Let's make Data Science more like Science

Juliana Freire Visualization, Imaging and Data Analysis Center (VIDA) Computer Science & Engineering Center for Data Science (CDS)

Data Science: A New Scientific Discipline

• What is Data Science?

A new paradigm for research and discovery, integrating approaches from computer science, statistics, applied mathematics, visualization and communication, and many application domains. Data science seeks to extract knowledge and insight from datasets that are often large and/or messy. Innovations in the **methods for analyzing, visualizing, and interpreting data, and collaborating around data with diverse stakeholders**, have become key to data-intensive discovery in nearly every field. https://academicdatascience.org/data-science

• How can we create an environment to facilitate data science and maximize its impact?

Moore Sloan Data Science Environment

How to foster sustainable adoption of data-intensive discovery? Establish a virtuous cycle: advances in data science methodologies enable advances in discovery, which stimulate further advances in methodologies.

VISUALIZATION IMAGING AND DATA ANALYSIS CENTER

Data Science: A New Scientific Discipline

• Many initiatives and centers, different approaches

https://academicdatascience.org/

• Educational programs at all levels

Data Science: A New Scientific Discipline

Resear	ch fu	nding	J					
National Science WHERE DISCOV	e Foundation FRIES BEGIN			Search	Contact Help P			
Research Areas	Funding	Awards	Document Library	News	About NSF			
Home					Semail 🔒 Print 🎓 Share			
Harnessing the Da	ta Revolution	ı (HDR) at NS	SF					
What is HDR? NSF's <u>Harnessing the Data Revolution</u>	n (HDR) Big Idea is a natio	onal-scale a	National Institu	ites of Health				Q
frontiers of science and engineering. realized through an interrelated set of In 2019, the HDR Big Idea launched	HDR, a NSF-wide activity, f efforts in foundations of d three parallel efforts (tracks	is generating lata science; s) in pursuit	Office of Data Scie	ence Strategy				🖾 in f 💙
HDR: Transdisciplinary Rese statistics, and theoretical comp	arch In Principles Of Dat uter science communities	ta Science F to develop tl H	ome St	rategic Plan	Resources	Research Funding	News & Events	About
 HDR: Data science corps (D practical experiences, teaches HDR: Institutes for Data-Inter discovery and innovation in mu 	new skills, and offers learn nsive Research in Science Iltiple areas of data-intensiv	ce and Engi ve science a Pu	- 19 blic health information fro	om CDC • <u>Resear</u>	<u>ch information from NIH</u> E	spañol • NIH staff guidance on coronav	irus (NIH Only)	
		• NI	H and other federal agenc	ies have made COV	D-19 data available through	several Open-Access Data and Computatio	nal Resources	

Accelerated scientific progress and discoveries – just check!

Google Scholar: (data science method) + domain

"deep learning" physics

"visualization" biology

"data management" urban

Data Science fueling a Virtuous Cycle

Data Science fueling a Virtuous Cycle

	Publications Urban Rhapsody: Large-scale exploration of urban soundscapes. CGF 2022
Spatio-temporal data management	 SPADE: GPU-Powered Spatial Database Engine for Commodity Hardware. IEEE ICDE 2022 A GPU-friendly Geometric Data Model and Algebra for Spatial Queries. ACM SIGMOD 2020 A GPU-based index to support interactive spatio-temporal queries over
Visual Analytics	historical data. IEEE ICDE 2016 Auctus: A Dataset Search Engine for Data Discovery and Augmentation. PVLDB 2021
Machine Learning	Interactive Visual Exploration of Spatio-Temporal Urban Data Sets using Urbane. ACM SIGMOD 2018
Computational Topology	Trips. IEEE DEB 2016 Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets. ACM SIGMOD 2016
Data Discovery	Exploring Traffic Dynamics in Urban Environments Using Vector-Valued Functions. CG&A 2015
Data Cleaning	Using Topological Analysis to Support Event-Guided Exploration in Urban Data. IEEE TVCG 2014 Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips. IEEE YVCG 2013

Data-Driven Exploration

• The perfect storm:

Computing is free Storage is free Data are abundant

- Challenge: The bottlenecks lie with people
 - Complex computational processes are required to extract insight -- hard to assemble and require expertise in a wide range of topics and tools
 - It is difficult for domain experts to explore data
- Solution: Democratize Data Science!

Democratizing Data Science

Automated Data Science

AutoML

Specialized interactive tools

[Ferreira et al., IEEE VAST 2015; Doraiswamy et al., ACM SIGMOD 2018]

Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations

Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Hee

Recommender Systems for Visualization

s in the face of am

CHI 2020, April 25-30, 2020, Honolulu, HI, USA

Jeffrey Heer

University of Washington

iheer@uw.edu

Design via Anchored Recommendations

Dominik Moritz

University of Washington

domoritz@cs.washington.edu

Halden Lin

University of Washington

haldenl@cs.washington.edu

VISUALIZATION **IMAGING AND** DATA ANALYSIS

Democratizing Data Science

unstable outputs that override earlier design choices. To better balance automated suggestions with user intent, we contribute Dziban, a visualization API that supports both ambiguous

re often forced to make decisions in the face of ambi

Recommender Systems for Visualization

Data Voyager		R Dostmania (2) D Lindo C Rest
DATA Cars 🚦	Showing Data Veriations for Re: Cylinders # AUTO Homepower)	
🛛 • Her Cylinders 🛛 0	Mer Cylinders # Honepower	Ner Cylindess # HEAN (Homepower)
An Name O		
- Ni Ospa 0	3-	3-
II • Ø AUTO (Next) 0	e 4	e **
🛛 🖌 🕸 AUTO (Accolutation) 👘 0	§ s- 11	5-
# AUTO (Deplecement) 0	8.	8 o.
V # AUTO Heresover 0	a	0-
= # AUTO (Mesper Galor) 0	0 50 100 150 200	0 de 10 150 200
II • # AUTO (Weptinite) 0	Horsepower	MEANIForesopyer()
# COUNT 0		
# Treat	Showing Data Variations for two Cylinders (θ -AUTO (Homspower) with one additional field.	

VISUALIZATION IMAGING AND

How can Data Science go wrong?

• Exploratory analyses are inherently iterative as one tests and formulates hypotheses

- After many steps...
 - It is easy to get lost and not remember how a result was derived
 - Did I make any mistakes?
 - Were there any problems with the data, code, computational environment?
 - Results can be hard to understand, interpret and trust

Human Mistakes

American Economic Review: Papers & Proceedings 100 (May 2010): 573-578 http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

recent global financial maelstrom, especially in

	[\diamond	B	С		J	K	L	M
	[2				Real GD	P growth		
Growth in a Time of Debt		3			Debt/GDP				
Glowarina		4	Country	Coverage	30 or less	30 to 60	60 to 90	90 or above	30 or less 1
		26			3.7	3.0	3.5	1.7	5.5
By Carmen M. Reinhart A	ND KENNETH S. ROGOFF*	27	Minimum		1.6	0.3	1.3	-1.8	0.8
		28	Maximum		5.4	4.9	10.2	3.6	13.3
		29							
In this paper, we exploit a new multi-country	especially against the back	30	US	1946-2009	n.a.	3.4	3.3	-2.0	n.a.
historical dataset on public (government) debt to	ulations and rising social i	31	UK	1946-2009	n.a.	2.4	2.5	2.4	n.a.
search for a systemic relationship between high	sharply elevated public deb	32	Sweden	1946-2009	3.6	2.9	2.7	n.a.	6.3
public debt levels, growth and inflation. ¹ Our	ageable policy challenge?	33	Spain	1946-2009	1.5	3.4	4.2	n.a.	9.9
main result is that whereas the link between	Our approach here is c	34	Portugal	1952-2009	4.8	2.5	0.3	n.a.	7.9
growth and debt seems relatively weak at "nor-	taking advantage of a bi	35	New Zealand	1948-2009	2.5	2.9	3.9	-7.9	2.6
mal" debt levels, median growth rates for coun-	dataset on public debt (in	36	Netherlands	1956-2009	4.1	2.7	1.1	n.a.	6.4
tries with public debt over roughly 90 percent	government debt) first pres	37	Norway	1947-2009	3.4	5.1	n.a.	n.a.	5.4
of GDP are about one percent lower than other-	Reinhart and Kenneth S. R	38	Japan	1946-2009	7.0	4.0	1.0	0.7	7.0
wise: average (mean) growth rates are several	Prior to this dataset, it was	39	Italy	1951-2009	5.4	2.1	1.8	1.0	5.6
percent lower. Surprisingly, the relationship	to get more than two or th	40	Ireland	1948-2009	4.4	4.5	4.0	2.4	2.9
between public debt and growth is remarkably	lic debt data even for many	41	Greece	1970-2009	4.0	0.3	2.7	2.9	13.3
similar across emerging markets and advanced	virtually impossible for mo	42	Germany	1946-2009	3.9	0.9	n.a.	n.a.	3.2
economies. This is not the case for inflation. We	Our results incorporate da	43	France	1949-2009	4.9	2.7	3.0	n.a.	5.2
find no systematic relationship between high	spanning about 200 years.	44	Finland	1946-2009	3.8	2.4	5.5	n.a.	7.0
debt levels and inflation for advanced econo-	data incorporate over 3 700	45	Denmark	1950-2009	3.5	1.7	2.4	n.a.	5.6
mies as a group (albeit with individual country	covering a wide range of po	46	Canada	1951-2009	1.9	3.6	4.1	n.a.	2.2
exceptions including the United States) By con-	tutions exchange rate and	47	Belgium	1947-2009	n.a.	4.2	3.1	2.6	n.a.
trast in emerging market countries high public	ments and historic circums	48	Austria	1948-2009	5.2	3.3	-3.8	n.a.	5.7
debt levels coincide with higher inflation	We also employ more rec	49	Australia	1951-2009	3.2	4.9	4.0	n.a.	5.9
Our tonic would seem to be a timely one	debt including debt owed h	50							
Public debt has been soaring in the wake of the	and by private entities For	51			4.1	2.8	2.8	=AVERAGI	(L30:L44)

we find that there exists a significantly more

the epicenter countries. countries with debt over 90% of their gross domestic prising, given the expe product (GDP) have a negative growth rate **1AT**

SUALIZATION AGING AND **ATA ANALYSIS ENTER**

Unexpected Problems: Bugs in Code

CUT OF SORTS – Researchers find bug in Python script may have affected hundreds of studies Mttps://arstechnica.com/information-technology/2019/10/chemistsdiscover-cross-platform-python-scripts-not-so-cross-platform/ "The scripts [...] were found to return correct results on macOS Mavericks and Windows 10. But on macOS Mojave and Ubuntu, the results were

off by nearly a full percent."

- Scripts used a specific library, *glob*, which returns a different sorted order depending on the OS
- It's not easy to tell this is happening either!

Unexpected Problems: Software

 The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLOS ONE, June 1, 2012

Significant differences in result of neuro analysis depending on version of software, hardware, and operating system

Unexpected Problems: Data

• Bad or incorrectly used data can

But there are fewer noise
 complaints in areas with a
 higher percentage of
 residents that belong to
 minorities [Minkoff, 2015]
 Loud Music/Party Loud Talking Vehicle Construction

23.0

Weekdays

Lack of Robustness

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht^{* 1} Rebecca Roelofs¹ Ludwig Schmidt¹ Vaishaal Shankar¹

Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.

		CIFAR-10					
Orig.					New		
Rank	Model	Orig. Accuracy	New Accuracy	Gap	Rank	Δ Rank	
1	autoaug_pyramid_net_tf	98.4 [98.1, 98.6]	95.5 [94.5, 96.4]	2.9	1	0	
6	shake_shake_64d_cutout	97.1 [96.8, 97.4]	93.0 [91.8, 94.1]	4.1	5	1	
16	wide_resnet_28_10	95.9 [95.5, 96.3]	89.7 [88.3, 91.0]	6.2	14	2	
23	resnet_basic_110	93.5 [93.0, 93.9]	85.2 [83.5, 86.7]	8.3	24	-1	
27	vgg_15_BN_64	93.0 [92.5, 93.5]	84.9 [83.2, 86.4]	8.1	27	0	
30	cudaconvnet	88.5 [87.9, 89.2]	77.5 [75.7, 79.3]	11.0	30	0	
31	random_features_256k_auc	85.6 [84.9, 86.3]	73.1 [71.1, 75.1]	12.5	31	0	
ImageNet Top-1							
		ImageNet Top-1					
Orig.		ImageNet Top-1			New		
Orig. Rank	Model	ImageNet Top-1 Orig. Accuracy	New Accuracy	Gap	New Rank	Δ Rank	
Orig. Rank	Model pnasnet_large_tf	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2]	New Accuracy 72.2 [71.3, 73.1]	Gap 10.7	New Rank 3	Δ Rank	
Orig. Rank 1 4	Model pnasnet_large_tf nasnetalarge	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2] 82.5 [82.2, 82.8]	New Accuracy 72.2 [71.3, 73.1] 72.2 [71.3, 73.1]	Gap 10.7 10.3	New Rank 3 1	Δ Rank -2 3	
Orig. Rank 1 4 21	Model pnasnet_large_tf nasnetalarge resnet152	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2] 82.5 [82.2, 82.8] 78.3 [77.9, 78.7]	New Accuracy 72.2 [71.3, 73.1] 72.2 [71.3, 73.1] 67.0 [66.1, 67.9]	Gap 10.7 10.3 11.3	New Rank 3 1 21	Δ Rank -2 3 0	
Orig. Rank 1 4 21 23	Model pnasnet_large_tf nasnetalarge resnet152 inception_v3_tf	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2] 82.5 [82.2, 82.8] 78.3 [77.9, 78.7] 78.0 [77.6, 78.3]	New Accuracy 72.2 [71.3, 73.1] 72.2 [71.3, 73.1] 67.0 [66.1, 67.9] 66.1 [65.1, 67.0]	Gap 10.7 10.3 11.3 11.9	New Rank 3 1 21 24	Δ Rank -2 3 0 -1	
Orig. Rank 1 4 21 23 30	Model pnasnet_large_tf nasnetalarge resnet152 inception_v3_tf densenet161	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2] 82.5 [82.2, 82.8] 78.3 [77.9, 78.7] 78.0 [77.6, 78.3] 77.1 [76.8, 77.5]	New Accuracy 72.2 [71.3, 73.1] 72.2 [71.3, 73.1] 67.0 [66.1, 67.9] 66.1 [65.1, 67.0] 65.3 [64.4, 66.2]	Gap 10.7 10.3 11.3 11.9 11.8	New Rank 3 1 21 24 30	Δ Rank -2 3 0 -1 0	
Orig. Rank 1 4 21 23 30 43	Model pnasnet_large_tf nasnetalarge resnet152 inception_v3_tf densenet161 vgg19_bn	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2] 82.5 [82.2, 82.8] 78.3 [77.9, 78.7] 78.0 [77.6, 78.3] 77.1 [76.8, 77.5] 74.2 [73.8, 74.6]	New Accuracy 72.2 [71.3, 73.1] 72.2 [71.3, 73.1] 67.0 [66.1, 67.9] 66.1 [65.1, 67.0] 65.3 [64.4, 66.2] 61.9 [60.9, 62.8]	Gap 10.7 10.3 11.3 11.9 11.8 12.3	New Rank 3 1 21 24 30 44	$\begin{array}{r} \Delta \text{ Rank} \\ -2 \\ 3 \\ 0 \\ -1 \\ 0 \\ -1 \end{array}$	
Orig. Rank 1 4 21 23 30 43 64	Model pnasnet_large_tf nasnetalarge resnet152 inception_v3_tf densenet161 vgg19_bn alexnet	ImageNet Top-1 Orig. Accuracy 82.9 [82.5, 83.2] 82.5 [82.2, 82.8] 78.3 [77.9, 78.7] 78.0 [77.6, 78.3] 77.1 [76.8, 77.5] 74.2 [73.8, 74.6] 56.5 [56.1, 57.0]	New Accuracy 72.2 [71.3, 73.1] 72.2 [71.3, 73.1] 67.0 [66.1, 67.9] 66.1 [65.1, 67.0] 65.3 [64.4, 66.2] 61.9 [60.9, 62.8] 44.0 [43.0, 45.0]	Gap 10.7 10.3 11.3 11.9 11.8 12.3 12.5	New Rank 3 1 21 24 30 44 64	$\Delta Rank$ -2 3 0 -1 0 -1 0	

Table 1. Model accuracies on the original CIFAR-10 test set, the original ImageNet validation set, and our new test sets. Δ Rank is the relative difference in the ranking from the original test set to the new test set in the full ordering of all models (see Appendices C.3.3 and D.4.4). For example, Δ Rank = -2 means that a model dropped by two places on the new test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson intervals. Due to space constraints, references for the models can be found in Appendices C.3.2 and D.4.3.

Lack of Robustness

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht^{* 1} Rebecca Roelofs¹ Ludwig Schmidt¹ Vaishaal Shankar¹

Abstract

CIFAR-10

focus of intense ing the danger of test sets. By cloa creation process classification m evaluate a broad racy drops of 3' - 14% on Imag on the original on the new test accuracy drops by the models' "harder" images

test sets.

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the Orig. New **t**ank Built new test sets for the CIFAR-10 and ImageNet datasets widely in machine learning research Assessed to what extent classification ₹ank models generalize to new data Observed significance accuracy drops: 3% - 15% on CIFAR-10 and 11% - 14% on Δ Rank is the lices C 3 3 and al test set. The ImageNet in Appendices

0

1

2

-1

0

0

0

-2

-1 0 0 When a computational result becomes the basis of policy or may impact human well-being, reliability becomes more than an academic question and has real consequences

Democratizing Trust and Robustness

 We should learn from science and the scientific method – build trust through replication studies and uncertainty quantification

Repeated findings of consistent results tend to confirm the veracity of an original scientific conclusion, and, by the same token, repeated failures to confirm raise doubts

- Need systematic debugging and testing for data and computations, and explanations for results
 - Some initial steps: explainable Al
- Need to explain *general* computations

Democratizing Trust and Robustness

Is the *feature* in the image a discovery or a bug?

Democratizing Trust and Robustness

Provenance and Reproducibility

- Provenance and reproducibility are necessary to verify and build trust in results and to debug data science pipelines
- Opportunity: Machine-assisted debugging through the the automation of replication studies [Lourenço et al., ACM SIGMOD 2021]
 - Vary/perturb data,
 - Explore parameter spaces,
 - Compare different methods,
 - Run experiment on different operating systems
 - Test domain specific constraints to flag potential problems
 - ...

Call to Action

Let's do reproducible research
 Need investment in infrastructure
 to support reproducibility

https://sites.nationalacademies.org/sites/reproducibility-in-science

My dream: reproducibility as a standard feature of computational tools and environments

- Let's democratize trust and robustness for data science
 - Many new and challenging research problems!

Acknowledgments

با تشكر 謝謝 고맙습니다 Merci Thank you Obrigada благодаря **Kiitos** धन्यवाद Tack Danke Ευχαριστω Y NYU TANDON SCHOOL Bedankt

