Soft-Collinear Effective Theory
(e) QCD Masterclass 2023

- EFT treatment of Soft \& Collinear IR physics for hard collisions in $Q C D$ (or decays with large E released) \Rightarrow jets, energetic hadrons, soft portons /hadrons
eg.

$$
\begin{aligned}
& \gamma^{2} \gamma \rightarrow \pi 0 \quad B \rightarrow \pi \pi \quad e^{+} e^{-} \rightarrow J / 4 x+\text { jet substructure } \\
& \gamma^{*} \pi^{+} \rightarrow \pi^{+} \\
& : \\
& \rightarrow \pi \ell \nu \\
& \rightarrow x_{s} \gamma \\
& (S C E T+H Q E T) \quad \text { (SET + NRQCD) } \\
& \gamma \rightarrow x \gamma+\text { Regge/High Energy } \\
& + \text { Heary-Ion } \\
& \text { + electroweak logs } \\
& \text { + DM cross sections } \\
& +\cdots \cdot \\
& \text { see SCET in } Q C D \subset 50 \text { [2212.11107 pg223] + DM cross sections }
\end{aligned}
$$

* Discuss Refs Posted *

Intro to Collider Physics

=Softer radiation

forward jets

all scales $10^{-18}-10^{-15} \mathrm{~m}$ (GeV-TeV) are probed
 process

r sum all diagrams physics of proton, jets, Miggs

Running Coupling
In QCD resolution scale μ of a process is very important $\alpha_{s}=\frac{g^{2}}{4 \pi}=\alpha_{s}(\mu)$ parameters in $Q F_{T}$ defined by $\overline{M S}$ renormalization scheme here

$$
\alpha_{s}(\mu \rightarrow \infty)=0 \quad \text { Asymptotic freedom }
$$ free ouvorks at short dist.

β-function $\mu \frac{d}{d \mu} \alpha_{s}(\mu)=\beta\left[\alpha_{s}\right]=\frac{-\beta_{0} \alpha_{s}(\mu)^{2}}{2 \pi}+\ldots$

$$
\begin{array}{ll}
\alpha_{s}(\mu)=\frac{\alpha_{s}\left(\mu_{0}\right)}{1+\frac{\beta_{0}}{2 \pi} \alpha_{s}\left(\mu_{0}\right) \ln \frac{\mu}{\mu_{0}}}=\frac{2 \pi}{\beta_{0} \ln \left(\frac{\mu}{\Lambda_{Q C D}}\right)} \quad \text { o } \Lambda_{Q C D} \\
\beta_{0}=\frac{11}{3} C_{A}-\frac{2}{3} n_{f} & C_{A}=3 \\
n_{f}= \pm \text { light quarks at } \mu
\end{array}
$$

- processes with physical scale s will involve $\alpha s(\mu) \ln \frac{\mu}{s}$ terms, so we pick $\mu \approx s$ to avoid large logs
\Rightarrow more than one $s c a b e S_{i} \Rightarrow$ more than one relevant $\alpha_{s}\left(\mu_{i}\right)$

Collider Scales

Note: (ask) distinguishing 2 jets also requires angular information
Factorization
key tool to calculate cross sections is the ability to independently consider different ports of the process

$$
d \sigma \sim\left(\begin{array}{l}
\text { Prob. for } \\
\text { gluons taken } \\
\text { from protons }
\end{array}\right)\left(\begin{array}{c}
-\bar{\sigma}(g g \rightarrow H), \\
1 \\
1 \\
\hat{\sigma}(g g \rightarrow H g) \\
\cdots \\
\ldots
\end{array}\right) \quad\left(\begin{array}{c}
\text { Prob. for gluons } \\
\text { to produce } \\
\text { jets }
\end{array}\right)
$$

Another key idea is to exploit inclusive observables
$e^{+} e^{-} \rightarrow X$ (any hadrons)

$$
e^{-} p \rightarrow e^{-x} \text { DIS }
$$

the less we measure the simpler the physics
eg. Higgs Production via gluon fusion

$$
\begin{gathered}
p p \rightarrow H+X_{\sigma} \text { (any had row or } 0+1+2+\ldots \text { jets) } \\
d \sigma \sim \int d \xi_{a} d \xi_{b} f_{g}\left(r_{a}, \mu\right) f_{g}\left(r_{b}, \mu\right) \underbrace{d \hat{\sigma}_{g g \rightarrow H}+x\left(r_{a}, \eta_{b}, M_{H}, \ldots, \mu\right)} * \text { (1) }
\end{gathered}
$$

universal parton dist'n function (PDF)
$f_{g}=$ Prob. of finding g in proton $=$ Probability Density with momentum fraction ξa (proton snapshot)
(1) $=\sum_{i} \operatorname{Prob}(i)$ sum over everything that can happen to final state quarks \& gluons, so we are not sensitive to this dynamics (jets etc)

Practical Limits on $\sum_{i} \rightarrow$ restrict final state
\rightarrow cuts on jets to control background
or enhance signals (\geq N jets susie)
\rightarrow need more exclusive events to determine expt. efficiencies etc.

Still sun over dynamics inside the jet $\&$ characterize it by a few variables: jet momentum $P_{J}^{\mu}=\sum_{i \varepsilon J} P_{i}^{\mu}$ angular size $\cdots \underbrace{\sim} \bigcirc R$

Jets Why does QCD produce Jets?
log enhancement from collinear singularities, $k_{\perp} \rightarrow 0$

$$
\begin{aligned}
& \frac{\left|A_{N+1}\left(0-z^{\prime}\right)\right|^{2}}{\left|A_{N}(0-)\right|^{2}} \propto \frac{\alpha_{s} C_{F}}{\pi} \frac{d k_{\perp}}{k_{2}} d z P_{q g}(z) \\
& \frac{d_{s} C_{A}}{\pi} \frac{d k_{\perp}}{k_{1}} d z P_{g g}(z) \\
& P_{g g}(z)=\frac{1+z^{2}}{1-z} \\
& 1-z
\end{aligned} \frac{1-z}{z}+z(1-z) \quad l
$$

$$
\text { (1-z } \alpha \frac{\alpha_{s} c_{A}}{\pi} \frac{d k_{\perp}}{k_{1}} d z P_{g g}(z)
$$

$$
\begin{aligned}
& \\
& \cos _{\frac{1+(1-z)^{2}}{z}} C_{F} P_{g q}(z)
\end{aligned}
$$

Collinear limit $k_{1} \rightarrow 0$ enhanced: prefer to split in collimated manner
Soft limit: $z \rightarrow 0,1$ enhanced too. (In shower producing jet the soft gluons are preferentially emitted within cone of collinear emissions
(angular ordering).)
Parton Shower \rightarrow Jet

- Leading contribution is strongly ordered

$$
k_{1 \perp} \gg k_{21} \gg k_{31} \ldots>k_{n \perp} \sim M_{Q<0}
$$

If $\alpha_{s} \ln \left(\frac{k_{i 1}}{k_{i+12}}\right) \sim 1$ no perturbative suppression

- If we measure jet mass but don't probe physics inside the jet then we are only sensitive to emissions above this "IR cutoff"

$$
Q>k_{1+} \gg \ldots k_{n_{1}} \sim M_{J} \text {, each } \int \frac{d k_{\perp}}{k_{1}} \sim \ln \frac{Q}{M_{J}} \equiv L
$$

Also acts as energy cut off $\quad \int_{M_{J^{2}} / Q^{2}}^{1} \frac{d z}{z} \sim \ln \frac{Q^{2}}{m_{J^{2}}}=2 L$
\rightarrow double logarithmic enhoncement

$$
\begin{aligned}
& \begin{array}{c}
\int_{0}^{m_{J}^{2}} d M_{J}^{2} \frac{d \sigma}{d m_{J}^{2}} \sim \exp \left(L \sum_{i}\left(\alpha_{s} L\right)^{i}+\sum_{i}\left(\alpha_{s} L\right)^{i}+\alpha_{s} \sum_{i}\left(\alpha_{s} L\right)^{i}+\cdots\right) \\
N L L
\end{array} \\
& =\text { leading log }=\text { next-to- } L C
\end{aligned}
$$

$\delta\left(M_{J}^{2}\right) \Rightarrow 1$
$\sim 1+\alpha_{s} L^{2}+\alpha_{s}^{L} L^{4}+\ldots$.
"Sudakiou Double Log 5"

Concepts to Explore with SCET

- Simplify
- Factorization (Wilson Lines,...) -Treat More complicated processes - Multiscale observables
- Power $E_{x p a n s i o n s} \rightarrow \frac{K_{T}}{Q} \ll 1, \frac{\Lambda_{Q C D}}{Q_{0}} \ll 1, \ldots \frac{\mu_{1}}{\mu_{2}} \ll 1$
\rightarrow Study Power Corrections
\rightarrow interface with other EFTs (HQET, NRQCO)
- Sun Double logs with RGE, $N^{k} L L$ - precision
- interface ω fixed order
- Hadronization paramaters/functions w Field Theory
- beyond parton distr functions \& fragmentation functions

First, Review Key EFT Concepts
Decoupling Effects from heavy or offshell particles are suppressed / decouple $\quad P_{\text {LO }} \ll 人_{H I}$

$$
\rightarrow \quad<\sim \frac{(\bar{\psi} \psi)(\bar{\psi} \psi)}{M_{\omega}{ }^{2}} M_{\omega}{ }^{2} \gg p_{i}^{2}
$$

9.

$$
P_{i}^{2} \ll\left|q^{2}\right|
$$

Say $P_{i}{ }^{2}=0$ on-shall, $q=P_{a}-p_{1}=n_{a} E_{a}-n_{1} E_{1}$

$$
\begin{array}{lll}
n_{a}=(1, \hat{z}) & \bar{n}_{a}=(1,-\hat{z}) & q^{2}=-2 E_{a} E_{1} n_{a} \cdot n_{1} \\
n_{1}=(1, \hat{n}) & \bar{n}_{1}=\left(1,-\hat{n}_{1}\right) & =-2 E_{a} E_{1}(1-\hat{z} \cdot \hat{n})
\end{array}
$$

large if energies big $\$$ deflection angles large

Construct Leif

- degrees of freedom? low energy / nearly onshell modes \rightarrow what fields
osymnotries \rightarrow constrain interactions loperators [lorentz, Gavage Theory, Global,...]
- expansions, leading order description
\rightarrow power counting

$$
Y_{E F t}=y^{(0)}+y^{(1)}+y^{(2)}+\cdots
$$

- often expand in mass dimension of operators, but not in SCET]

Matching
$Z_{E F T}^{(k)}=\sum_{i} C_{i}(\mu) O_{i}^{(k)}(\mu)$

short. dist. long dist. $C i(\mu)$ does not depend on (offshell) (~on-shell)

- Li \& LEFT have same IR, differ in $u v$ IR scales (masses in EFT, $\wedge_{Q(0)}, I R$ regulators,...)

"top-down if we know $\mathcal{L}_{H I}\left(\Lambda_{H I}, P_{L O}\right)$ we EFT" can (perturbatively) construct LEFT.
Calculate C, Construct $O \quad\left[\begin{array}{l}\text { Heweak, HOET } \\ N R Q C D, S C E T, . .]\end{array}\right.$
组蹋
Do this by demanding equality of S-matrix ells. in $\mathscr{L}_{H I} \& \mathscr{L}_{E F T}$
"bottom-up form $\sum_{i} C_{i} \mathcal{O}_{i}$ complete basis
$2_{\text {HI }}$?

Left
exploit symmetries
[ag. 5 m as EFT, chiral Lagrangians....]

Renormalization

- parameters $9, C$ in QFT must be defined by a renormalization scheme, also O ($\overline{M S}$, Wilsorion Cutoff,...)
- schemo depend on cutoff/renormalizetion scale " μ " $\quad g(\mu), C(\mu)$

Renormalization Group
eg. $\alpha_{s}^{(n f)}(\mu)$ in $Q C D \quad \mu \frac{d}{d \mu} \alpha_{s}^{(n f)}(\mu)=-\frac{\beta_{0}^{(n f)}}{2 \pi}\left[\alpha_{s}^{(n f)}(\mu)\right]^{2}+\cdots$

$$
\beta_{0}^{\left(n_{f}\right)}=11-\frac{2}{3} n_{f}
$$

a sums logs between mass scales

$$
\alpha_{s}^{k} \ln ^{k}(m b / m t)
$$

Ask: Is slope of $\alpha_{s}(\mu)$ continuous?
Is $\alpha_{s}(\mu)$ continuous?

$$
\text { 95. } \quad \alpha_{s}^{(4)}\left(\mu_{m}\right)=\alpha_{s}^{(s)}\left(\mu_{m}\right)\left[1+\frac{\alpha_{s}^{(s)}}{\pi}\left(-\frac{1}{6} \ln \frac{\mu_{m}^{2}}{m_{b}^{2}}\right)+\left(\frac{\alpha_{s}^{(57}}{\pi}\right)^{2}\left(\frac{11}{72}-\frac{41}{24} \ln \frac{\mu_{m}^{2}}{m_{b}^{2}}+\frac{1}{36} \ln ^{2} \frac{\mu_{m}^{2}}{m_{b}^{2}}\right)+\ldots\right]
$$

eg. $\quad \mu \frac{d}{d \mu} f_{i / p}(\varepsilon, \mu)=\cdots \quad$ (later)

- Power counting handles powers $\frac{P_{L O}}{\Lambda_{H I}} \ll 1$
- Renormalization group handles logs $\ln \left(\frac{p_{\text {Lo }}}{\Lambda_{H I}}\right)$ which may be large as $\operatorname{hn}(\cdot \cdot) \sim 1$

SCAT

$$
\psi^{\text {hard collis ion }}
$$

$$
\Lambda_{Q C D}^{2}, P_{ \pm R}^{2} \ll P^{2} \sim Q^{2}
$$

degrees of freedom consider $e^{+} e^{-} \rightarrow 2$ jets

$$
e_{e^{+}}^{e^{+}}>\sim_{\gamma^{*}}^{q^{\mu}}<_{\pi}^{q}{ }_{\bar{q}}^{q} \quad Q^{2}=\varepsilon^{2}
$$

Jets / collinear
due to collinear (is soft) en hancemats
 in QCD

- Collimated radiation in \hat{n}
- $E_{\text {Jet }} \sim Q$

Let $n^{\mu}=(1, \hat{n})$-encode direction
$\bar{n}^{\mu}=(1,-\hat{n})$-auxilliory vector

$$
\begin{aligned}
& p^{\mu}=\underbrace{\bar{n} \cdot p}_{p^{-}} \frac{n^{\mu}}{2}+\underbrace{n \cdot p}_{p^{+}} \frac{\bar{n}^{\mu}}{2}+p_{\perp}^{\mu} \\
& p^{2}=n \cdot p \bar{n} \cdot p+\underbrace{+p_{\perp}^{2}}_{-\bar{P}_{\perp}^{2}}
\end{aligned}
$$

Collinear?
1 massless partide: $\quad p^{\mu}=\pi \cdot \rho \frac{n \mu}{2}$
2 massless : $\longrightarrow \underbrace{\mu^{2}}_{i=1,2} \quad p_{i}^{\mu}=\bar{n} \cdot p_{i} \frac{n \mu}{2}+p_{i \perp}^{\mu}+n \cdot p_{i} \frac{\bar{n}^{\mu}}{2}$

$$
\begin{array}{ll}
\bar{n} \cdot p_{i} \sim Q & \rho_{i \perp}^{\mu} \ll Q \quad \text { collimated } \\
\text { large } & \text { say } \quad p_{i \perp} \sim \lambda Q \quad \lambda \ll 1
\end{array}
$$

dimensionless
power counting parameter
on-shall $n \cdot p_{i}=+\frac{\vec{p}_{\perp i}^{2}}{\vec{n} \cdot p_{i}}$, $n \cdot p_{i} \sim \lambda^{2} Q$ nearly on-shall
n portides: same (ignore logs for now)

$$
n \text {-Collinear: } \quad p^{\mu} \sim Q\left(\begin{array}{cc}
n \cdot p \\
n \cdot p & 1 \\
\lambda^{2}, & 1, \\
\lambda
\end{array}\right)
$$

SLET n-Collineor Fields: quark ξ_{n}
gluon A_{n}^{μ}
energetic hadron:

Z-jets
$n_{1}, \overline{n_{1}} \quad q_{n_{1}}, A_{n_{1}}^{\mu}$

Often simplify using bock.to-back frame:

$$
\begin{aligned}
& n_{2}=\bar{n}=(1,-\hat{n}) \\
& \bar{n}_{2}=n
\end{aligned}
$$

$q_{n}, A_{n} \frac{(t,-, 1)}{\left(\lambda^{2}, 1, \lambda\right)}$
$\xi_{\bar{n}}, A_{\bar{n}} \quad\left(1, \lambda^{2}, \lambda\right)$

Soft $P_{s}^{\mu} \sim Q \lambda^{\alpha}$ all components small * homo geneous

$$
\begin{aligned}
\text { soft }+ \text { soft } & =\text { soft } \\
\text { soft }+ \text { hard } & =\text { hard } \\
\text { collinear }+ \text { hard } & =\text { hard }
\end{aligned}
$$

n_{1}-collinear $+n_{2}$-collinear $=$ hard \leftarrow hard interaction produces jets collinear soft?

$$
\begin{aligned}
& \sum_{T_{p_{n}}}^{T_{s}}\left(P_{n}+P_{s}\right)^{2}=2 P_{n} \cdot P_{5}=\bar{n} \cdot P_{n} n \cdot P_{5}+\cdots f^{\text {suppressed }}{ }^{\alpha} \sim Q^{2} \lambda^{\alpha} \\
& \lambda^{\circ} * \lambda^{\alpha}
\end{aligned}
$$

Value of α depends on what we measure
gog 1 Mass in (large enough) region $a, M_{a}^{2}=\left(\sum_{i=a} P_{i}^{\mu}\right)^{2}$

$$
\text { [mass of } R=1 \text { jet, hemisphere moss,..-] }
$$

demand $M_{a}^{2} \sim \mathbb{Q}^{2} \lambda^{2} \ll Q^{2} \quad\left[\right.$ collimated jet has $E_{J} \gg M_{J}$]
Collinear + collinear $\quad\left(P_{n}+P_{n}^{\prime}\right)^{2}=2 P_{n} \cdot P_{n}^{\prime} \sim Q^{2} \lambda^{2}$

$$
\begin{array}{ll}
\pm & - \\
\perp & \pm
\end{array}
$$

$$
\text { Collinear + soft } \quad\left(P_{n}+P_{s}\right)^{2} \sim Q^{2} \lambda^{\alpha}
$$

$\therefore \alpha=2$ to contribute "ultra soft t
eg 2 Transverse Momenta, broadening $B_{\perp}=\sum_{i \in a}\left|\vec{p}_{i} \perp\right| \ll Q$
\sum collinear
soft $p_{s 1} \sim \lambda^{\alpha} \Rightarrow \alpha=1 \quad$ "soft"

Do Picture et $\rightarrow 2$ jets (cm frame)

[Girted too]
(1) $S C E T_{I}$

$$
\alpha=2
$$

(2) $S C E T$ II

$$
\alpha=1
$$

Study SCETI, come boche to SCET II

- power counting requires multiple fields for same particle
- relative scaling of modes is important [boost invariant, unlike absolute scaling]
- modes not classified by p^{2} alone
rapidity \sim polar angle

$$
e^{-24}=\frac{p^{+}}{p-} \simeq \tan ^{2} \frac{\theta}{2}
$$

- modes cover regions of momentum space, extend into $I R$

Field Power Counting
ξ propagator

$$
\frac{i \not p}{p^{2}+i o}=\frac{i \not \alpha}{2} \frac{\bar{n} \cdot p}{p^{2}+i 0}+\cdots=\frac{i \not \alpha}{2} \frac{1}{n \cdot p+\frac{p_{\perp}^{2}}{\bar{n} \cdot p}+i o \operatorname{sign}(\bar{n} \cdot p)}+\cdots
$$

must hove

$$
\int \tilde{\lambda}_{\lambda^{-4}}^{d^{4} x} \underbrace{e^{-i p-x}}_{\lambda^{0}}\langle 0| T \xi_{n}(x) \bar{\xi}_{n}(0)|0\rangle=\frac{i \alpha}{2} \underbrace{\frac{\pi \cdot p}{p^{2}+i 0}}_{\lambda^{-2}}
$$

($\left.d^{14} p \sim \lambda^{4}\right)$ thus $\varepsilon_{n} \sim \lambda$ [differs from $\frac{3}{2}$ mass dimension]
Note: \otimes implies $\quad \alpha \xi_{n}=0 \quad$ since $\alpha^{2}=n^{2}=0$
spines $u_{n}=\frac{\alpha \vec{x}}{4} u(p)$

$$
\begin{aligned}
& \sum_{s} u_{n}^{s} \bar{u}_{n}^{s}=\frac{\not x \not x}{4} \sum_{s} u^{s} \bar{u}^{s} \frac{\not x \alpha}{4}=\frac{\not \alpha}{2} \bar{\pi} \cdot \rho \\
& u_{+}(p)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
\sqrt{p^{-}} \\
\sqrt{p_{i}} e^{i \phi_{p}} \\
\sqrt{p^{-}} \\
\sqrt{p^{+}} e^{i \phi_{p}}
\end{array}\right), \begin{array}{l}
\frac{\alpha \bar{x}}{4} u(p) \text { kills small terms } \\
\text { Dirac Rep: } \frac{\alpha k}{4}=\frac{1}{2}\left(\begin{array}{ll}
\mathbb{1} & \sigma^{3} \\
\sigma^{3} & 1
\end{array}\right) \\
\text { cf. Dixon hep-ph/9601359 }
\end{array}
\end{aligned}
$$

similar for $u_{-}(p) \&$ antiguarks $v_{+}(p), v_{-}(p)$
$A_{n}{ }^{\mu}$ some propagator os QCD w gauge fixing

$$
p^{\mu} \sim\left(\partial^{2}, 1, \lambda\right) \sim i \partial_{n}^{r} \quad i D_{n}^{\mu}=i \partial_{n}^{\mu}+g A_{n}^{\mu}
$$

Want $i \partial_{n}^{\mu} \sim A_{n}{ }^{\mu}$ so $\quad A_{n}^{\mu} \sim\left(\lambda^{2}, \overline{1}, \vec{\lambda}\right) \quad$ true in ann gauge
[or derive from free propagator]
Soft Similar

$$
\begin{aligned}
& \text { Similar } \\
& \text { analysis }
\end{aligned} \quad P_{s} \sim \lambda^{\alpha}
$$

$A_{s}^{\mu} \sim \rho_{s}^{\mu} \sim \lambda^{\alpha}$
eq. $\int d^{4} x \bar{\psi}_{s} i \partial t_{s} \sim 1$
$\psi_{S} \sim \lambda^{3 \alpha / 2}$

$$
\alpha=2 \text { for SCETI ("ultrasoft" } \alpha=2 \text { vs. "soft" } \alpha=1 \text {) }
$$

Structure of SCET \mathscr{L}

$$
\begin{aligned}
& \text { interactions with } \geqslant 2 \text { collinear sectors } \\
& \text { (lorn soft-collineor) }=\text { hard scattering } \\
& \mathcal{L}_{\text {SET }}=\mathscr{L}_{\text {hard }}+\mathscr{L}_{\text {din }}^{\text {interactions with } 1 \text {-collinear sector }} \\
& =(\underbrace{\mathscr{L}_{\text {ord }}^{(0)}}_{\text {leading }}+\underbrace{\sum_{i \geq 1} \mathscr{L}_{\text {ord }}^{(i)}}_{\text {Subheading }})+(\underbrace{\mathcal{L}_{\text {syn }}^{(0)}}_{\text {leading }}+\underbrace{\mathscr{L}_{6}^{(0)}}_{Q}+\underbrace{\sum_{i \geq 1} \mathscr{L}_{\text {din }}^{(i)}}_{\text {Subheading }}) \\
& \text { potential fact. } \\
& \text { violating terns } \\
& \text { (more later on) }
\end{aligned}
$$

Start by studying Shard
Collinear Wilson Lines

- $\bar{n} \cdot A_{n} \sim \lambda^{0}$? no suppression for building operators

(nor massive etc.)
(1)

part of $\mathscr{L}_{d y n}^{(0)}$
(2)

integrate it out

$$
=\text { X } \underbrace{\frac{i(x-\hbar+m)}{(p-h)^{2}-m^{2}+i o}\left(i g T^{a} \epsilon_{n}^{a}\right) u(p)} \begin{gathered}
\underbrace{}_{\frac{\alpha}{2} \bar{n} \cdot \epsilon_{n}^{a}}+\cdots
\end{gathered}
$$

expand Homework \#2 since $A=\underbrace{\bar{n} \cdot A}_{\lambda^{\circ}} \frac{\alpha}{2}+\cdots$

- universal,
independent of p, m, \ldots

keep going

Gives Wilson line

$$
\left\langle\omega_{n}\right\rangle=\sum_{m}(-g)^{m} \sum_{\substack{p^{\prime} m s \\\{1, \ldots, m]}} \frac{\bar{n}^{\mu_{m}} T^{A_{m}} \ldots \bar{n}^{\mu_{1}} T^{A_{1}}}{\left[\bar{n} \cdot q_{1}\right]\left[\bar{n} \cdot\left(q_{1}+q_{2}\right)\right] \ldots\left[\bar{n} \cdot \sum_{i=1}^{m} q_{i}\right]}
$$

in pusitten space:

$$
\omega_{n}(y,-\infty)=P \exp \left(i g \int_{-\infty}^{0} d s \bar{n}-A_{n}(s \bar{n}+y)\right)
$$

$\omega_{n} \sim \lambda^{\circ}$

SCET operator $\left(\bar{\xi}_{n} \omega_{n}\right)(r \psi)$
generic, operator "building block"
quark $x_{n} \equiv \omega_{n}^{+} \xi_{n}$

$$
\begin{aligned}
& \text { gluon }{ }^{o} B_{n_{\perp}}^{\mu} \equiv \frac{1}{g}\left[\omega_{n}^{+} i D_{n_{\perp}}^{\mu} \omega_{n}\right]=[\frac{1}{\frac{1}{i n \cdot 2 n}} \omega_{n}^{+} \underbrace{\left.\left[i n \cdot D_{n}, i D_{\perp}^{\mu}\right] \omega_{n}\right]}_{\text {field strength }+} \\
& =A_{n_{1}}^{\mu}(k)-\frac{k_{\perp}^{\mu}}{\bar{n} \cdot k} \bar{n} \cdot A_{n}(k)+\cdots \text { adjoint wilson line } \quad \text { [vanishes if } A^{\mu} \rightarrow k^{\mu}, \text { grind.] }
\end{aligned}
$$

Gouge Symmetry symmetry trnstm. must leave os within the EFT

$$
U(x)=e^{i \alpha^{A}(x) T^{A}} \quad \begin{aligned}
& i \partial^{\mu} U_{n}(x) \sim P_{n}^{\mu} U_{n}(x) \quad \text { collinear } \\
& \\
& i \partial^{\mu} U_{u s}(x) \sim P_{u s}^{\mu} U_{u r}(x) \quad \text { ultrasoft }
\end{aligned}
$$

- $\xi_{n} \rightarrow u_{n} \xi_{n}$
$i O_{n}^{\mu} \rightarrow u_{n} i D_{n}^{\mu} u_{n}^{+}$for A_{n}
$q_{u s} \rightarrow$ gus $\quad[$ else not ultrasot $]$, $W_{n} \rightarrow u_{n} w_{n}$
- que \rightarrow Mus qus
inDus $\rightarrow \ldots$
$\xi_{n} \rightarrow u_{u s} \xi_{n}$
$A_{n}^{\mu} \rightarrow$ Mus $A_{n}^{\mu} U_{u s}^{+}, w_{n} \rightarrow U_{u s} w_{n} U_{u s}^{+}$
$\Rightarrow x_{n}=\omega_{n}^{+} \xi_{n} \rightarrow \omega_{n}^{t} \omega_{r}^{+} / \psi_{n} \xi_{n}$ protected by g inv. eg. stays together when we add loop corrections
build operators out of n-collinear gouge invariant building blocks χ_{n}, obad
Wilson lines needed to ensure gacepe invariance in presence of operators where gluons on couple in on-shell manner to single colored field.

Review L2 SCETI

$$
c_{n}: \quad \frac{\left(p^{+}, p^{-}, p_{\perp}\right)}{\left(\lambda^{2}, 1, \lambda\right)}
$$

fields
collinear quark $\xi_{n} \sim \lambda$
collinear gluon $A_{n}^{\mu} \sim\left(\lambda^{2}, 1, \lambda\right)$
ultrasoft: $\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$ $\psi_{U S} \sim \lambda^{3}, A_{U S}^{\mu} \sim \lambda^{2}$

Integrate out hard $P^{2} \sim Q^{2}$ modes:

$$
\begin{aligned}
& \bar{x}_{n} \equiv \bar{\xi}_{n} \omega_{n} \\
& x_{n} \equiv \omega_{n}{ }^{+} \xi_{n}
\end{aligned}
$$

wilson line $\omega_{n}(y,-\infty)=P \exp \left(i g \int_{-\infty}^{0} d s \bar{n} \cdot A(\bar{n} s+y)\right)$
Hard - Collinear Factorization:

$$
C(i \pi .2 n) x_{n}=\int d \omega C(\omega) \delta(\omega-i \pi \cdot 2 n) x_{n}=\int d \omega C(\omega) x_{n, \omega}
$$

mention Honeworle
Mention Conventions
trades $\pi \cdot A_{n} \rightarrow \omega_{n}$

$$
\begin{aligned}
& \omega_{n}^{+} \omega_{n}=\mathbb{1}=\omega_{n} \omega_{n}^{+} \\
& {\left[i n . D_{n} \omega_{n}\right]=0}
\end{aligned}
$$

$$
\therefore \quad i \pi \cdot D_{n} \omega_{n} \Phi=w_{n} i \pi \cdot \partial_{n} \Phi
$$

$\omega_{n}{ }^{+}$inion $\omega_{n}=i n \cdot \partial_{n}$ as operator

$$
\begin{aligned}
& w_{n}^{+} i n \cdot D_{n} w_{n}=i n \cdot \partial_{n} \\
& i n \cdot D_{n}=w_{n} i \pi \cdot 2 n w_{n}^{+}
\end{aligned}
$$

Hard -Collinear Factorization

$$
\mathscr{L}^{\text {hand }}=C \otimes O
$$

What do Wilson Coefficients depend on?

$$
i \pi \cdot \partial_{n} \sim \lambda^{0}
$$

collinear gauge singlet
f

$$
\text { Allows } C \underbrace{(i \pi .2 n)}_{\text {gauge inv. }} x_{n}=\int d \omega C(\omega) \underbrace{\delta\left(\omega-i \bar{n} \cdot \partial_{n}\right) x_{n}}_{\text {operator } \equiv x_{n, \omega}}
$$

Hard \& Collinear modes comumniaste through $\sim \lambda^{\circ}$ manenta
 constrained by gauge inv. \& momentum conservation

DIS $e^{-} p \rightarrow e^{-x}$ Inclusive Factorization
[full analysis requires more knowledge, eg \mathcal{L}, cover few key parts]

Take $q=(0,0,0, Q)=\frac{Q}{2}(\bar{n}-n) \quad q^{2}=-Q^{2}$ specelike
Bjorkan $\quad x=\frac{Q^{2}}{2 E_{p} \cdot q}$
Breit frame, where proton is n-collinear

Proton $P_{p}^{\mu}=\frac{n \mu}{2} \bar{n} \cdot \rho_{p}+\frac{\bar{n}^{\mu}}{2} \frac{M_{p}^{2}}{\bar{\pi} \cdot P_{p}}$, big $\bar{n} \cdot P_{p}=\frac{Q}{x} \sim \lambda^{0} \quad-17-$

$$
\begin{aligned}
& \begin{array}{l}
p_{x}=p_{p}+q, \\
P_{x}{ }^{2}=Q^{2}\left(\frac{1}{x}-1\right)+M_{p}^{2}
\end{array} \\
& \text { regions: } \begin{array}{ll}
\frac{P_{x}^{2}}{\sim Q^{2}} \quad \frac{\left(\frac{1}{x}-1\right)}{\sim 1}
\end{array} \\
& \sim Q 1 \quad \sim 1 / Q \quad \underset{(j \operatorname{end})}{\operatorname{end} \operatorname{sint}} x \rightarrow 1 \\
& \sim \Lambda^{2} \sim \Lambda^{2} / Q \quad \begin{array}{r}
\text { resonance } \\
\left(e-p \rightarrow e^{-} p^{\prime}\right)
\end{array} \\
& \sim \Lambda^{2} \quad \sim \Lambda^{2} / Q \quad \begin{array}{r}
\text { resonance } \\
\left(e-p \rightarrow e^{-} p^{\prime}\right)
\end{array} \\
& >Q^{2}>1 \text { small }-x
\end{aligned}
$$

$$
E_{x}=P+q=\text { hast } \quad \lambda=\frac{\Lambda_{Q<0}}{Q} \ll 1
$$

α_{s}^{k} corrections:
STET
 $0 \sim \lambda^{2}$ twist -2 actually $C_{i}=1,2$ for $w^{\mu N}$ also gluon $O_{g}=B_{n-1}^{\mu} G_{n \perp \mu}$
structures

$$
\mathscr{L}_{\text {hard }}=\int d \omega d y^{\prime} c\left(\omega, \omega^{\prime}, Q\right) \bar{x}_{n} \frac{\not \partial}{2} \delta\left(\omega^{\prime}+i \cdot z_{n}\right) \delta\left(\omega-i \bar{n} \cdot \partial_{n}\right) x_{n}
$$

forward $\langle p| \ldots|p\rangle$ matrix elevate fixes $\omega=\omega^{\prime}$
$\left.\sigma \sim \int d \omega \quad \operatorname{Im} c(\omega, Q)<p\left|\bar{x}_{n} \frac{\underline{z}}{2} \delta(\omega-i \pi \cdot \partial n) X_{n}\right| p\right\rangle$ A \uparrow momentum of geoork in proton

$$
\sim \int \frac{d \xi}{\xi} H\left(\frac{x}{\xi}, \frac{Q}{\mu}, \alpha_{s}(\mu)\right)
$$

Hard

- all orders in as (no use of pert. theory), $\mathcal{O}\left(\frac{\Lambda_{a}^{2} Q_{0}}{Q^{2}}\right)-18$ -
- universal $f_{q / p}$
- H dimensionless \rightarrow as $\ln \mu / Q$ dependence on Q, Bjorleren
- $f_{q / p}(\xi, \mu)$ encodes ∞ set of "twist-2" operators

In position space

$$
\begin{aligned}
& \text { position space } \\
& f_{q / p}(\xi)=\int \frac{d b^{+}}{4 \pi} e^{-i\left(\xi p^{-}\right) b^{+}}\langle p| \bar{\xi}_{n}\left(b^{+}\right) \omega_{n}\left(b^{+}, 0\right) \frac{\not \partial}{2} \xi_{n}(0)|p\rangle
\end{aligned}
$$

same in

$$
Q C D \& S C E T
$$

Comments on Renormalization
Ask Operators with same Quantum numbers mix under rene. \Rightarrow loops con change $\xi, f_{q}(r)$ mixes with $f_{q}\left(\xi^{\prime}\right)$. Also mix partan types $i=q, 9$.

$$
f_{i}^{\text {bare }}(\xi)=\sum_{j} \int d q^{\prime} z_{i j}\left(\xi, q^{\prime}\right) f_{j}\left(q^{\prime}, \mu\right)
$$

the indef.交 $\frac{1}{\text { Guv }} \overbrace{\text { renormalized }}$

$$
\Rightarrow \mu d / d \mu f_{i}(r, \mu)=\sum_{j} \int d \varepsilon^{\prime} \underbrace{\gamma_{i j}\left(\xi, \xi^{\prime}\right)}_{\propto p_{i j}\left(\xi^{\prime}\right)} f_{j}\left(\xi^{\prime}, \mu\right)
$$

with $\gamma_{i j}=-\sum_{i^{\prime}} \int d \xi^{\prime \prime} Z_{i i^{\prime}}^{-1}\left(\xi, q^{\prime \prime}\right) \mu \frac{d}{d \mu} Z_{i}^{\prime \prime j}\left(q^{\prime \prime}, \xi^{\prime}\right)$
More Hard Operators
power counting symmetry \& matching cable imply O are built from
[Note: true at any order other collinear ops elliminated by operator identities \& eqtas. of motion.]
x_{n}
${ }^{\circ} B_{n \perp}^{\mu}$
Discuss n̄.z

$$
n \cdot \partial
$$

Example
$e+e^{-} \rightarrow 2$ jets
$99 \rightarrow H$
[quark PDF gluon PDF

$$
P p \rightarrow H+1 \text {-jet }
$$

Operators
$\bar{x}_{n} \gamma_{\perp}{ }^{\mu} x_{\bar{n}}$
${ }^{\circ} B_{n \perp}^{\mu}{ }^{0} B_{\bar{n} \perp \mu} H$

$$
\begin{aligned}
& \bar{x}_{n} \frac{\alpha}{2} \delta(\omega-i \pi \cdot \rho) x_{n} \\
\operatorname{t} & r\left[\beta_{n \perp}^{r} \delta(\omega-i n \cdot \partial) \beta_{n \perp \mu}\right]
\end{aligned}
$$

no da, $a_{1} a_{2} a_{3}$ by charge conj-

Amplitude
Ample.
Ample. ${ }^{2}$]
Ample ${ }^{2}$

Amp

Helicity basis: natural in SCET since we have direction to use \hat{n}

$$
B_{n \pm}^{a} \equiv-\epsilon \frac{\mu}{\mp}(n, \bar{n}){ }_{B} B_{n r}^{\perp}, \quad \epsilon_{\mp}=\frac{1}{\sqrt{2}}(0,1, \pm i, 0)
$$

$$
J_{n_{1} n_{2} \pm} \in \epsilon \frac{r}{+}\left(n_{1}, n_{2}\right) \quad \bar{x}_{n_{1} \pm} \pm \gamma_{\mu} \underbrace{x_{n_{2} \pm}}_{\left[\left(\frac{1 \pm \gamma_{5}}{2}\right) x_{1}\right]^{\beta}}
$$

Allowed H OB $O B$ O

$$
\begin{aligned}
& +\quad++ \\
& +\quad+- \\
& -\quad-\quad+3 \begin{array}{l}
\text { wilson coeff } \\
- \\
\text { fixed by } \\
\text { Parity }
\end{array}
\end{aligned}
$$

$H O J$

$$
\begin{aligned}
& ++ \\
& -+ \\
& +- \\
& --
\end{aligned} \quad \text { fixed by } \text { charge Conj. }
$$

4 mon-triuial coefficients Enate: no eurnescent operators in leading power sET due to helicity conservation]
Easy to exploit modern spinor-helicity results.
[see 1508.02397 for more on helicity operators in SCET.]

SET $\mathscr{L}_{d y n}^{(0)} \quad \operatorname{SCETI}_{I} \quad(\alpha=2)$
For interactions that are isolated and purely n-collinear or purely ultrasaft we just hare full $Q \subset D \mathcal{L}$ for each sector.
usoft: nothing to expand

n-collinear: fort	
	$t^{2}-1$ everything$\left(\lambda^{2}, 1, \lambda\right) \rightarrow(\lambda, \lambda, \lambda)$
some	

some

Key thing SCET describes is interactions between sectors
For $\mathscr{L}^{(0)}$

$$
\begin{aligned}
\cdot\left(\lambda^{2}, 1, \lambda\right. & \xi_{\cup S} \\
& \left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)
\end{aligned}
$$

usoft leave collinear won-shell

- hard interactions produce collinear goorks with of $\xi_{n}=0$ [hard int. breaks boost arguemant]

$$
\begin{aligned}
& 1 \psi=\left(\frac{\alpha \bar{\alpha}}{4}+\frac{\not x \alpha}{4}\right) \psi=\xi_{n}+\tau_{n} \\
& y_{\text {Oct }}=\bar{\psi}_{i \phi \psi}=\bar{\xi}_{n} \frac{\not \nabla}{2} i n \cdot D \xi_{n}+\bar{\varphi}_{n} \frac{\alpha}{2} i \pi \cdot 0 \varphi_{n}+\bar{\xi}_{n} i \theta_{\perp} \varphi_{n}+\bar{\varphi}_{n} i \varnothing_{\perp} \xi_{n} \\
& \text { e.o.m. } \delta / \delta \bar{\varphi}_{n} \Rightarrow \quad \varphi_{n}=\frac{1}{i \pi \cdot 0} i \varnothing_{\perp} \frac{\not \partial}{2} \varepsilon_{n}
\end{aligned}
$$

Smaller than z_{n} for hard production

$$
\mathscr{L}_{Q C D}=\bar{q}_{1}\left(i n \cdot 0+i \theta_{\perp} \frac{1}{i n \cdot 0} i \theta_{1}\right) \frac{\bar{x}}{2} \xi_{n} \quad \text { still Q<D }
$$

Expand

- couple only to ξ_{n} in path integral $J \xi_{n}$

$$
\begin{aligned}
& \text { - } i n \cdot D=i n \cdot \partial+g n \cdot A_{n}+g n \cdot A_{s} \text { Multiple } \\
& 1^{2} \text { expansion } \\
& A_{U s}^{1} \ll A_{1 \perp} \\
& i \partial_{u s}^{2} \ll i \partial_{n}^{1} \\
& \bar{n} \text {.Aus } \ll \bar{n} \cdot A_{n} \\
& \text { in. Jus } \ll \text { in•วn }
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}_{n \xi}^{(0)}=\bar{\xi}_{n}\left(i n \cdot D+i \theta_{n \perp} \frac{1}{i \bar{n} \cdot D_{n}} i \theta_{n \perp}\right) \frac{\bar{\alpha}}{2} \xi_{n} \sim O\left(\lambda^{4}\right) \\
& \int d^{4} x y^{(0)} \sim 1 \\
& \text { gluons } \\
& \text { थ gives } \frac{(\alpha / 2)}{n \cdot \rho+\frac{p_{1}^{2}}{\bar{n} \cdot p}+i o \operatorname{sign}(\bar{n} \cdot p)}
\end{aligned}
$$

$$
\mathscr{L}_{n g}^{(0)}=\mathscr{L}_{n g}^{(0)}\left[n \cdot D, D_{n 2}, \pi \cdot D_{n}\right] \text { too }
$$

Q bit more work

$$
(+ \text { gauge fixim } t \text { ghosts) }
$$

If we drop n.Aus these are Q co Lagrangians

$$
\text { eg. } y^{(1)}=\begin{gathered}
\left(\bar{q}_{n} \omega_{n}\right) \text { g } \beta_{n 1} \text { gus } \\
\lambda \\
\lambda \quad \lambda^{3}
\end{gathered}=\lambda^{5}
$$

Gouge Inv
Reparometerization Inv (RPI) freedom to choose $\cap \& \bar{n}$ satisfying $n^{2}=\bar{n}^{2}=0, n \cdot \bar{n}=2$

Each collinear sector has its our RPI symmetry
[protects $\mathscr{L}^{(k)}$ coff from loop corrections, relates operator coeffs.]

RG Evolution \& Matching

UV renormalization in SCET
compare renormalized $Q C D$
to l STET
\& extract $C^{\prime} s$ [later]

$$
\bar{x}_{n} \gamma_{1}^{\mu} x_{\bar{n}}=\left(\bar{\xi}_{n} \omega_{n}\right) \gamma_{1}^{\mu}\left(\omega_{n}^{+} \xi_{n}\right)
$$

$\underline{e t}^{\text {t }^{-} \rightarrow \text { dijet } s}$

from $\omega_{n}^{\prime \prime} \delta_{n}=\frac{\alpha_{s} c_{c}}{4 \pi}\left[\frac{2}{\epsilon^{2}}+\frac{2}{\epsilon}-\frac{2}{\epsilon} \ln \left(\frac{\left(-p^{2}\right)}{\mu^{2}}\right)+\cdots\right]$

$$
\varepsilon \quad t^{d} k\left[\frac{\bar{n} \cdot(k+p)}{\bar{n} \cdot k(k+p)^{2} k^{2}}-\frac{\bar{n} \cdot p}{\bar{n} \cdot k\left(\bar{n} \cdot p n \cdot k+p^{2}\right) k^{2}}\right]
$$

naive collinear o-bin subtraction integrand

O-bin: collinear modes in SCETI have O-bin subtractions from region $k^{\mu} \sim Q \lambda^{2}$ to avoid double counting IR region described by usoft mode. [part of proper multipole expansion]
from

$$
-2=-\frac{\alpha s c_{F}}{4 \pi}\left[\frac{1}{\epsilon}+\cdots\right]
$$

in sum $\frac{\ln \left(-p^{2}\right)}{\epsilon} \& \frac{\ln \left(-\bar{p}^{2}\right)}{\epsilon}$ cancel [mixed $u v * I R$] -23[crossed out above]

$$
\operatorname{sun}=\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{2}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \frac{\mu^{2}}{-ब^{2}-i 0}+\frac{3}{\epsilon}+\cdots\right]
$$

$$
c^{\text {bare }}=z_{c} c
$$

$\overline{m s}$ counter term

$$
\begin{aligned}
& \left(z_{c-1}\right)=-\frac{\alpha s C_{F}}{4 \pi}\left[\frac{2}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \frac{\mu^{2}}{-Q^{2}-i o}+\frac{3}{\epsilon}\right] \\
& 0=\mu \frac{d}{d \mu} C^{\text {bore }}=\mu \frac{d}{d \mu}\left[z_{c}(\mu, \epsilon) \subset(\mu)\right] \\
& =\left[\mu \frac{d / d \mu}{} z_{c}\right] \subset+z_{c}[\mu d / d \mu C] \\
& \mu \frac{d}{d \mu} C(\mu)=\left[-z_{c}^{-1} \mu d / d \mu z_{c}\right] C(\mu)
\end{aligned}
$$

γ_{c}
$\underline{O\left(\alpha_{s}\right)} Z_{c}^{-1} \rightarrow 1 \quad \mu d / d \mu \alpha_{s}=-2 \in \alpha_{s}$ $+\sigma\left(\beta_{0} \alpha_{s}^{2}\right)$

$$
\begin{aligned}
\mu \frac{d}{d \mu} z_{c}= & \frac{C_{F}}{4 \pi} \alpha_{s}(-2 \epsilon)\left(-\frac{2}{\epsilon}-\frac{2}{\epsilon} \ln \frac{\mu^{2}}{-Q^{2}}-\frac{3}{\epsilon}\right) \\
& +\frac{C_{F} \alpha_{s}}{4 \pi}\left(-\frac{d^{2}}{\epsilon}\right) \& \operatorname{from} \mu d / d \mu \\
\gamma_{c}= & -\frac{\alpha s(\mu)}{4 \pi}\left[4 C_{F} \ln \frac{\mu^{2}}{-Q^{2}}+6 C_{F}\right]
\end{aligned}
$$

cusp anomalous dimension
when we square the amplitude ur get
 hand function $H=|\subset(Q, \mu)|^{2}$

$$
\mu \frac{d}{d r^{*}} H(Q, \mu)=\left(\gamma_{c}+\gamma_{c}^{*}\right) H=-\frac{\alpha s(\mu)}{2 \pi}\left[8 C_{F} \operatorname{sen} \frac{\mu}{Q}+6 C_{c}\right] H(Q, \mu)
$$

leading dale logs
port of NLL, -24$\alpha_{s} \ln \sim 1$
\Rightarrow 2 also need $\alpha_{s}^{2} \operatorname{gn} \frac{\mu}{Q}$ term

$$
\begin{aligned}
& H\left(Q, \mu_{1}\right)=H\left(Q, \mu_{0}\right) \quad U_{H}\left(\theta, \mu_{0}, \mu_{1}\right) \\
& =H\left(Q, \mu_{0}\right) \exp \left[-\# \ln ^{2}\left(\frac{\mu_{1}}{Q}\right)+\cdots\right] \text { co } \begin{array}{l}
\text { frozen } \\
\text { coupling } \\
\text { result }
\end{array} \\
& =H\left(Q, \mu_{0}\right) \exp \left[-\frac{\pi}{\alpha_{s}\left(\mu_{0}\right)} f\left(\frac{\alpha_{s}\left(\mu_{1}\right)}{\alpha_{s}\left(\mu_{0}\right)}\right)\right] \quad \Delta \quad \begin{array}{r}
\text { zoning } \\
\operatorname{cosin} i n \\
\text { result }
\end{array} \\
& \text { boundary }
\end{aligned}
$$

$\left\{\begin{array}{l}\text { Ask about } \\ \text { scales }\end{array}\right.$
$\bar{x}_{n} r x_{n}$ SCET operator restricts radiation (collinear $\$$ soft emissions below μ_{1})

- To discuss the order were working look at series in $\ln C(\omega, \mu) \sim \alpha_{s}^{k} \ln ^{k+1}+\alpha_{s}^{k} \ln ^{k}+\alpha_{s}^{k} \ln ^{k-1}+\ldots$ LC NGC NULL
- What do we reed to compute?

Back to $\mathscr{L}_{\text {sce }}^{(0)}$
Feyn. Rules

$$
\begin{gathered}
\xi_{n}--\rightarrow-\frac{i \not x}{2} \frac{\theta(\bar{n} \cdot \rho)}{n \cdot p+\frac{p_{1}^{2}}{\bar{n} \cdot p}+i o}+\frac{i \not \partial}{2} \frac{\theta(-\bar{n} \cdot p)}{n \cdot p+\frac{p_{1}^{2}}{\bar{n} \cdot p}-i o}=\frac{i \alpha x}{2} \frac{\bar{n} \cdot p}{p^{2}+i o} \\
\text { portrcle } \quad \text { antiporticle }
\end{gathered}
$$

$$
\cdots \infty=\cdots
$$

$$
\overbrace{-7-}^{C}=\cdots,-\ldots=\cdots,
$$

Usofts hove eikonal coupling αn^{μ} to collinears

$$
\alpha \frac{\bar{n} \cdot p}{\bar{n} \cdot p n \cdot(p+k)+p_{1}^{2}+i 0}=\frac{n \cdot p}{\bar{n} \cdot p n \cdot k+p^{2}+i o}=\frac{1}{n \cdot k+i o}
$$

[usofts do not change $P_{n}{ }^{\perp}, \bar{n} \cdot P_{n}$, neither seft nor collineor con chouse delrection n]
$n \frac{\bar{n}-(p+q)}{(p+q)^{2}+i 0}$ for collinears

Ultrasoft - Collinear Factorization
put n. Aus into usoft wilson lines

$$
\begin{aligned}
& Y_{n}(x)=\operatorname{Pexp}\left(i q \int_{-\infty}^{0} d s n \cdot A_{u s}(x+n s)\right) \\
& {\left[n \cdot D_{u s} Y_{n}\right]=0, \quad y_{n}+y_{n}=1=Y_{n} Y_{n}^{+}}
\end{aligned}
$$

Field Redefinition: $\xi_{n}(x)=\psi_{n}(x) \xi_{n}^{\prime}(x)$

$$
\begin{aligned}
& A_{n}^{\mu}(x)=Y_{n}(x) A_{n}^{\prime \mu}(x) \varphi_{n}^{+}(x)\left[\begin{array}{l}
\text { solos for } \\
\text { ghost } C_{n}
\end{array}\right] \\
& W_{n}=\sum_{\text {perms }} \exp \left(\frac{-9}{i \pi \cdot 2_{n}} \bar{n} \cdot A_{n}\right) \underset{\substack{\text { useitiple } \\
\text { malt }}}{\longrightarrow} \text { in } \omega_{n}^{\prime} \text { in }^{+} \\
& \text {exp } \\
& \text { Also: } x_{n} \rightarrow Y_{n} \chi_{n}^{\prime},{ }^{\text {exp }} B_{n 1} \rightarrow \text { in }_{n}{ }^{\circ} B_{n \perp}^{\prime} y_{n}^{+}
\end{aligned}
$$

$$
\begin{aligned}
& =\bar{\xi}_{n}^{\prime} \frac{\mathbb{R}}{2}\left[i n \cdot \partial+g n \cdot A_{n}^{\prime}+i \theta_{n 1}^{\prime} \frac{1}{i \bar{n} \cdot O_{n}^{\prime}} i \theta_{n_{1}}^{\prime}\right] \xi_{n}^{\prime} \\
& \mathscr{L}_{n q}^{(0)}\left(\varepsilon_{n}, A_{n}, n . A_{u s}\right)=\mathscr{L}_{n \xi}^{(\cdot)}\left(\tau_{n}^{\prime}, A_{n}{ }^{\prime}, 0\right)
\end{aligned}
$$

some for $\mathscr{L}_{n j}^{(0)}$, so decoupled in $L^{(0)}$
Reappear in currents:
eg 1 $\left(\bar{X}_{n} \Gamma \chi_{n}\right) \rightarrow \bar{X}_{n}^{\prime}\left(y_{n}^{+} \varphi_{n}\right) \Gamma \chi_{n}^{\prime}$

$$
(n-\text { collin })(u s o t t)(\bar{n}-\text { collin })
$$

factorized up to global color \& spin inducies

$$
\operatorname{eg} 2\left(\bar{x}_{n} \Gamma x_{n}\right) \rightarrow \bar{x}_{n}^{\prime}\left\langle y_{n}^{A} \text { yt } r x_{n}^{\prime}\right.
$$

Suns up ∞ class of diagrams

1-loop Matching Example

$$
e^{+} e^{-} \rightarrow \text { dijets }
$$

[Feyn. Gayp Ogain]
$\frac{000}{4}$
SCET

$$
\mathscr{L}_{Q C O}+J^{\mu}=\bar{\psi} \partial^{\mu} \psi
$$

$$
\mathscr{L}_{S C E T}^{(0)}+\mathscr{L}_{\text {hoil }}^{(0)}=c \bar{x}_{n} \gamma_{\perp}^{\mu} x_{\bar{n}}
$$

find C at $O\left(\alpha_{s}\right)$

$$
\left(1-\text { loop ren. } Q(D)-(1-\text { loop ren. SCET })=C^{(1-600)}<O_{\text {SCFT }}^{\text {col }}\right\rangle
$$

- Must use some IR regulator in $Q \subset D \& \delta \angle E T$
- Result for C will be independent of IR reg.choice.

$$
p^{2}=p^{2} \neq 0
$$

QCD

SCAT

$$
\begin{aligned}
& +\left(z_{c}^{\overline{m s}}-1\right) Q_{Q_{n}^{\prime}}^{\dot{N}^{\prime}} \\
& \underbrace{\prime\left(\frac{\mu^{2} Q^{2}}{-p^{4}}\right)}_{\text {soft graph }}+\underbrace{7-\frac{5 \pi^{2}}{6}}_{\text {both }}]
\end{aligned}
$$

$$
=\frac{\alpha_{S}(\mu) C_{F}}{4 \pi}\left[\ln ^{2}\left(\frac{\mu^{2}}{-Q^{2}}\right)-2 \ln ^{2}\left(\frac{\rho^{2}}{Q^{2}}\right)-3 \ln \left(\frac{\rho^{2}}{Q^{2}}\right)+3 \ln \frac{\mu^{2}}{-Q^{2}}+7-\frac{5 \pi^{2}}{6}\right]
$$

$\ln p^{2}$ IR divergences agree

$$
Q C D-S C E T=\frac{\alpha_{S}(\mu) C_{F}}{4 \pi}\left[-\ln ^{2}\left(\frac{\mu^{2}}{-Q^{2}-i 0}\right)-3 \ln ^{2}\left(\frac{\mu^{2}}{-\theta^{2}-c^{\circ}}\right)-8+\frac{\pi^{2}}{6}\right]
$$

matching:

$$
c(\theta, \mu)=1+\frac{\alpha_{s}(\mu) c_{F}}{4 \pi}\left[\begin{array}{llll}
k & \cdots & 1 & "
\end{array}\right.
$$

Dim. Reg. Trick [useful for many EFT matching calculations] use $Y_{\text {GIn }}$ for $I R$ divergences \& $Y_{\text {Guv }}$ for $U V$

$$
\begin{aligned}
& \left(z_{c}^{\overline{m s}}-1\right) \dot{Q}_{\dot{\prime}}^{\prime}=\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{-2}{6 u_{v}^{2}}-\frac{2}{Q_{u v}} \ln \frac{\mu^{2}}{-Q^{2}}-\frac{3}{\in u v}\right] \text { as before }
\end{aligned}
$$

OCD

$$
\alpha \xi=\frac{\alpha_{S} C_{F}}{4 \pi}\left[-\frac{2}{\epsilon \pi R^{2}}-\frac{2}{\epsilon \pi R} \ln \frac{\mu^{2}}{-Q^{2}}-\frac{3}{\epsilon \pi K}-\Omega^{2} \frac{\mu^{2}}{-Q^{2}}-3 \ln \frac{\mu^{2}}{-Q^{2}}-8+\frac{\pi^{2}}{6}\right]
$$

- set $\epsilon_{I R}=\epsilon u v \$$ assume $1 / \epsilon_{I R}$ match Don't reed EFT calc.
\Rightarrow Result for $C(Q, \mu)$ is $I R$ finite part of pure dinireg QCO result (agrees with earlier $p^{2} \neq 0$ result as expected)
$e^{+} e^{-} \rightarrow$ dijets
28
@

SCET_{I}

$$
e^{+} e^{-} \rightarrow \gamma_{q^{*}}^{*} \text { or } z^{*} \rightarrow X_{n} X_{\bar{n}} X_{\text {us }}
$$

$$
\begin{aligned}
& n-c_{0} \\
& \leftarrow \\
& X_{u s}
\end{aligned}
$$

Scales

- hard scale $\mu_{h} \sim Q=\sqrt{q^{2}}$
(b)
Scales
- $P_{x}^{\mu}=P_{x_{a}}^{\mu}+P_{x_{b}}^{\mu} \quad$ Hemisphere invariant mass

$$
\begin{array}{ll}
m_{a}^{2} \equiv\left(P_{x_{a}}^{\mu}\right)^{2}=\left(\sum_{i=a} P_{i}^{\mu}\right)^{2} \ll Q^{2} & \text { Jets } \quad \text { (jet masses) } \\
m_{b}^{2}=\left(\sum_{i \varepsilon b} P_{i}^{\mu}\right)^{2} \ll Q^{2} & \text { let } m_{J}^{2}=m_{a}^{2}+m_{b}^{2} \\
m_{a} \sim m_{b} \sim m_{J}
\end{array}
$$

$$
n \text {-collinear }
$$

$$
Q\left(a^{2}, 1, a\right)
$$

$$
\bar{n} \text { - collinear }
$$

$$
Q\left(1, \lambda^{2}, \lambda\right)
$$

- soft radiation -uniform - eikonal - jets communicate

Current $J^{\mu}=\bar{\psi} r^{\mu} \psi \rightarrow \int d \omega d \bar{\omega} C(\omega \bar{\omega})\left(\bar{q}_{n} \omega_{n}\right)_{\omega} r^{\mu}\left(Y_{n}^{+} Y_{\bar{n}}\right)\left(\omega_{n}^{+} \xi_{\bar{n}}\right) \bar{\omega}$
snipped
Kinematics $q^{\mu}=P_{x_{n}}^{\mu}+P_{x \bar{n}}^{\mu}+P_{x_{s}}^{\mu}=Q\left(\frac{n^{\mu}+\bar{n}^{\mu}}{z}\right)$

$$
\begin{array}{ll}
\bar{n} \cdot q=Q=\bar{n} \cdot P_{x_{n}}+\cdots & \omega=Q \\
n \cdot q=Q=n \cdot P_{x_{n}}+\ddot{q}_{\text {small }} & \bar{\omega}=Q
\end{array}
$$

momentum conservation
strong enough that no
convolutions in $\omega, \bar{\omega}$

$$
\begin{aligned}
& \text { Perturbative }+\mathcal{O}\left(\frac{\Lambda_{0} 0}{\mu_{s}}\right) \quad \underset{\substack{\text { constant } \\
\text { parameter }}}{\text { center }} \\
& \mu_{S} \sim \frac{M_{S}{ }^{2}}{Q} \\
& \longrightarrow M_{J}^{2} / Q \sim \Lambda_{Q L O} \text { non-perturbative soft ff. } \\
& \mu_{h}>\mu_{J} \gg \mu_{s} \sim \Lambda Q C D \quad \text { "peak" region } \\
& \text { Perturbative * } \underbrace{\left.\Lambda_{Q C O} / \mu_{S}\right)^{k} \sim 1} \text { any } k
\end{aligned}
$$

Factorize the Cross-Section
QCD $\quad \sigma=\sum_{\substack{x \\ \text { dijet }}}(2 \pi)^{4} \delta^{4}\left(q-P_{x}\right) L_{\mu \nu}\langle 0| \sigma^{\nu t}(0)|x\rangle\langle x| J^{\mu}(0)|0\rangle$
Q restrict to dijet x states. SCET allows us to move restrictions into operators

$$
\text { e }|x\rangle=\left|x_{n}\right\rangle\left|x_{n}\right\rangle\left|x_{u s}\right\rangle
$$

$$
\mathscr{L}=\mathscr{L}_{n}+\mathscr{Z}_{\bar{n}}+\mathscr{L}_{u s}
$$

so Hilbert space factorizes

$$
\begin{gathered}
\sigma=N_{0} \sum_{\bar{n}} \sum_{x_{n}, x_{\bar{n}}, x_{u s}}(2 \pi)^{4} \delta^{4}\left(q-p_{x_{n}}-p_{x_{\bar{n}}-p_{x u s}}\right)\langle 0| y_{n}^{+} y_{\bar{n}}\left|x_{u s}\right\rangle\left\langle x_{u s}\right| y_{\bar{\pi}}^{+} y_{n}|0\rangle \\
*|c(0)|^{2}\langle 0| \not x x_{n, Q}\left|x_{n}\right\rangle\left\langle x_{n}\right| \bar{x}_{n}|0\rangle \\
\left.*<0\left|\bar{x}_{\bar{n}, Q}\right| x_{\bar{n}}\right\rangle\left\langle x_{\bar{n}}\right| \propto x_{\bar{n}}|0\rangle
\end{gathered}
$$

$$
\begin{aligned}
& \text { insert } \\
& \text { measuremant } \\
& \text { we want }
\end{aligned} \int d m_{a}^{2} d M_{b}^{2} \quad \delta\left(M_{a}^{2}-\left(P_{x_{n}}+P_{x_{s}}^{a}\right)^{2}\right) \delta\left(m_{b}^{2}-\left(P_{x n}+P_{x_{s}}^{b}\right)^{2}\right) \text { \& } 1
$$

Factorize Measurement, Simplify,...
\{dijet factorization theorem for hemisphere masses\}

- Soft function encodes both $l^{ \pm} \sim M_{J}^{2} / Q$ and $l^{ \pm} \sim M Q C D$
- $\frac{d \sigma}{d m_{J}^{2}}=\int d M_{a}^{2} d M_{b}^{2} \delta\left(M_{J}^{2}-M_{a}^{2}-M_{b}^{2}\right) \frac{d \sigma}{d M_{a}^{2} d M_{b}^{2}}$

$$
1 \text {-voriable }=\text { simpler }
$$

$$
\tau=m_{5}^{2} / Q^{2}=1-\text { Throst }
$$

$$
=\sigma_{0} H(Q, \mu) \int d l J_{\tau}\left(M_{\tau}^{2}-Q l, \mu\right) S_{\tau}(l, \mu)
$$

$$
\text { for } \tau \ll 1
$$

$$
\begin{aligned}
& \frac{d \sigma}{d M_{a}^{2} d M_{b}^{2}}=\sigma_{0}|C(Q)|^{2} \quad \int d k^{+} d l^{+} d k^{-} d l^{-} \quad \delta\left(M_{a}^{2}-Q\left(k^{+}+l^{+}\right)\right) \delta\left(M_{b}^{2}-Q\left(k^{-}+l^{-}\right)\right) \\
& \text {* } \sum_{x_{n}} \frac{1}{2 \pi} \int d^{4} x e^{i k^{+} x^{-} / 2} \operatorname{tr}\langle 0| \frac{\nexists}{4 N_{c}} x_{n, Q}(x)\left|x_{n}\right\rangle\left\langle x_{n}\right| \bar{x}_{n}(0)|0\rangle \\
& \text { * } \sum_{x_{\bar{n}}} \frac{1}{2 \pi} \int d^{4} y e^{i k^{-} y^{+} / 2} \operatorname{tr}\langle 0| \bar{x}_{\bar{n}, Q}(y)\left|x_{\bar{n}}\right\rangle\left\langle x_{\bar{n}}\right| \frac{d}{4_{N C}} x_{\bar{n}}(0)|0\rangle \\
& * \sum_{x_{s}} \frac{1}{N_{c}} \delta\left(l^{+}-p_{x_{s}}^{a+}\right) \delta\left(l^{-}-p_{x_{s}^{b}}^{b-}\right) \operatorname{tr}\langle 0| \varphi_{n}^{+} \varphi_{\pi}\left|x_{s}\right\rangle\left\langle x_{s}\right| \varphi_{\pi}^{+} Y_{n}|0\rangle \\
& =\sigma_{0} H(Q, \mu) \int d l^{+} d l^{-} J\left(M_{a}^{2}-Q l^{+}, \mu\right) J\left(M b^{2}-Q l^{-}, \mu\right) S\left(l^{+}, l^{-}, \mu\right)
\end{aligned}
$$

Bare \rightarrow Renornolized

$$
\begin{aligned}
& H(Q)=Z_{H} H(Q, \mu) \\
& J_{T}\left(m^{2}\right)=Z_{J} \otimes J_{T}\left(m^{\prime 2}, \mu^{2}\right) \\
& S_{T}\left(l^{\prime}\right)=Z_{S} \otimes S_{T}(l, \mu)
\end{aligned}
$$

integrals, like for PDF example

$$
H(Q, \epsilon) \int d l^{\prime} J_{T}\left(m_{J}^{2}-Q l^{\prime}, \epsilon\right) \quad \int_{T}\left(l^{\prime}, \epsilon\right) \quad \Leftarrow \text { bare }
$$

$$
=H(Q, \mu) \int d l J_{\tau}\left(m_{a}^{2}-Q l, \mu\right) S_{T}(l, \mu)
$$

The functions H, J, S howe α s expansions without loge logs only if each is evaluated at different scale μ !

$$
\begin{aligned}
& P^{2} \sim M_{J}^{2}, \mu_{J} \sim M_{J} \\
& P^{2} \sim M_{J}^{4} / Q^{2}, \mu_{S} \sim M_{J}^{2} / Q
\end{aligned}
$$

RGE Coefficient $=\left(\begin{array}{c}\text { Operator } \\ \text { Rem. } \\ \text { Ren. }\end{array}\right)^{-1}$ "consistency conditions"
\rightarrow relates $\gamma_{H, J, S}$ amoral owns dimensions

- large lags all in evolution factors U_{H}, U_{T}, U_{S}
- con pick any μ

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d m_{J}^{2}}=H\left(Q, \mu_{h}\right) u_{H}\left(Q, \mu_{h}, \mu\right) J_{\tau}\left(M_{J}^{2}-s^{\prime}, \mu_{J}\right) \otimes_{\theta}^{s^{\prime}} U_{J}\left(s^{\prime}-Q l, \gamma_{J}, \mu\right)
$$

$$
\stackrel{l}{\theta} S_{r}\left(l-l^{\prime}, \mu_{s}\right) \stackrel{\theta}{ }_{l^{\prime}} U_{s}\left(l^{\prime}, \mu_{s}, \mu\right)
$$

pick $\mu=\mu_{s}: U_{s}\left(l^{\prime}, \mu_{s}, \mu_{s}\right)=\delta\left(l^{\prime}\right) \rightarrow$ on'1 need U_{σ}, U_{H}

$$
\begin{aligned}
& J^{\text {bare }}(s)=\int d s^{\prime} Z_{J}\left(s-s^{\prime}\right) J\left(s^{\prime}, \mu\right) \\
& \mu d / d \mu J(s, \mu)=\int d s^{\prime} \gamma_{J}\left(s-s^{\prime}, \mu\right) J\left(s^{\prime}, \mu\right) \quad \text { invariant mas } \\
& \gamma_{J}(s, \mu)=-22- \\
& r^{\cos p}\left[\alpha_{s}\right] \frac{1}{\mu^{2}}\left[\frac{\mu^{2} \theta(s)}{s}\right]_{+}+\gamma\left[\alpha_{s}\right] \delta(s) \text { all orders ion }
\end{aligned}
$$

Solve by Fourier transform $y=y$－io

$$
J(y)=\int d s e^{-i s y} J(s) \quad \mu \frac{d}{d \mu} J(y, \mu)=\gamma_{J}(y, \mu) J(y, \mu)
$$

skipped but
review for

Honk \＃4 Calculate $J(s, \mu)$ at $1-100 p$
Soft FA OPE $\int_{\tau}(l, \mu)=\int d l^{\prime} \hat{S}\left(l-e^{\prime}, \mu\right) F\left(l^{\prime}\right)$
$\psi_{\text {power low terms }}^{q} \uparrow$

$$
\sim \frac{\left(\ln e_{\mu}\right)^{k}}{l}
$$

N⿰亻⿱丶⿻工二口力刂 effects

wilson Clef．for power corr．

$$
\begin{aligned}
& S(l)=\hat{S}(l) \frac{1}{\sim}-\left[\frac{\partial}{\partial l} \hat{s}(l)\right] \underset{\infty}{\Omega_{1}}+\cdots \\
& =\int_{0}^{\infty} d k F(k)=1=\int_{0}^{\infty} d k k F(k) \\
& \Omega_{1}=\langle 0| \bar{Y}_{n}^{+} Y_{n}^{+} \hat{\epsilon}_{T} Y_{n} \bar{Y}_{n}|0\rangle \sim \operatorname{NacD}
\end{aligned}
$$

hodronization parameter， universal across dijet event shapes

Recon Fact $e^{+} e^{-} \rightarrow$ dijet \＆how modes communicate

$$
\begin{gathered}
q=p_{1}+p_{5} \sim Q(\lambda, 1, \lambda) \\
q^{2}=\begin{array}{l}
+Q^{2} \lambda \gg \\
\text { offshale }
\end{array}
\end{gathered}
$$

$q \sim Q(a, 1, \sqrt{2})$ on－shall scaling hord－collinear mode

Construction SCETIT operators using SCETI:

1) Match $Q \subset D \rightarrow S C E T_{I}\left(h C_{n}, h C_{n}\right.$, soft)
2) Factorize (field redefinition)
3) Match $S C E T_{I} \rightarrow \operatorname{SCE} T_{\text {II }}\left(c_{n}, C_{\bar{n}}\right.$, soft)
eg. $e^{+} e^{-} \rightarrow$ dijet $P_{\perp} \quad J_{S C E T_{ \pm}}=\bar{x}_{n}^{h c}\left(y_{n}^{+} y_{\pi}\right) r X_{\bar{n}}^{h c}$

$$
J_{S_{C I E} T_{\text {II }}}^{*}=\bar{x}_{n}\left(S_{n}^{+} S_{\bar{n}}\right) \Gamma x_{\bar{n}}
$$

Soft wilson lines

- can also be obtained by matchij $Q C D \rightarrow \delta C E T$ II, but more wort
- with ≥ 2 SCETI operators having us oft \& collinear field. cor gat $\int d p^{-}+k^{+} J\left(p^{-}, k^{+}\right) C_{n}\left(p^{-}\right) S\left(k^{+}\right), \quad J=h, c_{n}$ matching.

$$
\mathscr{L}_{S C E T I I}^{(0)}=\mathscr{L}_{\text {Soft }}^{(0)}+\sum_{n}\left(\mathscr{L}_{\xi n}^{(0)}+\mathscr{L}_{g n}^{(0)}\right)+\mathscr{L}_{6}^{(0)} \text { same }
$$

- Scetr also has o-bin subt.
- modes distinguished by rapidity

$$
e^{2 y}=\frac{p^{-}}{p^{+}} \sim \lambda_{C_{n}}^{\lambda^{-2}}, \lambda^{0}, \lambda^{2}
$$

- And con have "rapidity divergencer not regulated by E

$$
\epsilon \longleftrightarrow \begin{aligned}
& \text { regulates } \\
& k^{2} \text { offshelloss }
\end{aligned}
$$

$$
\int \frac{d k^{+}}{k^{+}} R(k, \eta, 0)
$$

$k^{-}=\frac{\hbar_{1}^{2}}{k^{+}}$, hyperbola like ϵ

Glauber Exchange $\mathcal{L}_{G}^{0)}$ see arxiv: 1601.04695 -34-

- modes with $p+p-<\vec{P}_{\perp}^{2} \sim \lambda^{2}$ offshell
- history: CSS 188 cancel in $0 Y$, also $e^{+} e^{-} \rightarrow$ diets,...
- needed? (not seen in standard matching calcs) add it
- mediates Forward Scottering $s \gg-t$
small -x phenomena (Rage, BFKC,...)

Glouber

- $\frac{1}{\vec{P}_{\perp}{ }^{2}}$ potentials, instantaneous in $z \& t$ Coulanb
- Forward: $\bar{n} \cdot P_{2}=\bar{n} \cdot P_{3}, n \cdot P_{1}=n \cdot P_{4}$

Match from $Q C D$, integrating Glaser out:

$$
\begin{aligned}
& \mathscr{L}_{G}^{(0)}=\sum_{n} \sum_{i, j=2, g} O_{n}^{i B} \frac{1}{P_{\perp}^{2}} O_{s}^{j B}+\sum_{n, n^{\prime}} \sum_{i, j=q, 9} O_{n}^{i B} \frac{1}{P_{\perp}^{2}} O_{s}^{B C} \frac{1}{P_{\perp}^{2}} O_{n}^{j C} \\
&(2 \text {-rapidities) }
\end{aligned}
$$

$$
O_{n}^{q B}=\bar{X}_{n} T^{B} \frac{\not X}{2} X_{n}, \quad O_{n}^{g_{B}}=\frac{i}{2} f^{B C O}{ }^{\circ} B_{n \perp \mu}^{c} \frac{\bar{n}}{2} \cdot\left(i \partial_{n}-i \partial_{n}\right) O_{n \perp}^{0} \mu
$$

Similar O_{n} 's

$$
\begin{aligned}
& \psi_{s}^{\hat{s}}=S_{n}^{+} q_{s}, \quad O B_{S \perp}^{n \mu}=\frac{1}{9}\left[S_{1}^{+} i D_{S \perp}^{\mu} S_{n}\right] \\
& \text { tildes: } \tilde{B}_{S \perp}^{n A B}=-i f^{A B C} O B_{S_{\perp}}^{n}
\end{aligned}
$$

In adjoint wilson line
Determined by top-down matching $\$$ bottum up basis \rightarrow 安

2 gluons enough to fix all terms

$$
\begin{aligned}
& O_{s}^{q_{1} B}=8 \pi \alpha_{s} \bar{\psi}_{s}^{n} T^{B} \frac{\alpha}{2} \psi_{s}^{n}, \quad D_{s}^{g_{n} B}=8 \pi \alpha_{s} \frac{i}{2} f^{B C D}{ }^{B} B_{s \perp \mu} n^{C} \frac{n}{2} \cdot\left(i \partial_{s}-i \partial_{s}\right){ }^{\circ} B_{S_{2}}^{n D \mu}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Here }
\end{aligned}
$$

- Suppressed: rapidity regulator $|k z|^{-\eta}$, multipole expansion.
- O-bin subtractions

Note - construction involves using sCET pic. theorem
-universal for $i, j=q, g$

- no hard coefficient (loop corrections) for $L_{G}^{(0)}$
- 1 ar 2 collinear directions in $\mathscr{L}_{G}(0)$ others ore T- products
- breaks factorization $\mathscr{L}_{G}^{(0)}\left(\left\{\varepsilon_{n i}, A_{n i}\right\}, q_{s}, A_{s}\right)$
couples n, \bar{n}, s modes at $O\left(\lambda^{\circ}\right)$
- encodes known examples of font violation (wilson line directions, $i \pi^{\prime} s, \ldots$)
- SCET US. CSS G Goober

SCET: expand first, defined as contribution that con be independently calculated
CSS: deform contour, see where we are trapped make soft expen once out of tripped region - One-gluon Fegn. Rule of $O_{S}^{A B}$ is Lipatan Vert

- rapidity RGE for $\mathcal{L}_{6}^{(0)}$ (Amplitude level)
 gives amplitude level "gluon reggeization"

$$
\begin{aligned}
& \left(\frac{v^{2}}{v_{0}^{2}}\right)^{-\gamma_{n \nu}}=\left(\frac{s}{-t}\right)^{-\gamma_{n u}} \quad \gamma_{n v}=\gamma_{\bar{n} v}=-\frac{\gamma_{s v}}{2} \\
& \text { suns logs }\left(d s \ln \frac{s}{-t}\right)^{k}
\end{aligned}
$$

rapidity RGE for Forward $^{\text {Fin }}$ - gives BFKL equation

$$
\cup \frac{2}{20} S\left(q_{1}, q_{2}^{\prime}, v\right)=\int d^{2} k_{\perp} \gamma^{B+k L}\left(q_{\perp}, h_{\perp}\right) S\left(k_{\perp}, q_{2}^{\prime}, 0\right)
$$

useful for small $-x$ resummation

- Glauber Loops give i

$$
\int \frac{d^{d} k\left|2 k^{z}\right|^{-\eta} v^{2 h}}{k_{\perp}^{2}\left(k_{\perp}-\bar{\sigma}_{L}\right)^{2}\left(k^{+}-\Delta_{1}\left(k_{\perp} \mid+i 0\right)\left(-h^{-}-\Delta_{2}\left(k_{\perp}\right)+i 0\right)\right.}
$$

effectiody

$$
=\left(\frac{-i}{4 \pi}\right) \int \frac{d^{d-2} k_{L}}{k_{L}^{2}\left(\hbar_{L}-\bar{\sigma}_{L}\right)^{2}}[-i \pi+O(\pi)]
$$

$=0$ with regulator

- Pure unitarily result
- A's do nat matter here

not eikoral
 Collapse \leftrightarrow shockwore picture for high energy scattering
- Wilson Line Directions
in $\omega_{n}(\pm \infty) \frac{1}{\pi \cdot k \pm i 0}$ sign matters for $\delta(\pi \cdot k)$ not collinear in $S_{n}(\pm \infty) \frac{1}{n \cdot k \pm i o}$
c. $\delta(n . h)$ soft
- actual Glawker
eg $1 S_{n}^{+} \hat{S}^{n}$ naive $\tilde{S}=\int \frac{f^{d} k\left|k_{z}\right|^{-\eta}}{\left(k^{2}-m_{i n}^{2}\right)(n \cdot k+i o)(\bar{n} \cdot h-i o)}$

$$
\begin{aligned}
& \tilde{S}=\int \frac{d^{d} k\left|k_{z}\right|^{-\eta}}{\left(k^{2}-m_{i n}^{2}\right)(n \cdot k+i o)(\pi \cdot h-i o)} \quad \begin{array}{c}
\text { "active } \\
\text {-active" }
\end{array} \\
&=(\ldots)+i \pi\left(\frac{1}{\epsilon}+\frac{h n \mu^{2}}{m^{2}}\right) \\
& S=\tilde{S}-S^{(G)}=(\cdots) \text { only }(0-b i n \text { subs.) } \\
& G=S^{(G)} \text { here, pure i } \pi \\
& S+G=\tilde{S}
\end{aligned}
$$

- G corries info about soft wibon live directions
- Con absorb G into soft if we take proper directions for S_{n} lines
G "active - spectator"

$$
C_{n}=\tilde{C}_{n}-C_{n}^{(6)}-37-
$$

$$
p p \rightarrow \mu^{+} \mu^{-} x
$$

- direction dependence in G not $C_{n}, C_{n}^{(G)}=G$
- Can absork G into C_{n}, but then ω_{n} direction is fixed
\Rightarrow Physical Manifestation in TMD POFs
Rivers: $\quad\left(f_{T T}^{+}\right)^{\text {SIDES }}=-\left(f_{T T}^{\perp}\right)^{D Y} \quad T$-pol.proton, unpol. quark
Boer.mulders: $\left(h_{1}^{-}\right)^{\text {SIDES }}=-\left(h_{1}^{+}\right)^{D Y} \quad$ T-pol. quark, unpol. proton
eg 3

"Spectatar-Spectator"
no soft or collinear analogs at leading power
cancel for $|A|^{2}$ with $\int d \Delta P_{\perp}$ spectators
[Also cancel indef. of $\int d \Delta P_{\perp}$ for final states \rightarrow gen. to arb. graphs]
- $\mathscr{L}_{G}^{(0)}$ cancels in inclusive DIS (just n-collinear)
- $e^{+} e^{-} \rightarrow$ dijets $\mathscr{L}_{6}^{1 / 9}$ due to collapse role \& final state active - active cancellation

- $\mathscr{L}_{G}^{(0)}$ cancels in Drell-yan due to combination of Unitarity $\sum_{x}|x\rangle<x \mid=1$ (final state cancellation), simplicity of measurement, \cdots
- $\mathcal{L}_{G}^{(0)}$ important for snall-x resummation, forward scattering, diffractive scattering

- $\mathcal{L}_{G}^{(0)}$ can be used to study fact. violation

Higgs P_{1}-distribution from Gluon Fusion SCETII
Physical eg.

$$
\begin{aligned}
& P P \rightarrow H\left(P_{\perp}\right)+X \quad Q \sim M_{H}, \quad P_{\perp} \ll M_{H} \\
& O_{\perp}=\vec{P}_{\perp}^{H}+\vec{P}_{\perp}^{x} \\
& \vec{P}_{\perp}^{H}=-\vec{P}_{n \perp}-\vec{P}_{\bar{n} \perp}-\vec{P}_{S_{\perp}} \xrightarrow{\substack{\text { Fourier } \\
\text { transform }}} \vec{b}_{\perp} \\
& P_{\perp} \sim \frac{1}{b_{\perp}} \sim M_{H} \lambda \\
& P_{n} \sim M_{H}\left(\lambda_{l}^{2}, \lambda\right) \\
& P_{\bar{n}} \sim \mu_{H}\left(1, \lambda^{2}, \lambda\right) \\
& n L^{e_{S}} p_{S}^{\mu} \sim m_{H} a \\
& P_{\perp}^{H} \sim M_{H} \lambda \\
& \text { Soft radiation } \\
& \text { SCETII } \\
& \frac{d \sigma}{d q_{1} d y}=N_{0} H_{g g}\left(M_{H}, \mu\right) \int d^{2} b_{\perp} e^{i b_{\perp} \cdot \vec{q}_{\perp}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * } B g / \rho \mu^{\nu}\left(\frac{m_{H}}{\sqrt{s}} e^{y} \hbar_{2}, \mu, \frac{u}{m_{H} e^{y}}\right) \\
& B_{\text {gdp }}=\frac{\tilde{f}_{\text {gl }}^{\text {naive }}}{\text { gobi }^{\text {o-bin }}} \\
& \text { 千 " } x_{b} \text { " }
\end{aligned}
$$

* $S\left(b_{2}, \mu, \nu / \mu\right) \varangle$ wants $\cup \sim \mu \sim b_{1}^{-1}$

$$
\text { e }\langle 0|\left(Y_{n} Y_{n}^{+}\right)\left(b_{\perp}\right) Y_{T}\left(Y_{n} Y_{n}^{+}\right)(0)|0\rangle \quad \text { "Soft Function" }
$$

Note: $\quad X_{a}=\frac{\bar{n} \cdot p_{n}}{\bar{n} \cdot p_{p}}=\frac{\bar{n} \cdot q^{\prime}}{\bar{n} \cdot p_{p}}=\frac{m_{H} e^{-Y}}{\sqrt{5}}$
Here: $B_{g / \rho}^{\mu \nu}\left(x, \vec{b}_{\perp}, \mu, \frac{J}{Q}\right)$ is "beam function"

- For $P_{T} \gg n_{Q C D}$ it Contains Parton distribution $f_{i / p}(\xi, \mu) \&$ perturbative collinear radiation at scale $\mu \sim P_{T}$

$$
\begin{aligned}
B_{g / p}^{\mu \nu}\left(x, \vec{b}_{\perp}, \mu, \nu / Q\right)= & \sum_{i} \int_{\frac{d \xi}{q}} C_{g i}^{\mu \nu}\left(\frac{x}{\xi}, \vec{b}_{\perp}, \mu, \frac{J}{Q}\right) f_{i / p}(\xi, \mu) \\
& +O\left(\wedge_{Q}^{2} \cos b_{\perp}^{2}\right) \quad b_{\perp} \simeq \frac{1}{P_{\perp}}
\end{aligned}
$$

- For $P_{T} \sim \Lambda_{Q C D}$ the Bgrp S become non-perturbative. Often define Single "Transverse Momatim Distribution" (TMD)

$$
\begin{gathered}
f_{T m D}^{\mu \nu}\left(x, \vec{b}_{\perp}, \mu, Q\right) \equiv \tilde{B}_{g / p}^{\mu \nu}\left(x, \vec{b}_{T}, \mu, \frac{\nu}{Q}\right) \sqrt{S\left(t_{T}, \mu, \frac{\nu}{\mu}\right)} \\
\frac{d \sigma}{d P_{T} d y}=N_{0} H\left(m_{H}, \mu\right) \int d^{2} b_{T} e^{i \vec{p}_{T} \cdot \vec{b}_{T}} f_{T m D}^{\mu \nu}\left(x_{a}, \vec{b}_{+}, \mu, m_{H}-{ }^{-y}\right) f_{\mu}^{T m D}\left(x_{b}, \vec{b}_{T}, \mu_{1}, m_{H} e^{\mu}\right)
\end{gathered}
$$

Rapidity Dive rgences
Sometimes (but not always) we may have rapidity dive gences from our separation of modes.

Simple Example: Massive Sudakou Form Factor
OCD $\quad \sigma^{\mu}=\bar{\psi} \gamma^{\mu} \psi \quad Q^{2}>m^{2}, \lambda=\frac{m}{Q}$

$$
\langle q(\bar{p})| J^{\mu}|q(p)\rangle=F\left(Q^{2}, m^{2}\right) \bar{u} \gamma^{\mu} u
$$

Z can be:
(Full) theory

$$
\begin{array}{lll}
C_{n} & Q\left(\lambda^{2}, 1, \lambda\right) & \text { eg. } \int \frac{d^{d} h}{\left(k^{2}-m^{2}\right)\left(k^{2}+k^{2} p^{-}\right)\left(k^{2}+k^{-} p^{+}\right)} \\
C_{\bar{n}} & Q\left(1, \lambda^{2}, \lambda\right) & Q(\lambda, \lambda, \lambda) \\
J_{S C E T_{\text {II }}}^{\mu} & & C(Q)\left(\bar{\xi}_{\bar{n}} \omega_{n}\right)\left(S_{\bar{n}}^{+} S_{n}\right) \gamma^{\mu}\left(\omega_{n}^{+} \xi_{n}\right)
\end{array}
$$

\longrightarrow expect $F\left(Q^{2}, m^{2}\right)=C J_{\bar{n}} J_{n} S$
Add regulator to wilson limes

$$
\begin{align*}
& S_{n}=\sum_{\rho \operatorname{erms}} \exp \left(\frac{-g}{i n \cdot \partial_{s}} \frac{w J^{n / 2}}{\left|2 i \partial_{z}\right|^{n / 2}} n \cdot A_{s}\right) \tag{n}\\
& W_{n}=\sum_{\rho \operatorname{erms}} \exp \left(\frac{-g}{i \bar{n} \cdot \partial_{n}} \frac{w^{2} J^{n}}{\left|\bar{n} \cdot i \partial_{n}\right|^{n}} \bar{n} \cdot A_{n}\right)
\end{align*}
$$ up to power corr for WM

Dinireg like rapidity regulator $\frac{1}{2}$ like $\frac{1}{G}-40-$
leno
$\ln \mu$

$$
\omega^{\text {bock }}=\omega(n, 0) \nu^{n / 2}, \frac{\Delta}{20} \omega(n, 0)=-\frac{n}{2} \omega(n, 0)
$$

ω is book keeping parameter $>$

- Renormalite by $1^{\text {st }} \eta \rightarrow 0$, add $\frac{f(\epsilon)}{\eta}$ counterterm, then $\in \rightarrow 0 \& \frac{1}{\in}$ counterterms

, 解的,

$$
\lg . \int t^{1} k \frac{1}{\left(k^{2}-m^{2}\right)\left(k^{+}\right)\left(k^{-}\right)} \frac{\omega^{2} J^{n}}{|2 k z|^{n}}
$$

$$
\text { Full } S=\frac{\alpha_{s} c_{r} \omega^{2}}{\pi}\left[\frac{-e^{\epsilon \gamma E} \Gamma(\epsilon)\left(\frac{\mu}{m}\right)^{2 \epsilon}}{\eta}+\frac{1}{\epsilon} \ln \left(\frac{\mu}{u}\right)+\frac{1}{2 \epsilon^{2}}+\ln ^{2} \frac{\mu}{m}-2 \ln \frac{v}{m} \ln \frac{\mu}{m}\right.
$$

$\operatorname{Sun}=\frac{\alpha_{s} C_{F}}{\pi}[\underbrace{\frac{1}{2 \epsilon^{2}}}+\frac{1}{\epsilon} \ln \frac{\mu}{Q}+\frac{1}{\epsilon}+\ln ^{2} \frac{\mu}{\mu}+2 \ln \frac{\mu}{\mu} \ln \frac{\mu}{Q}$

$$
\left.+2 \ln \frac{\mu}{m}+\text { constant }\right]
$$

- $\frac{1}{\eta}, \ln D$ concel btern sectors time space
- some overall counterterm Z_{C} as SCETI ($Q^{2} \rightarrow-Q^{2}$ here)
- logs in C_{n} minimized for single $\mu, 0$ choice, \& same for S
$\mu-R G E$ \& $\quad \Delta-R G E$ to sum $\log S$

$$
\begin{aligned}
\mu \frac{d}{d \mu} S= & \gamma_{\mu}^{S} S \\
u d / d \nu & S= \\
& \gamma_{v}^{s} S \\
& e+c .
\end{aligned}
$$

- path independence

$$
\left[\frac{1}{d \ln \mu)} \frac{d}{d \ln v}\right]=0
$$

[$] \quad \gamma_{\mu}^{s}=-z_{s}^{-1} \mu d / d \mu z_{s}=\frac{\alpha_{s}(\mu) c_{f}}{\pi} 2 \ln \frac{\mu}{v}$

$$
\gamma_{\mu}^{n}=-z_{n}^{-1} \mu d / d \mu z_{n}=\frac{\alpha_{s}(\mu) C_{F}}{\pi}\left[\ln \frac{\partial}{\theta}+\frac{3}{4}\right]=\gamma_{\mu}^{\pi}
$$

0

$$
\begin{aligned}
& \gamma_{j}^{s}=-z_{s}^{-1} v d / d \nu z_{s}=-\frac{\alpha_{s}(\mu) C_{F}}{\pi} 2 \ln \frac{\mu}{\mu} \\
& \gamma_{j}^{n}=-z_{n}^{-1} v d / d \nu z_{n}=\frac{\alpha_{s}(\mu) C_{F}}{\pi} \ln \frac{\mu}{\mu}=\gamma_{j}^{\bar{n}} \\
& \gamma_{\mu}^{s}+\gamma_{\mu}^{n}+\gamma_{\mu}^{\bar{n}}=-\gamma_{\mu}>\gamma_{v}^{s}+\gamma_{\nu}^{n}+\gamma_{\nu}^{n}=0
\end{aligned}
$$

since $\left.z_{s}^{-1}\left[\frac{d}{d x \mu}\right) \frac{d}{d g_{\omega}}\right] z_{s}=0 \Rightarrow \mu d / d \mu \gamma_{\nu}^{s}=\nu \frac{d}{d \nu} \gamma_{\mu}^{s} e+c$ which we can check
solutions are evolution kernel $U_{s}, U_{n}, V_{s}, U_{n}$
eg.

$$
\begin{aligned}
& U_{s}^{L L}\left(\mu, \mu_{s} ; v s\right)=\exp \left[-\frac{8 \pi c_{q}}{\beta_{0}^{2}}\left(\frac{1}{\alpha_{s}(r)}-\frac{1}{\alpha_{s}\left(\mu_{s}\right)}-\frac{1}{\alpha_{s}\left(v_{s}\right)} \ln \frac{\alpha_{s}(\mu)}{\alpha_{s}\left(\mu_{s}\right)}\right]\right] \\
& V_{s}^{L L}\left(v, v_{s} ; \mu\right)=\exp \left[\frac{2 c_{F}}{\beta_{0}} \ln \left(\frac{\alpha_{s}(\mu)}{\alpha_{s}(m)}\right) \ln \left(\frac{v^{2}}{v_{s}^{2}}\right)\right]
\end{aligned}
$$

see arxiu: 1202.0814 for further details

Conclusions
SCET prouldes powerful frameworle for analyzing hard scattering σ
\Rightarrow Factorization: universal non-pert. functions universal perturbative functions
\Rightarrow Resummation: large doubled logs via RGE both μ (inv. moss) $\& J$ (rapidity)
\Rightarrow Mandfest Power Counting

$$
\begin{gathered}
y^{(0)} \sim \lambda^{0} \\
y^{(0)}, y^{(2)} \sim \lambda^{2}
\end{gathered}
$$

can also handle multi-scale problems

$$
Q>M_{T} \gg M_{F} \frac{2}{F} / Q \gg Q Q C D
$$

can study power corrections with some methods
\Rightarrow Provides universal description of factorization violation in hard-scattering $\sigma: \mathscr{L}_{G}^{(0)}$
Interestingly the some $\mathscr{L}_{G}^{(0)}$ anediates phenomena in Forward scattering Kinematics $s \gg-t$, small-x
\Rightarrow Fun mathematical structure W_{n}, In
\Rightarrow Multi IR = Mode EFT, prototype for other EFTs with more complicated Kinematics

