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Data Science: A New Scientific Discipline
• What is Data Science?

• How can we create an environment to facilitate data science 
and maximize its impact?

A new paradigm for research and discovery, integrating approaches from computer science, 
statistics, applied mathematics, visualization and communication, and many application 

domains. Data science seeks to extract knowledge and insight from datasets that are often 
large and/or messy. Innovations in the methods for analyzing, visualizing, and 

interpreting data, and collaborating around data with diverse stakeholders, have 
become key to data-intensive discovery in nearly every field.

https://academicdatascience.org/data-science

http://msdse.org/
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Moore Sloan Data Science Environment
How to foster sustainable adoption of data-intensive discovery?

Establish a virtuous cycle: advances in data science methodologies enable 
advances in discovery, which stimulate further advances in methodologies.

2 

experiment intended to transform the process of discovery and the institutional environments in 
which discovery takes place: the Moore-Sloan Data Science Environments (MSDSE) effort. 

When we began this experiment three years ago, our universities, like so many others, were not 
well prepared for the data science revolution. The challenge we faced was to go beyond a small 
number of narrow successes, identifying and tackling a variety of impediments to the broad and 
sustainable adoption of data-intensive discovery. The impediments that we identified at the 
outset of our work are shown in green in the illustration below. Our Data Science Environment 
(DSE) effort seeks to tackle these impediments (in as general a way as possible while 
recognizing the need to accommodate the unique cultures of each of our institutions) and to 
establish an ever-accelerating virtuous cycle in which advances in data science methodologies 
enable advances in discovery, which stimulate further advances in methodologies. 

 

Our collaboration has undertaken the challenge of blazing trails into new methods, new 
software, new partnerships, new organizational forms, and new types of people (plus the 
institutional change required to create new career paths and new reward structures for these 
people). We are pioneering the development of tools and software environments that are 
sustainable, reusable, extensible, and translatable across problem domains. We have started 
new curricula and new degree options for students in data science to empower the next 
generation. We have leveraged institutional commitments and other funding to hire faculty with 
deep expertise in data science methodologies and a domain science so they can help lead the 
way through teaching and discovery as well as to support targeted data science projects in a 
broad range of domains ranging from astronomy and high-energy physics to neuroscience and 
urban science. We have created career paths for professional data scientists who pursue 
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Data Science: A New Scientific Discipline
• Many initiatives and centers, different approaches

• Educational programs at all levels
https://academicdatascience.org/
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Data Science: A New Scientific Discipline
• Research funding

• Accelerated scientific progress and discoveries – just check!
Google Scholar: (data science method) + domain  

“deep learning” physics
“visualization” biology

“data management” urban
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Data Science fueling a Virtuous Cycle

Urbane: A 3D Framework to Support Data Driven

Decision Making in Urban Development
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Figure 1: Urbane provides architects, developers, and planners with a new, data and analysis rich way of reading the city with the goal of

improving decision making in urban development. Users can explore properties of neighborhoods and buildings using the data exploration view

to identify underdeveloped sites for potential development. Then, using the visual interface together with the map view, they can simulate the

impact of such development. For example, the views of the freedom tower (highlighted in green) from the buildings highlighted in red would be

adversely impacted (positively impacted buildings are highlighted in blue) if the new constructions (colored yellow) are built. The supplemental

video shows the different features and visualizations supported by Urbane.

ABSTRACT

Architects working with developers and city planners typically rely
on experience, precedent and data analyzed in isolation when mak-
ing decisions that impact the character of a city. These decisions
are critical in enabling vibrant, sustainable environments but must
also negotiate a range of complex political and social forces. This
requires those shaping the built environment to balance maximiz-
ing the value of a new development with its impact on the character
of a neighborhood. As a result architects are focused on two issues
throughout the decision making process: a) what defines the charac-
ter of a neighborhood? and b) how will a new development change
its neighborhood? In the first, character can be influenced by a
variety of factors and understanding the interplay between diverse
data sets is crucial; including safety, transportation access, school
quality and access to entertainment. In the second, the impact of a
new development is measured, for example, by how it impacts the
view from the buildings that surround it. In this paper, we work
in collaboration with architects to design Urbane, a 3-dimensional

⇤e-mail:nivan.ferreira@nyu.edu
†e-mail:mlage@ic.uff.br
‡e-mail:harishd@nyu.edu
§e-mail:huy.vo@nyu.edu
¶e-mail:{lwilson,hwerner,mpark}@kpf.com
ke-mail:csilva@nyu.edu

multi-resolution framework that enables a data-driven approach for
decision making in the design of new urban development. This is
accomplished by integrating multiple data layers and impact analy-
sis techniques facilitating architects to explore and assess the effect
of these attributes on the character and value of a neighborhood.
Several of these data layers, as well as impact analysis, involve
working in 3-dimensions and operating in real time. Efficient com-
putation and visualization is accomplished through the use of tech-
niques from computer graphics. We demonstrate the effectiveness
of Urbane through a case study of development in Manhattan de-
picting how a data-driven understanding of the value and impact of
speculative buildings can benefit the design-development process
between architects, planners and developers.

Keywords: Urban data analysis; GIS; impact analysis; visual an-
alytics; architecture; city development

1 INTRODUCTION

Why do two neighborhoods feel similar? Or different? Why does
a new building change the quality of a neighborhood and another
doesn’t? While the experience of a city is inherently subjective, the
characteristics that shape the quality of it are not. These characteris-
tics can be difficult to obtain, measure or analyze by those shaping
the future of a city. Architects working with developers and city
planners typically rely on experience, precedent and data analyzed
in isolation when making decisions that impact the character of a
city. These decisions, while being critical in enabling vibrant and
sustainable environments, must also negotiate a range of complex
political and social forces. This requires those shaping the built
environment to balance maximizing the value of new development

Urban analytics
transportation, mobility, 
urban planning, policy 

making
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Data Science fueling a Virtuous Cycle
Urban Rhapsody: Large-scale exploration of urban soundscapes. CGF 2022
SPADE: GPU-Powered Spatial Database Engine for Commodity 
Hardware. IEEE ICDE 2022
A GPU-friendly Geometric Data Model and Algebra for Spatial Queries. ACM 
SIGMOD 2020
A GPU-based index to support interactive spatio-temporal queries over
historical data. IEEE ICDE 2016
Auctus: A Dataset Search Engine for Data Discovery and Augmentation. 
PVLDB 2021
Interactive Visual Exploration of Spatio-Temporal Urban Data Sets using 
Urbane. ACM SIGMOD 2018
Exploring What not to Clean in Urban Data: A Study Using New York City Taxi 
Trips. IEEE DEB 2016
Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal 
Data Sets. ACM SIGMOD 2016
Exploring Traffic Dynamics in Urban Environments Using Vector-Valued 
Functions. CG&A 2015
Using Topological Analysis to Support Event-Guided Exploration in Urban Data. 
IEEE TVCG 2014
Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York 
City Taxi Trips. IEEE YVCG 2013

Spatio-temporal data 
management

Visual Analytics

Machine Learning

Computational Topology

Data Discovery

Data Cleaning
…

Publications

Open-Source systems
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Data-Driven Exploration
• The perfect storm:

Computing is free
Storage is free

Data are abundant
• Challenge: The bottlenecks lie with people

• Complex computational processes are required to extract insight -- hard to 
assemble and require expertise in a wide range of topics and tools

• It is difficult for domain experts to explore data

• Solution: Democratize Data Science!
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Democratizing Data Science
Open-source software

Specialized interactive tools

[Ferreira et al., IEEE VAST 2015;
Doraiswamy et al., ACM SIGMOD 2018] 

Automated Data Science

AutoML

Dziban: Balancing Agency & Automation in Visualization
Design via Anchored Recommendations

Halden Lin Dominik Moritz Jeffrey Heer
University of Washington University of Washington University of Washington

haldenl@cs.washington.edu domoritz@cs.washington.edu jheer@uw.edu

ABSTRACT
Visualization recommender systems attempt to automate de-
sign decisions spanning choices of selected data, transforma-
tions, and visual encodings. However, across invocations such
recommenders may lack the context of prior results, producing
unstable outputs that override earlier design choices. To better
balance automated suggestions with user intent, we contribute
Dziban, a visualization API that supports both ambiguous
specification and a novel anchoring mechanism for convey-
ing desired context. Dziban uses the Draco knowledge base
to automatically complete partial specifications and suggest
appropriate visualizations. In addition, it extends Draco with
chart similarity logic, enabling recommendations that also
remain perceptually similar to a provided “anchor” chart. Ex-
isting APIs for exploratory visualization, such as ggplot2 and
Vega-Lite, require fully specified chart definitions. In con-
trast, Dziban provides a more concise and flexible authoring
experience through automated design, while preserving pre-
dictability and control through anchored recommendations.

Author Keywords
visualization; recommendation; anchoring; language

CCS Concepts
•Human-centered computing →� Visualization systems
and tools; Visualization toolkits; •Software and its engineer-
ing →�Domain specific languages;

INTRODUCTION
Data analysts must balance ease of use with control when
choosing a visualization authoring tool. Visualization rec-
ommender systems [10, 13, 14, 22, 26] have the potential to
provide more effective and efficient exploration of data by
automating decisions over selected data, transformations, and
visual encodings that are normally required from users of full-
specification APIs (application programming interfaces) such
as Vega-Lite [18] and ggplot2 [24]. These full-specification
APIs, in contrast, offer tight control over output visualizations
when recommendation systems may be forced to compromise
in the face of ambiguous user intent (Figure 1). Indeed, many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
http://dx.doi.org/10.1145/3313831.3376880
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Figure 1. Which chart should a recommender suggest? Recommender
systems are often forced to make decisions in the face of ambiguous user
intent. Sometimes, these decisions will hamper exploration.

Figure 2. A series of recommendations by the Draco [14] recommender
system. Inconsistency in channel assignments and marks can be found
between the addition of each new field.

exploratory analysis tools (e.g., Voyager [27, 28], Tableau)
mix the two authoring paradigms to marry agency and automa-
tion [9] and provide a more efficient and amenable visualiza-
tion authoring experience.

The mixture of manual and automated methods is particularly
evident for visualization query refinement, when an analyst
asks follow-on questions (e.g., adding fields to their query) or
modifies a visualization to better answer an existing question
(e.g., changing data transformations). Recommendations re-
sulting from iteration on an ambiguous partial specification
can lack stability or coherence relative to their context (e.g.,
when a user wishes to inspect fields A and B, but has not spec-
ified data transformations or encoding channel assignments,
see Figure 2). In these cases, refinements to the specifica-
tion may produce stark discontinuities among output charts.
This difference can result in a high cognitive cost for people
as they attempt to (1) make sense of the new visualization,
which may possess inconsistent channel assignments, scales,
or other graphical and data properties, and (2) elaborate the
specification in order to match the context of their exploration.

Reliance on design decisions by people as a solution for re-
solving ambiguous intent creates a burden for users of recom-
mendation systems, who may lack expertise or be averse to
the tedium of this process. With respect to efficiency and ap-
proachability, tools built around recommendation systems can
be bottle-necked by this crutch. Voyager [27] is an example
of a tool that attempts a more elegant solution to the visualiza-
tion refinement problem. Voyager allows users to “lock” the
data and encoding properties of a recommended visualization
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Voyager: Exploratory Analysis via Faceted Browsing of
Visualization Recommendations

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer

Fig. 1. Voyager: a recommendation-powered visualization browser. The schema panel (left) lists data variables selectable by users.
The main gallery (right) presents suggested visualizations of different variable subsets and transformations.

Abstract—General visualization tools typically require manual specification of views: analysts must select data variables and then
choose which transformations and visual encodings to apply. These decisions often involve both domain and visualization design
expertise, and may impose a tedious specification process that impedes exploration. In this paper, we seek to complement manual chart
construction with interactive navigation of a gallery of automatically-generated visualizations. We contribute Voyager, a mixed-initiative
system that supports faceted browsing of recommended charts chosen according to statistical and perceptual measures. We describe
Voyager’s architecture, motivating design principles, and methods for generating and interacting with visualization recommendations. In
a study comparing Voyager to a manual visualization specification tool, we find that Voyager facilitates exploration of previously unseen
data and leads to increased data variable coverage. We then distill design implications for visualization tools, in particular the need to
balance rapid exploration and targeted question-answering.

Index Terms—User interfaces, information visualization, exploratory analysis, visualization recommendation, mixed-initiative systems

1 INTRODUCTION

Exploratory visual analysis is highly iterative, involving both open-
ended exploration and targeted question answering [16, 37]. Yet making
visual encoding decisions while exploring unfamiliar data is non-trivial.
Analysts may lack exposure to the shape and structure of their data, or
begin with vague analysis goals. While analysts should typically exam-

• Kanit Wongsuphasawat, Dominik Moritz, Bill Howe, and Jeffrey Heer are
with University of Washington. E-mail:
{kanitw,domoritz,billhowe,jheer}@cs.washington.edu.

• Anushka Anand and Jock Mackinlay are with Tableau Research. E-mail:
{aanand, jmackinlay}@tableau.com.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of publication
xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

ine each variable before investigating relationships between them [28],
in practice they may fail to do so due to premature fixation on specific
questions or the tedium of manual specification.

The primary interaction model of many popular visualization tools
(e.g., [35, 44, 45]) is manual view specification. First, an analyst
must select variables to examine. The analyst then may apply data
transformations, for example binning or aggregation to summarize
the data. Finally, she must design visual encodings for each resulting
variable set. These actions may be expressed via code in a high-level
language [44] or a graphical interface [35]. While existing tools are
well suited to depth-first exploration strategies, the design of tools for
breadth-oriented exploration remains an open problem. Here we focus
on tools to assist breadth-oriented exploration, with the specific goal of
promoting increased coverage of a data set.

To encourage broad exploration, visualization tools might automati-
cally generate a diverse set of visualizations and have the user select

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of 
publication 20 Aug. 2015; date of current version 25 Oct. 2015. 
For information on obtaining reprints of this article, please send 
e-mail to: tvcg@computer.org.
Digital Object Identifier no. 10.1109/TVCG.2015.2467191

Authorized licensed use limited to: New York University. Downloaded on October 25,2022 at 01:18:11 UTC from IEEE Xplore.  Restrictions apply. 
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Open-source software

Specialized interactive tools

[Ferreira et al., IEEE VAST 2015;
Doraiswamy et al., ACM SIGMOD 2018] 

Automated Data Science

AutoML

Dziban: Balancing Agency & Automation in Visualization
Design via Anchored Recommendations
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ABSTRACT
Visualization recommender systems attempt to automate de-
sign decisions spanning choices of selected data, transforma-
tions, and visual encodings. However, across invocations such
recommenders may lack the context of prior results, producing
unstable outputs that override earlier design choices. To better
balance automated suggestions with user intent, we contribute
Dziban, a visualization API that supports both ambiguous
specification and a novel anchoring mechanism for convey-
ing desired context. Dziban uses the Draco knowledge base
to automatically complete partial specifications and suggest
appropriate visualizations. In addition, it extends Draco with
chart similarity logic, enabling recommendations that also
remain perceptually similar to a provided “anchor” chart. Ex-
isting APIs for exploratory visualization, such as ggplot2 and
Vega-Lite, require fully specified chart definitions. In con-
trast, Dziban provides a more concise and flexible authoring
experience through automated design, while preserving pre-
dictability and control through anchored recommendations.

Author Keywords
visualization; recommendation; anchoring; language

CCS Concepts
•Human-centered computing →� Visualization systems
and tools; Visualization toolkits; •Software and its engineer-
ing →�Domain specific languages;

INTRODUCTION
Data analysts must balance ease of use with control when
choosing a visualization authoring tool. Visualization rec-
ommender systems [10, 13, 14, 22, 26] have the potential to
provide more effective and efficient exploration of data by
automating decisions over selected data, transformations, and
visual encodings that are normally required from users of full-
specification APIs (application programming interfaces) such
as Vega-Lite [18] and ggplot2 [24]. These full-specification
APIs, in contrast, offer tight control over output visualizations
when recommendation systems may be forced to compromise
in the face of ambiguous user intent (Figure 1). Indeed, many
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Figure 1. Which chart should a recommender suggest? Recommender
systems are often forced to make decisions in the face of ambiguous user
intent. Sometimes, these decisions will hamper exploration.

Figure 2. A series of recommendations by the Draco [14] recommender
system. Inconsistency in channel assignments and marks can be found
between the addition of each new field.

exploratory analysis tools (e.g., Voyager [27, 28], Tableau)
mix the two authoring paradigms to marry agency and automa-
tion [9] and provide a more efficient and amenable visualiza-
tion authoring experience.

The mixture of manual and automated methods is particularly
evident for visualization query refinement, when an analyst
asks follow-on questions (e.g., adding fields to their query) or
modifies a visualization to better answer an existing question
(e.g., changing data transformations). Recommendations re-
sulting from iteration on an ambiguous partial specification
can lack stability or coherence relative to their context (e.g.,
when a user wishes to inspect fields A and B, but has not spec-
ified data transformations or encoding channel assignments,
see Figure 2). In these cases, refinements to the specifica-
tion may produce stark discontinuities among output charts.
This difference can result in a high cognitive cost for people
as they attempt to (1) make sense of the new visualization,
which may possess inconsistent channel assignments, scales,
or other graphical and data properties, and (2) elaborate the
specification in order to match the context of their exploration.

Reliance on design decisions by people as a solution for re-
solving ambiguous intent creates a burden for users of recom-
mendation systems, who may lack expertise or be averse to
the tedium of this process. With respect to efficiency and ap-
proachability, tools built around recommendation systems can
be bottle-necked by this crutch. Voyager [27] is an example
of a tool that attempts a more elegant solution to the visualiza-
tion refinement problem. Voyager allows users to “lock” the
data and encoding properties of a recommended visualization
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Voyager: Exploratory Analysis via Faceted Browsing of
Visualization Recommendations

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer

Fig. 1. Voyager: a recommendation-powered visualization browser. The schema panel (left) lists data variables selectable by users.
The main gallery (right) presents suggested visualizations of different variable subsets and transformations.

Abstract—General visualization tools typically require manual specification of views: analysts must select data variables and then
choose which transformations and visual encodings to apply. These decisions often involve both domain and visualization design
expertise, and may impose a tedious specification process that impedes exploration. In this paper, we seek to complement manual chart
construction with interactive navigation of a gallery of automatically-generated visualizations. We contribute Voyager, a mixed-initiative
system that supports faceted browsing of recommended charts chosen according to statistical and perceptual measures. We describe
Voyager’s architecture, motivating design principles, and methods for generating and interacting with visualization recommendations. In
a study comparing Voyager to a manual visualization specification tool, we find that Voyager facilitates exploration of previously unseen
data and leads to increased data variable coverage. We then distill design implications for visualization tools, in particular the need to
balance rapid exploration and targeted question-answering.

Index Terms—User interfaces, information visualization, exploratory analysis, visualization recommendation, mixed-initiative systems

1 INTRODUCTION

Exploratory visual analysis is highly iterative, involving both open-
ended exploration and targeted question answering [16, 37]. Yet making
visual encoding decisions while exploring unfamiliar data is non-trivial.
Analysts may lack exposure to the shape and structure of their data, or
begin with vague analysis goals. While analysts should typically exam-
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ine each variable before investigating relationships between them [28],
in practice they may fail to do so due to premature fixation on specific
questions or the tedium of manual specification.

The primary interaction model of many popular visualization tools
(e.g., [35, 44, 45]) is manual view specification. First, an analyst
must select variables to examine. The analyst then may apply data
transformations, for example binning or aggregation to summarize
the data. Finally, she must design visual encodings for each resulting
variable set. These actions may be expressed via code in a high-level
language [44] or a graphical interface [35]. While existing tools are
well suited to depth-first exploration strategies, the design of tools for
breadth-oriented exploration remains an open problem. Here we focus
on tools to assist breadth-oriented exploration, with the specific goal of
promoting increased coverage of a data set.

To encourage broad exploration, visualization tools might automati-
cally generate a diverse set of visualizations and have the user select
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How can Data Science go wrong?
• Exploratory analyses are inherently iterative as one tests and 

formulates hypotheses

• After many steps…
• It is easy to get lost and not remember how a result was derived
• Did I make any mistakes? 
• Were there any problems with the data, code, computational environment?
• Results can be hard to understand, interpret and trust

KnowledgeData Data 
Products

Specification

Computation Perception &
Cognition

[Modified from Van Wijk, Vis 2005]

Exploration
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countries with debt over 90% of their gross domestic 
product (GDP) have a negative growth rate

Human Mistakes



VISUALIZATION
IMAGING AND
DATA ANALYSIS
CENTER

Unexpected Problems: Bugs in Code

• Scripts used a specific library, glob, which returns a different 
sorted order depending on the OS

• It’s not easy to tell this is happening either!

“The scripts [...] were found to return correct 
results on macOS Mavericks and Windows 10. But 

on macOS Mojave and Ubuntu, the results were 
off by nearly a full percent.”

https://arstechnica.com/information-technology/2019/10/chemists-
discover-cross-platform-python-scripts-not-so-cross-platform/
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Unexpected Problems: Software

• The Effects of FreeSurfer Version, Workstation Type, and Macintosh 
Operating System Version on Anatomical Volume and Cortical 
Thickness Measurements. PLOS ONE, June 1, 2012

Significant differences in result of neuro analysis depending on 
version of software, hardware, and operating system
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Unexpected Problems: Data
• Bad or incorrectly used data can lead to incorrect conclusions

 

people complain more about noise pollution on weekends as 
1) they have time to complain and 2) their tolerance to noise 
is lower than on weekdays. Particularly, during the night (0-
5am) when people expect to have quality sleep, their 
tolerance to noise pollution is very low; so, the noise 
pollution indicator is higher than other time slots, as shown 
in the bottom-left part of Figure 18. More specifically, the 
region where Columbia University is located has a heavier 
noise pollution than other areas, while Central Park is 
generally a quieter place.  

 
Figure 18. Overall noise situation in NYC 

Figure 19 shows the noise composition of the five locations 
marked in Figure 18. The noise indicators of the five regions 
is a summation of their own individual noise indicators in 
each hour and on both weekends and weekdays. Columbia 
University and Wall Street have a heavier noise situation 
than other places. The largest noise category in Wall Street 
is Construction while the other four is Loud music/Party.  

 
Figure 19. Noise composition of five well-known places in NYC 

Figure 20 further compares the noise pollution indicator of 
the top six noise categories, changing over time of day, at 
Columbia University and New York University (NYU), 
where we find some similarities and differences. Both 
locations have two spikes in the daytime; the same one is at 
6am. But, the second spike of NYU comes earlier than 
Columbia. The noise pollution caused by Loud Music 

reaches a local peak at 12pm, indicating that the party time 
starts earlier at NYU than Columbia University. Additionally, 
Air condition/ventilation and Jack Hamming in NYU have a 
higher presence than Columbia University. It is quite true 
that quite a few regions around NYU are under construction.    

 
Figure 20. Top six noise categories changing over time 

Figure 21 presents the heat maps of NYC in terms of the 
noise pollution indicator in four different categories, from 
7pm-11pm. Weekends generally have a heavier noise 
pollution of Loud music, while weekdays have more 
Construction noise pollution. Specifically, the strip region 
marked in the first column is Riverbank State Park, where 
many people entertain themselves with loud music on 
weekends. On the contrary, as illustrated in the second 
column, the region where Columbia University is located has 
less Loud talking noise pollution on weekends, as many 
students may be off the campus. Yankee Stadium, marked in 
the third column, has a heavier vehicle noise on weekends, 
because many people drive there to watch baseball games.  

 
Figure 21. Noise situation of specific categories in NYC. 

Figure 22 compares the heat maps built based on 311 data 
and our inference values, illustrating the value of our model. 
Without recovering the noises of missing locations, we can 
barely see vehicle noises from 6am-6pm on weekends. After 
the inference, we find that the regions close to bridges 
(marked by the dotted circles) are suffering from vehicle 
noises. According to our experiences visiting these places, 
the vehicles passing by the bridges are quite noisy. Likewise, 
without using our model, we cannot find loud talking to be a 
problem at Times Square and Columbia University either. 
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SESSION: SENSING THE CROWD

Using 311 complaints as 
a proxy noise sensor [Zheng et 
al., 2014]

But there are fewer noise 
complaints in areas with a 
higher percentage of 
residents that belong to 
minorities [Minkoff, 2015]
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Do ImageNet Classifiers Generalize to ImageNet?
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Abstract
We build new test sets for the CIFAR-10 and Ima-
geNet datasets. Both benchmarks have been the
focus of intense research for almost a decade, rais-
ing the danger of overfitting to excessively re-used
test sets. By closely following the original dataset
creation processes, we test to what extent current
classification models generalize to new data. We
evaluate a broad range of models and find accu-
racy drops of 3% – 15% on CIFAR-10 and 11%
– 14% on ImageNet. However, accuracy gains
on the original test sets translate to larger gains
on the new test sets. Our results suggest that the
accuracy drops are not caused by adaptivity, but
by the models’ inability to generalize to slightly
“harder” images than those found in the original
test sets.

1. Introduction

The overarching goal of machine learning is to produce
models that generalize. We usually quantify generalization
by measuring the performance of a model on a held-out
test set. What does good performance on the test set then
imply? At the very least, one would hope that the model also
performs well on a new test set assembled from the same
data source by following the same data cleaning protocol.

In this paper, we realize this thought experiment by repli-
cating the dataset creation process for two prominent
benchmarks, CIFAR-10 and ImageNet (Deng et al., 2009;
Krizhevsky, 2009). In contrast to the ideal outcome, we find
that a wide range of classification models fail to reach their
original accuracy scores. The accuracy drops range from
3% to 15% on CIFAR-10 and 11% to 14% on ImageNet.
On ImageNet, the accuracy loss amounts to approximately
five years of progress in a highly active period of machine
learning research.

∗Authors ordered alphabetically. Ben did none of the work.
1Department of Computer Science, University of California Berke-
ley, Berkeley, California, USA. Correspondence to: Benjamin
Recht <brecht@berkeley.edu>.
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Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Conventional wisdom suggests that such drops arise because
the models have been adapted to the specific images in the
original test sets, e.g., via extensive hyperparameter tuning.
However, our experiments show that the relative order of
models is almost exactly preserved on our new test sets:
the models with highest accuracy on the original test sets
are still the models with highest accuracy on the new test
sets. Moreover, there are no diminishing returns in accuracy.
In fact, every percentage point of accuracy improvement
on the original test set translates to a larger improvement
on our new test sets. So although later models could have
been adapted more to the test set, they see smaller drops in
accuracy. These results provide evidence that exhaustive
test set evaluations are an effective way to improve image
classification models. Adaptivity is therefore an unlikely
explanation for the accuracy drops.

Instead, we propose an alternative explanation based on
the relative difficulty of the original and new test sets. We
demonstrate that it is possible to recover the original Im-
ageNet accuracies almost exactly if we only include the
easiest images from our candidate pool. This suggests that
the accuracy scores of even the best image classifiers are
still highly sensitive to minutiae of the data cleaning process.
This brittleness puts claims about human-level performance
into context (He et al., 2015; Karpathy, 2011; Russakovsky
et al., 2015). It also shows that current classifiers still do
not generalize reliably even in the benign environment of a
carefully controlled reproducibility experiment.

Figure 1 shows the main result of our experiment. Before
we describe our methodology in Section 3, the next section
provides relevant background. To enable future research, we
release both our new test sets and the corresponding code.1

2. Potential Causes of Accuracy Drops

We adopt the standard classification setup and posit the
existence of a “true” underlying data distribution D over
labeled examples (x, y). The overall goal in classification

1https://github.com/modestyachts/CIFAR-10
.1 and https://github.com/modestyachts/ImageN
etV2

Do ImageNet Classifiers Generalize to ImageNet?

CIFAR-10

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1

16 wide_resnet_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2
23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1
27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0
30 cudaconvnet 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11.0 30 0
31 random_features_256k_aug 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0

ImageNet Top-1

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2
4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3

21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0
23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1
30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0
43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1
64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0
65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0

Table 1. Model accuracies on the original CIFAR-10 test set, the original ImageNet validation set, and our new test sets. ∆ Rank is the

relative difference in the ranking from the original test set to the new test set in the full ordering of all models (see Appendices C.3.3 and

D.4.4). For example, ∆Rank = −2 means that a model dropped by two places on the new test set compared to the original test set. The

confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints, references for the models can be found in Appendices

C.3.2 and D.4.3.

two main trends and discuss the results further in Section 5.

A Significant Drop in Accuracy. All models see a large
drop in accuracy from the original test sets to our new test
sets. For widely used architectures such as VGG (Simonyan
and Zisserman, 2014) and ResNet (He et al., 2016a), the
drop is 8% on CIFAR-10 and 11% on ImageNet. On CIFAR-
10, the state of the art (Cubuk et al., 2018) is more robust
and only drops by 3% from 98.4% to 95.5%. In contrast,
the best model on ImageNet (Liu et al., 2018) sees an 11%
drop from 83% to 72% in top-1 accuracy and a 6% drop
from 96% to 90% in top-5 accuracy. So the top-1 drop on
ImageNet is larger than what we observed on CIFAR-10.

To put these accuracy numbers into perspective, we note that
the best model in the ILSVRC6 2013 competition achieved
89% top-5 accuracy, and the best model from ILSVRC
2014 achieved 93% top-5 accuracy. So the 6% drop in
top-5 accuracy from the 2018 state-of-the-art corresponds
to approximately five years of progress in a very active
period of machine learning research.

6ILSVRC is the ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015).

Few Changes in the Relative Order. When sorting the
models in order of their original and new accuracy, there
are few changes in the respective rankings. Models with
comparable original accuracy tend to see a similar decrease
in performance. In fact, Figure 1 shows that the original ac-
curacy is highly predictive of the new accuracy and that the
relationship can be summarized well with a linear function.
On CIFAR-10, the new accuracy of a model is approxi-
mately given by the following formula:

accnew = 1.69 · accorig − 72.7% .

On ImageNet, the top-1 accuracy of a model is given by

accnew = 1.11 · accorig − 20.2% .

Computing a 95% confidence interval from 100,000
bootstrap samples gives [1.63, 1.76] for the slope and
[−78.6,−67.5] for the offset on CIFAR-10, and [1.07, 1.19]
and [−26.0,−17.8] respectively for ImageNet.

On both datasets, the slope of the linear fit is greater than 1.
So models with higher original accuracy see a smaller drop
on the new test sets. In other words, model robustness
improves with increasing accuracy. This effect is less pro-
nounced on ImageNet (slope 1.1) than on CIFAR-10 (slope
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two main trends and discuss the results further in Section 5.

A Significant Drop in Accuracy. All models see a large
drop in accuracy from the original test sets to our new test
sets. For widely used architectures such as VGG (Simonyan
and Zisserman, 2014) and ResNet (He et al., 2016a), the
drop is 8% on CIFAR-10 and 11% on ImageNet. On CIFAR-
10, the state of the art (Cubuk et al., 2018) is more robust
and only drops by 3% from 98.4% to 95.5%. In contrast,
the best model on ImageNet (Liu et al., 2018) sees an 11%
drop from 83% to 72% in top-1 accuracy and a 6% drop
from 96% to 90% in top-5 accuracy. So the top-1 drop on
ImageNet is larger than what we observed on CIFAR-10.

To put these accuracy numbers into perspective, we note that
the best model in the ILSVRC6 2013 competition achieved
89% top-5 accuracy, and the best model from ILSVRC
2014 achieved 93% top-5 accuracy. So the 6% drop in
top-5 accuracy from the 2018 state-of-the-art corresponds
to approximately five years of progress in a very active
period of machine learning research.

6ILSVRC is the ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015).

Few Changes in the Relative Order. When sorting the
models in order of their original and new accuracy, there
are few changes in the respective rankings. Models with
comparable original accuracy tend to see a similar decrease
in performance. In fact, Figure 1 shows that the original ac-
curacy is highly predictive of the new accuracy and that the
relationship can be summarized well with a linear function.
On CIFAR-10, the new accuracy of a model is approxi-
mately given by the following formula:

accnew = 1.69 · accorig − 72.7% .

On ImageNet, the top-1 accuracy of a model is given by

accnew = 1.11 · accorig − 20.2% .

Computing a 95% confidence interval from 100,000
bootstrap samples gives [1.63, 1.76] for the slope and
[−78.6,−67.5] for the offset on CIFAR-10, and [1.07, 1.19]
and [−26.0,−17.8] respectively for ImageNet.

On both datasets, the slope of the linear fit is greater than 1.
So models with higher original accuracy see a smaller drop
on the new test sets. In other words, model robustness
improves with increasing accuracy. This effect is less pro-
nounced on ImageNet (slope 1.1) than on CIFAR-10 (slope

Built new test sets for the CIFAR-10 and 
ImageNet datasets widely in machine 
learning research
Assessed  to what extent classification 
models generalize to new data
Observed significance accuracy drops: 3% 
– 15% on CIFAR-10 and 11% – 14% on 
ImageNet
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Data Science needs Robustness

When a computational result becomes the basis of 
policy or may impact human well-being, reliability 

becomes more than an academic question and has 
real consequences
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Democratizing Trust and Robustness
• We should learn from science and the scientific method –

build trust through replication studies and uncertainty 
quantification
Repeated findings of consistent results tend to confirm the 

veracity of an original scientific conclusion, and, by the same 
token, repeated failures to confirm raise doubts

• Need systematic debugging and testing for data and 
computations, and explanations for results

• Some initial steps: explainable AI

• Need to explain general computations 
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Democratizing Trust and Robustness

Data
Collection

Data
Preparation

Data
Analysis

Simulation

Telescope site HPC France/LBNL BIDS

Is the feature in the image a 
discovery or a bug?
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Democratizing Trust and Robustness

Data
Collection

Data
Preparation

Data
Analysis

Simulation

Telescope site HPC France/LBNL BIDS

Hardware

Operating 
System

Libraries

Programming
Languages

Code/Scripts/WorkflowsData

Many dependencies – it is
difficult to identify the root 

cause

But we can experiment –
formulate and test 

hypotheses
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Provenance and Reproducibility
• Provenance and reproducibility are necessary to verify and 

build trust in results and to debug data science pipelines

• Opportunity: Machine-assisted debugging through the the
automation of replication studies [Lourenço et al., ACM SIGMOD 2021]

• Vary/perturb data, 
• Explore parameter spaces, 
• Compare different methods, 
• Run experiment on different operating systems
• Test domain specific constraints to flag potential problems 
• …
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Call to Action
• Let’s do reproducible research

Need investment in infrastructure
to support reproducibility

My dream: reproducibility as a standard feature of 
computational tools and environments

• Let’s democratize trust and robustness for data science
• Many new and challenging research problems!

https://sites.nationalacademies.org/sites/reproducibility-in-science
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