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What i1s Responsible Computing?

Common thread:

Failure to engineer for the whole use case

true
while (syster-is-evelwng):

» Understand how data-driven systems operate in context

* How they affect people

» Formulate intermediate goals
that align with final use

» Develop technical tools
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Privacy in Statistical Databases
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Goal: Rigorous foundations and analysis



This talk

(®* Why is privacy challenging? ?

» Memorization in machine learning
[Brown, Bun, Feldman, S., Talwar 2021]

* Differential Privacy = [Dwork, McSherry, Nissim, S., 2006]
» “Privacy” as stability to small changes
» Widely studied and deployed



First attempt: Remove obvious identifiers

Everything is an identifier

Images: whitehouse.gov, genesandhealth.org, medium.com
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Is the problem granularity?

What if we only release aggregate information!?

Statistics together may encode data
* Example: Average salary before/after resignation

* More generally:

Too many, “too accurate” statistics
reveal individual information
» Reconstruction attacks [Dinur Nissim 2003, ...]
» Membership attacks [Homer et al, 2008, ...]
» Memorization [this talk]

Cannot release everything
everyone would want to know




Memorization can be explicit...
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... but commonly an unintended side effect
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Memorization = fitting or interpolation

Data Labels

Prior work: storing
the labels you've
seen
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Christopher Bishop, “Pattern Recognition and Machine Learning,” 2006
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Our work: memorizing
examples



Memorization Can be Necessary

[Brown, Bun, Feldman, S, Talwar STOC 21]
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“Theorem”: There is a natural learning problem for which
every data set X has a subset of rows S € X such that

e Sis “big”: |S| = n/10 with high probability
* Every learning algorithm with low error memorizes most of S

> If learning algorithm has error OPT + (small), then
I(S;M|P) =>d - |S|: (1 —small).



Understanding good generalization

Common explanations for large models

|. Expressivity
2. Optimization is easier

3. Implicit regularization leads to good generalization

Our results suggest an additional factor:

4. Large models store information whose usefulness isn’t
yet “understood”
» Small subpopulations

» Adapting to new domains



This talk

* Why is privacy challenging?

» Memorization in machine learning
[Brown, Bun, Feldman, S., Talwar 2021]

@fferenrtial Privacy ¢ [Dwork, McSherry, Nissim, S., 2006]
“Privacy” as stablility to small changes

» Widely studied and deployed




Differential Privacy [Dwork, McSherry, Nissim, S., 2006]

* Many current deployments

Apple

Google

® Burgeoning field of research
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: Crypto, Statistics, =~ Game theory,  Databases, Law,
Algorithms . : : : :
security learning economics programming policy
languages



Differential Privacy [Dwork, McSherry, Nissim, S., 2006]
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* A thought experiment

» Change one person’s data (or add or remove them)
For any set of

outcomes, about
the same

.." probability in
both worlds

» Will the distribution of outputs change much?




Research on differential privacy

* Definitions
» Pinning down “privacy”
* Algorithms: what can we compute privately?
» Fundamental techniques
» Specific applications
* Attacks: “Cryptanalysis” for data privacy
» Impossibility results
* Implications for other areas

» Interactive machine learning and statistical analysis




Frontier: Deep Learning with DP
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Example: https://github.com/tensorflow/privacy 7



Frontier: Deep Learning with DP
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Revealed now, but

should be hidden

» Constraints complicate
interpretation

* Computational advances
» How best to leverage huge advances in optimization?

» (Often privacy requires convergence)
* Tighter analysis of privacy (and other) properties

* General-purpose algorithms



What are we missing?

* Technical principles for personal ownership of personal
data

> What does it mean to control use?

* Whom do privacy technologies empower?
> Big tech!?
* Painless processes for tech-policy dialogue

> (I don’t want to read your court opinions, and
you don’t want to read my papers.)



