4

3
− π2

)
+

5β0

3
,

cgJ 2 = C2
A

(
4255

108
− 26π2

9
+

151π4

180
− 72ζ3

)
− CAβ0

(
115

108
+

65π2

18
− 56ζa

3

)
− β2

0

(
25

9
− π2

3

)
+ β1

(
55

12
− 4ζ3

)
. (F.33)

The solution for the RG evolved jet function can be obtained using the general convolution formula
in Eq. (E.12) with the evolution kernel from Eq. (E.13). For the jet function evolution kernel one finds

UJ(t, µ, µ0) =
eγEωJ (µ,µ0) eKJ (µ,µ0)

Γ[−ωJ(µ, µ0)]

[
1

µ2
0

L−ωJ (µ,µ0)

(
t

µ2
0

)
− 1

ωJ(µ, µ0)
δ(t)

]
. (F.34)

where

ωJ(µ, µ0) = 2 ηΓ(µ, µ0) , KJ(µ, µ0) = KγJ (µ, µ0) + 4KΓ(µ, µ0) , (F.35)

and the expressions for ηΓ(µ, µ0), KJ(µ, µ0) andKγJ (µ, µ0) are given in Eq. (E.4) in general and in Eq. (E.8)
up to NNLL.
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F.3 b-quark Shape Function

F.3.1 Shape Function at Fixed Order

The shape function coefficients to one [33] and two loops [?] are

S−1(αs) = 1− αs
π

π2

24
CF −

α2
s

π2

[(π2

12
+

3π4

640
− 2ζ3

)
C2
F +

( 29

108
+

31π2

144
− 67π4

2880
+

9ζ3

8

)
CFCA

+
(
− 1

216
+

5π2

576
− 5ζ3

48

)
CFβ0

]
,

S0(αs) = −αs
π
CF +

α2
s

π2

[(
−7π2

24
+ 4ζ3

)
C2
F

+
(11

18
+
π2

12
− 9ζ3

4

)
CFCA −

1

36
CFβ0

]
,

S1(αs) = −αs
π

2CF +
α2
s

π2

[(
1− 7π2

12

)
C2
F

+
(
−2

3
+
π2

6

)
CFCA −

1

3
CFβ0

]
,

S2(αs) =
α2
s

π2

(
3C2

F +
1

2
CFβ0

)
,

S3(αs) =
α2
s

π2
2C2

F . (F.36)

F.3.2 Shape Function RGE

F.4 Hemisphere Soft function

The hemisphere soft function depends on the total plus and minus component of the soft momentum in
the two hemispheres, and its operator definition is given by

Shemi(`
+, `−) ≡ 1

NC
Tr
〈

0
∣∣∣Y T

n̄Yn(0)δ(`+ − (P̂+
a )†)δ(`− − P̂+

b ))Y †n (Y
†
n̄)T (0)

∣∣∣ 0〉 . (F.37)

The renormalized hemisphere soft function is related to the bare soft function by

Sbare(`+, `−) =

∫
d`′+d`′−ZS(`+ − `′+, `− − `′−, µ)S(`′+, `′−, µ) (F.38)

where as before the inverse of the Z factor is defined implicitly by

δ(`+)δ(`−) =

∫
d`′+d`′−[ZS ]−1(`+ − `′+, `− − `′−, µ)ZS(`′+, `′−, µ) (F.39)

The dependence of the renormalized soft function on µ is determined by the renormalization group equation

µ
d

dµ
S(`+, `−, µ) =

∫
d`′+d`′−γS(`+ − `′+, `− − `′−, µ)S(`′+, `′−, µ) (F.40)

where the anomalous dimension is defined through the µ dependence of the Z factor

γS(`+, `−, µ) = −
∫

d`′+d`′− Z−1
S (`+ − `′+, `− − `′−, µ)

[
µ

d

dµ
ZS(`′+, `′−, µ)

]
(F.41)
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As explained in Sec. ??, consistency between the jet and soft anomalous dimension requires that the soft
anomalous dimension takes the form

γS(`+, `−, µ) = δ(`+)γS(`−, µ) + δ(`−)γS(`+, µ) (F.42)

This implies that the Z factor and the µ dependent part of the double differential hemisphere soft function
factors into the product of two identical singly differential terms. Thus, one can write

ZS(`+, `−, µ) = ZS(`+, µ)ZS(`−, µ) , S(`+, `−, µ) = S(`+, µ)S(`−, µ) + T (`+, `−) (F.43)

The µ independent doubly differential term T (`+, `−) contains the so-called non-global logarithms.

The general anomalous dimension can again be obtained from Eq. (E.9), using

j = 1 , ρS = −2 . (F.44)

This gives

γS(`) = 2Γcusp(αs)
1

µ
L0

(
`

µ

)
+ γS(αs)δ(`) (F.45)

The renormalization factor ZS(`+, µ) and the renormalized function S(`+, µ) can again be written as

S(`, µ) =

∞∑
k=−1

Sk(αs)
1

µ
Lk(`/µ) , ZS(`, µ) =

∞∑
k=−1

ZS,k(αs)
1

µ
Lk(`/µ) , (F.46)

where to a given order in perturbation theory O(αls) the coefficients Sk(αs) and ZS,k(αs) vanish for
k > 2l − 1. As always, the renormalization ZS is completely determined through its relation to the
anomalous dimension, and to two loop order the coefficients are given by

ZiS,−1 = 1 +
αs
4π

[
−

Γicusp 0

2ε2
+
γiS0

2ε

]
+
(αs

4π

)2
[

(Γicusp 0)2

8ε4
−

Γicusp 0

(
2γiS0 − 3β0

)
8ε3

+
3γiS0

(
γiS0 − 2β0

)
− 2π2 (Γicusp 0)2 − 3 Γicusp 1

24ε2
+
γiS1

4ε

]
,

ZiS,0 =
αs
4π

[
Γicusp 0

ε

]
+
(αs

4π

)2
[
−

(Γicusp 0)2

2ε3
−

Γicusp 0

(
β0 − γiS0

)
2ε2

+
Γicusp 1

2ε

]
,

ZiS,1 =
(αs

4π

)2
[

(Γicusp 0)2

ε2

]
. (F.47)

The coefficients Sk(αs) for k > −1 are all related to the divergent structure and are again defined by the
anomalous dimension. The only extra piece of information is the matching coefficient S−1, which has be
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be calculated order by order in perturbation theory. To second order in αs one finds

Si−1 = 1 +
αs
4π
ciS1 +

(αs
4π

)2
ciS2 ,

Si0 =
αs
4π

(
−γiS0

)
+
(αs

4π

)2
[
−ciS1

(
2β0 + γiS0

)
− γiS1 −

π2γiS0Γicusp 0

3
+ 4

(
Γicusp 0

)2
ζ3

]
,

Si1 =
αs
4π

(
−2Γicusp 0

)
+
(αs

4π

)2
[

2β0γ
i
S0 + (γiS0)2 − 2ciS1Γicusp 0 −

2π2(Γicusp 0)2

3
− 2Γicusp 1

]
,

Si2 =
(αs

4π

)2 [
2β0Γicusp 0 + 3γiS0Γicusp 0

]
,

Si3 =
(αs

4π

)2
2(Γicusp 0)2 . (F.48)

F.5 Beam Functions

The beam function is defined as

Bi(t, x = ω/P−, µ) ≡
〈
pn(P−) |θ(ω)Oi(t, ω, µ)| pn(P−)

〉
(F.49)

The bare operators are defined as

Obare
q (t, ω) ≡ χ̄n(0) δ(t− ωp̂+)

n̄/

2

[
δ(ω − Pn)χn(0)

]
Obare
q̄ (t, ω) ≡ Tr

n̄/

2
χn(0) δ(t− ωp̂+)

[
δ(ω − Pn) χ̄n(0)

]
Obare
q (t, ω) ≡ −ω Bcn⊥µ(0) δ(t− ωp̂+)

[
δ(ω − Pn)Bµcn⊥(0)

]
(F.50)

The renormalized beam function Bi(t, x, µ), for i = q or g, is related to the bare beam function through
the definition

Bi,bare(t, x) =

∫
dt′ ZiB(t− t′, µ)Bi(t′, x, µ) , (F.51)

and the inverse of the ZiB factor is defined such that

δ(t) =

∫
dt′
[
ZiB
]−1

(t− t′, µ)ZiB(t′, µ) . (F.52)

Since Bi,bare is µ-independent, the dependence on µ is described by the renormalization group equation

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t′, x, µ) , (F.53)

where

γiB(t, µ) = −
∫

dt′
[
ZiB
]−1

(t− t′, µ)

[
µ

d

dµ
ZiB(t′, µ)

]
, (F.54)
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The anomalous dimension of the beam function is identical to that of the jet function, and can therefore
be obtained from the general result in Eq. (E.9) using

j = 2 , ρB = 4 (F.55)

Thus, to all orders in perturbation theory, the beam function anomalous dimension has the form

γiB(s, µ) = −2Γicusp(αs)
1

µ2
L0

( s
µ2

)
+ γiJ(αs) δ(s) , (F.56)

Since the anomalous dimension is the same as that of the jet function, the renormalization constant of
the beam function is also identical to that of the jet function

ZiB(t, µ) = ZiJ(t, µ) , (F.57)

where ZiJ(t, µ) is given in Eqs. (F.27) and (F.28).

The renormalized beam function is best expressed through its OPE relating it to the PDFs

Bi(t, x, µ) =
∑
j

∫
dξ

ξ
Iij
(
t,
x

ξ
, µ
)
fj(ξ, µ)

[
1 +O

(Λ2
QCD

t

)]
. (F.58)

The matching coefficients Iij(t, z, µ) can be written to all orders in perturbation theory as

Iij
(
t, z, µ

)
=

∞∑
k=−1

Iijk (z)(αs)
1

µ2
Lk(t/µ2) , (F.59)

One can write

Iij−1(z) = δij δ(1− z) +
αs
4π
cijI1 +

(αs
4π

)2
cijI2

Iij0 (z) =
αs
4π

[
−
γiJ0δ(1− z)− γij(z)

2

]
+
(αs

4π

)2
[
−cijI1(z)

(
β0 +

γiJ0

2

)
+

(ĉI1 ⊗ γ̂0)ij(z)

2

+

(
−
γiJ1

2
+
π2γiJ0Γicusp 0

12
+
(
Γicusp 0

)2
ζ3

)
δ(1− z) +

γij1 (z)

2
−
π2γiJ0(z)Γicusp 0

12

]

Iij1 (z) =
αs
4π

[
Γicusp 0 δ(1− z)

]
+
(αs

4π

)2
[
cijI1(z) Γicusp 0 +

(
β0γ

i
J0

2
+

(γiJ0)2

4
−
π2(Γicusp 0)2

6
+ Γicusp 1

)
δ(1− z)

−
β0γ

ij
B (z)

2
−
γiJ0 γ

ij
B (z)

2
+

(γ̂B ⊗ γ̂B)ij (z)

4

]

Iij2 (z) =
(αs

4π

)2
[
−Γicusp 0

(
2β0 − 3γiJ0

4
δ(1− z) +

3γijB (z)

4

)]

Iij3 (z) =
(αs

4π

)2 (Γicusp 0)2

2
δ(1− z) (F.60)
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For the gluon beam function one finds

Igg,−1(z)

Igg,0(z)

Igg,1(z)

Igg,2(z)

Igg,2(z) (F.61)

Igq,−1(z)

Igq,0(z)

Igq,1(z)

Igq,2(z)

Igq,2(z) (F.62)

Iqq(t, z, µ) = δ(t) δ(1− z) (F.63)

+
αs(µ)CF

2π
θ(z)

{
2

µ2
L1

( t

µ2

)
δ(1− z) +

1

µ2
L0

( t

µ2

)[
Pqq(z)−

3

2
δ(1− z)

]
+ δ(t)

[
L1(1− z)(1 + z2)− π2

6
δ(1− z) + θ(1− z)

(
1− z − 1 + z2

1− z
ln z
)]}

,

Iqg(t, z, µ) =
αs(µ)TF

2π
θ(z)

{
1

µ2
L0

( t

µ2

)
Pqg(z) + δ(t)

[
Pqg(z)

(
ln

1− z
z
− 1
)

+ θ(1− z)
]}

.

We write the matching coefficients for the gluon beam function as

Igg(t, z, µB) = δ(t) δ(1− z) +
αs(µB)

4π
I(1)
gg (t, z, µB) +

α2
s(µB)

(4π)2
I(2)
gg (t, z, µB) ,

Igq(t, z, µB) =
αs(µB)

4π
I(1)
gq (t, z, µB) +

α2
s(µB)

(4π)2
I(2)
gq (t, z, µB) . (F.64)

The one-loop coefficients are given by

I(1)
gg (t, z, µB) = 2CA θ(z)

{
2

µ2
B

L1

( t

µ2
B

)
δ(1− z) +

1

µ2
B

L0

( t

µ2
B

)
Pgg(z) + δ(t) I(1,δ)

gg (z)

}
,

I(1)
gq (t, z, µB) = 2CF θ(z)

{
1

µ2
B

L0

( t

µ2
B

)
Pgq(z) + δ(t) I(1,δ)

gq (z)

}
, (F.65)

where

I(1,δ)
gg (z) = L1(1− z)2(1− z + z2)2

z
− Pgg(z) ln z − π2

6
δ(1− z) ,

I(1,δ)
gq (z) = Pgq(z) ln

1− z
z

+ θ(1− z)z . (F.66)
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Here Pgg(z) and Pgq(z) are the g → gg and q → gq splitting functions given in Eq. (??), and the Ln(x)
denote the standard plus distributions. At two loops we have

I(2)
gg (t, z, µB) =

1

µ2
B

L3

( t

µ2
B

)
8C2

A δ(1− z) +
1

µ2
B

L2

( t

µ2
B

)[
12C2

APgg(z)− 2CAβ0 δ(1− z)
]

+
1

µ2
B

L1

( t

µ2
B

){
4C2

A

[(4

3
− π2

)
δ(1− z) + 2I(1,δ)

gg (z) + (Pgg ⊗ Pgg)(z)
]

+ 2CAβ0

[10

3
δ(1− z)− Pgg(z)

]
+ 8CFTFnf (Pgq ⊗ Pqg)(z)

}
+

1

µ2
B

L0

( t

µ2
B

){
4C2

A

[(
−7

9
+ 8ζ3

)
δ(1− z)− π2

3
Pgg(z) + (I(1,δ)

gg ⊗ Pgg)(z)
]

+ CAβ0

[(
−92

9
+
π2

3

)
δ(1− z)− 2I(1,δ)

gg (z)
]

+ CFTFnf
[
4δ(1− z) + 8(I(1,δ)

gq ⊗ Pqg)(z)
]

+ 4P (1)
gg (z)

}
+ 4δ(t) I(2,δ)

gg (z) ,

I(2)
gq (t, z, µB) =

1

µ2
B

L2

( t

µ2
B

)
12CACFPgq(z) +

1

µ2
B

L1

( t

µ2
B

){
4C2

F (Pgq ⊗ Pqq)(z)

+ 4CACF
[
(Pgg ⊗ Pgq)(z) + 2I(1,δ)

gq (z)
]
− 4CFβ0Pgq(z)

}
+

1

µ2
B

L0

( t

µ2
B

){
4CACF

[
−π

2

3
Pgq(z) + (I(1,δ)

gg ⊗ Pgq)(z)
]

(F.67)

+ 4C2
F (I(1,δ)

gq ⊗ Pqq)(z)− 4CFβ0I(1,δ)
gq (z) + 4P (2)

gq (z)

}
+ 4δ(t) I(2,δ)

gq (z) .

The beam function RGE is [see Eqs. (??) and (??)]

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) ,

γiB(t, µ) = −2Γicusp(αs)
1

µ2
L0

( t

µ2

)
+ γiB(αs) δ(t) , (F.68)

and its solution is [?, 34, 35, 22] [see Eq. (??)]

Bi(t, x, µ) =

∫
dt′Bi(t− t′, x, µ0)U iB(t′, µ0, µ) ,

U iB(t, µ0, µ) =
eK

i
B−γE η

i
B

Γ(1 + ηiB)

[
ηiB
µ2

0

LηiB
( t

µ2
0

)
+ δ(t)

]
,

Ki
B(µ0, µ) = 4Ki

Γ(µ0, µ) +KγiB
(µ0, µ) , ηiB(µ0, µ) = −2ηiΓ(µ0, µ) . (F.69)

As we showed in Sec. ??, the anomalous dimension for the beam function equals that of the jet function,
γqB = γqJ , so the three-loop result for γqf together with Eq. (F.13) yields the non-cusp three-loop anomalous
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dimension for the beam function,

γqB 0 = 6CF ,

γqB 1 = CF

[(146

9
− 80ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(121

9
+

2π2

3

)
β0

]
,

γqB 2 = 2CF

[(52019

162
− 841π2

81
− 82π4

27
− 2056ζ3

9
+

88π2ζ3

9
+ 232ζ5

)
C2
A

+
(151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CACF

+
(29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+
(
−7739

54
+

325

81
π2 +

617π4

270
− 1276ζ3

9

)
CAβ0

+
(
−3457

324
+

5π2

9
+

16ζ3

3

)
β2

0 +
(1166

27
− 8π2

9
− 41π4

135
+

52ζ3

9

)
β1

]
. (F.70)

The non-cusp anomalous dimension for the gluon beam function is equal to that of the gluon jet
function which is given by γgJ(αs) = −2γgH(αs)− γgf (αs). Here, γgf (αs) is the coefficient of the δ(1− z) in
the gluon PDF anomalous dimension which is known to three loops [?]. The resulting coefficients to three
loops are

γgB 0 = 2β0 ,

γgB 1 =
(182

9
− 32ζ3

)
C2
A +

(94

9
− 2π2

3

)
CA β0 + 2β1 ,

γgB 2 =
(49373

81
− 944π2

81
− 16π4

5
− 4520ζ3

9
+

128π2ζ3

9
+ 224ζ5

)
C3
A

+
(
−6173

27
− 376π2

81
+

13π4

5
+

280ζ3

9

)
C2
A β0 +

(
−986

81
− 10π2

9
+

56ζ3

3

)
CA β

2
0

+
(1765

27
− 2π2

3
− 8π4

45
− 304ζ3

9

)
CA β1 + 2β2 . (F.71)

At NNLL we only need γgH and γgB at two loops. The three-loop coefficients are given for completeness. The
result in Eq. (F.71) agrees with that given in ref. [36] for the gluon jet function.9 The non-cusp anomalous
dimension of the gluon beam-thrust soft function is given by γgS(αs) = −2γgH(αs)− 2γgB(αs).

F.6 Parton Distribution Function

The quark and gluon splitting functions are

Pgg(z) = 2L0(1− z)z + 2θ(1− z)
[1− z

z
+ z(1− z)

]
,

Pgq(z) = θ(1− z) 1 + (1− z)2

z
,

Pqq(z) = L0(1− z)(1 + z2) +
3

2
δ(1− z) ,

Pqg(z) = θ(1− z)
[
(1− z)2 + z2

]
. (F.72)

9Apart from a typo in ref. [36] where one of the terms in the C2
Anf contribution is missing a π2.
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The two-loop splitting functions were calculated in refs. [?, ?] and are given by [?]

P (1)
gg (z) = C2

A

{1

3
(4− π2)L0(1− z) + (−1 + 3ζ3)δ(1− z) +

−253 + 294z − 318z2 + 253z3

18z

+
−1 + 2z − z2 + z3

3z
π2 − 4

3
(9 + 11z2) ln z +

2(1 + z − z2)2

1− z2
ln2 z

− 2Pgg(z) ln z ln(1− z)− 2Pgg(−z)
[
ln z ln(1 + z) + Li2(−z) +

π2

12

]}
+ CAβ0

[5

3
L0(1− z) + δ(1− z) +

23− 29z + 19z2 − 23z3

6z
+ (1 + z) ln z

]
+ CFTFnf

[
−δ(1− z) +

4(1− 12z + 6z2 + 5z3)

3z
− 2(1 + z) ln2 z − 2(3 + 5z) ln z

]
,

P (1)
gq (z) = CACF

{−101 + 129z − 51z2 + 44z3

9z
− 1

3
(36 + 15z + 8z2) ln z + 2z ln(1− z)

+ (2 + z) ln2 z − Pgq(z)
[
2 ln z ln(1− z)− ln2(1− z) +

π2

6

]
− 2Pgq(−z)

[
ln z ln(1 + z) + Li2(−z) +

π2

12

]}
+ C2

F

[
−1

2
(5 + 7z) +

1

2
(4 + 7z) ln z +

−6 + 6z − 5z2

z
ln(1− z)− 1

2
(2− z) ln2 z

− Pgq(z) ln2(1− z)
]

+ CFβ0

[2(5− 5z + 4z2)

3z
+ Pgq(z) ln(1− z)

]
. (F.73)

The convolution of two splitting functions is defined as (the index j is not summed over)

(Pij ⊗ Pjk)(z) =

∫ 1

z

dw

w
Pij(w)Pjk

( z
w

)
, (F.74)
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and analogously for the convolution (I(1,δ)
ij ⊗ Pjk). The necessary convolutions are

(Pgq ⊗ Pqg)(z) =
4 + 3z − 3z2 − 4z3

3z
+ 2(1 + z) ln z , (F.75)

(Pgq ⊗ Pqq)(z) = 2− z

2
+ (2− z) ln z +

2(2− 2z + z2)

z
ln(1− z) ,

(Pgg ⊗ Pgq)(z) =
−31 + 24z + 3z2 + 4z3

3z
− 4(1 + z + z2)

z
ln z +

2(2− 2z + z2)

z
ln(1− z) ,

(Pgg ⊗ Pgg)(z) = 8L1(1− z)− 2π2

3
δ(1− z) +

4(−11 + 9z − 9z2 + 11z3)

3z

+
4(−1− 3z2 + 4z3 − z4)

z(1− z)
ln z +

8(1− 2z + z2 − z3)

z
ln(1− z) ,

(I(1,δ)
gq ⊗ Pqg)(z) =

−13 + 12z + 6z2 − 5z3

9z
+ π2 1 + z

3
+
−4 + 9z2 + 4z3

3z
ln z

+
4 + 3z − 3z2 − 4z3

3z
ln(1− z)− (1 + z) ln2 z − 2(1 + z)Li2(z) ,

(I(1,δ)
gq ⊗ Pqq)(z) =

5− 4z + 2z2

2z
+ π2−4 + 6z − 3z2

6z
+
−2− z

2
ln z +

4 + 3z

2
ln(1− z)

+
z − 2

2
ln2 z +

2(2− 2z + z2)

z
ln(1− z)[ln(1− z)− ln z] + (z − 2)Li2(z) ,

(I(1,δ)
gg ⊗ Pgq)(z) =

21− 26z + 5z2

6z
+ π2−2− 6z − 3z2

6z
+

9− 30z − 9z2 − 4z3

3z
ln z

+
−31 + 24z + 3z2 + 4z3

3z
ln(1− z) +

2(1 + z + z2)

z
ln2 z

+
2− 2z + z2

z
ln(1− z)[ln(1− z)− 2 ln z] + (8 + 2z)Li2(z) ,

(I(1,δ)
gg ⊗ Pgg)(z) = 6L2(1− z)− π2L0(1− z) + 4ζ3δ(1− z) +

(1− z)(67− 2z + 67z2)

9z

+ π2−3 + 2z − 7z2 + 3z3

3z
+

2(11− 21z + 6z2 − 22z3)

3z
ln z

+
4(−11 + 9z − 9z2 + 11z3)

3z
ln(1− z) +

2(1 + 3z2 − 4z3 + z4)

z(1− z)
ln2 z

+
8(−1 + 2z − 3z2 + 2z3 − z4)

z(1− z)
ln z ln(1− z)

+
6(1− 2z + z2 − z3)

z
ln2(1− z) + 8(1 + z)Li2(z) .

F.7 Convolution of Soft and Jet Functions

To convolute Ln[p−(ω − ω′)/µ2
J ] with Lm(ω/µs) we first rescale them to have the same dimensionless

arguments. Using Eq. (C.34), J and S̄ satisfy the rescaling identities (TODO) TODO: what
notation for
perturbative
part of S? S̄?J(p−ω, µ) =

1

p−ξ

∞∑
n=−1

Jn

[
αs(µ),

p−ξ

µ2

]
Ln
(ω
ξ

)
,

S̄(ω, µ) =
1

ξ

∞∑
n=−1

Sn

[
αs(µ),

ξ

µ

]
Ln
(ω
ξ

)
. (F.76)
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where ξ is an arbitrary dimension-one parameter that we will choose at our convenience later on, and the
rescaled coefficients are

J−1(αs, x) = J−1(αs) +
∞∑
n=0

Jn(αs)
lnn+1 x

n+ 1
,

Jn(αs, x) =
∞∑
k=0

(n+ k)!

n! k!
Jn+k(αs) lnk x ,

S−1(αs, x) = S−1(αs) +
∞∑
n=0

Sn(αs)
lnn+1 x

n+ 1
,

Sn(αs, x) =

∞∑
k=0

(n+ k)!

n! k!
Sn+k(αs) lnk x . (F.77)

Using Eq. (F.76), the convolution of J and S̄ becomes

(J ⊗ S)(ω, µi, µΛ) ≡
∫

dω′ p−J [p−(ω − ω′), µi] S̄(ω′, µΛ)

=
∞∑

m,n=−1

Jm

[
αs(µi),

p−ξ

µ2
i

]
Sn

[
αs(µΛ),

ξ

µΛ

] 1

ξ

∫
dxLm

(ω
ξ
− x
)
Ln(x)

=
∞∑

`=−1

∞∑
m,n≥−1
m+n+1≥`

V mn
` Jm

[
αs(µi),

p−ξ

µ2
i

]
Sn

[
αs(µΛ),

ξ

µΛ

] 1

ξ
L`
(ω
ξ

)
. (F.78)

In the last step we used Eq. (C.37) to perform the x integral, yielding a sum of plus distributions, whose
coefficients V mn

` are given in Eq. (C.38).
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G.1 0-bin subtractions with a 0-bin field Redefinition

G.2 0-bin subtractions for phase space integrations
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H Spinor Relations with a different representation

For a collinear momentum pµ = (p0, p1, p2, p3) we have p− = p0 + p3 � p1,2
⊥ � p+ = p0 − p3 so

~σ · ~p
p0

= σ3 + . . . , (H.1)

where the terms in the + . . . are smaller. Keeping only the leading term gives us the spinors

u(p) =
(2p0)1/2

√
2

(
U

~σ·~p
p0 U

)
=⇒ un =

√
p−

2

(
U
σ3U

)
(H.2)

v(p) =
(2p0)1/2

√
2

(
~σ·~p
p0 V
V

)
=⇒ vn =

√
p−

2

(
σ3V
V

)

where here U and V are each either
( 1

0

)
or
( 0

1

)
. From this analysis we see that in the collinear limit

both quark and antiquarks remain as relevant degrees of freedom (and indeed, there is no suppression for
pair creation from splitting). We also see that both spin components remain in each of the spinors.
Having defined ξ̂n = Pnψ, the corresponding result for the spinors is un = Pnu(p) and vn = Pnv(p), which
do not precisely reproduce the lowest order expanded results in Eq. (H.2). Instead we find

un =
1

2

(
1 σ3

σ3 1

)√
p0

(
U

~σ·~p
p0
U

)
=

√
p0

2

 (
1 + p3

p0
− (i~σ×~p⊥)3

p0

)
U

σ3

(
1 + p3

p0
− (i~σ×~p⊥)3

p0

)
U


=

√
p−

2

(
Ũ
σ3 Ũ

)
(H.3)

where the two component spinor is

Ũ =

√
p0

2p−

(
1 +

p3

p0
− (i~σ × ~p⊥)3

p0

)
U . (H.4)

The same derivation gives

vn =

√
p−

2

(
σ3Ṽ
Ṽ

)
(H.5)

where Ṽ is defined in terms of V by a formula analogous to Eq. (H.4). Since the spin relations in Eqs. (3.11)
and (3.10) do not depend on the form of the two component spinors (Ũ versus U etc), they remain true.
We will see later that the results for the un and vn spinors involving Ũ and Ṽ rather than U and V are
required to avoid breaking a reparameterization symmetry in SCET. The extra terms appearing in the
definition of Ũ ensure the proper structure under reparameterizations of the lightcone basis. Finally we
note that ∑

s

ŨsŨ† s = 12×2 . (H.6)

Thus if we take the product of un spinors

unūn =
p−

2

(
Ũ Ũ† −ŨŨ†σ3

σ3Ũ Ũ† −σ3Ũ Ũ†σ3

)
, (H.7)
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