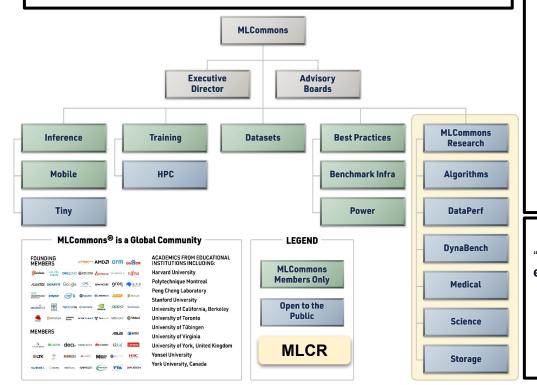
Big Data Computing as envisaged by DALL-E and Disco-Diffusion


Geoffrey Fox, Professor of Computer Science, School of Engineering and Applied Science, Biocomplexity Institute, University of Virginia

MLCommons Research Community

MLCR is MLCommons Research led by Janapa Reddi

(Harvard) and Pekhimenko (Toronto)

Science WG is part of MLCR and is led by Fox, Hey and Thiyagalingam

Future MLCR WG's

- AR/VR (Metaverse)
- Robustness
- Autonomous Vehicles

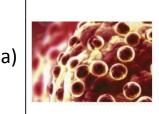
- 62 Companies
 - 11 Universities
- 6 DOE (mainly Office of Science) Labs
- ~15 WG meetings per week and
- Quarterly community meetings
- >2000 MLCommons members
- >50 FTE's from Industry
- 125 members MLCR mainly MLSys
- 27 Science WG attendees

MLPerf 2018 became MLCommons December 2020 "Accelerating machine learning innovation to benefit everyone"

- "Grow ML markets and make the world a better place";
- "Get everyone involved";
- "Act through collaborative engineering";
- "Make fast but consensus-supported decisions," and
- "Build a community that people want to be part of."

Data/cyberinfrastructure best practices

- MLCommons work is organized around 3 Pillars:
 - Best Practice
 - Datasets
 - "Benchmarks" -- the model+dataset artifacts that are open realization of mission and principles
- Benchmarks measure performance OR Science & CS "Discovery"
- Models are critical part of infrastructure
- DLPerf rather than MLPerf: > 90% activity is Deep learning
- MLCommons Best Practice WG covers Cyberinfrastructure for managing benchmarks --Organizing/using GitHub, logging metadata and Container infrastructure MLCube
- SABATH from UTK supports FAIR principles for benchmarks
- Using benchmarks implies Big Data environments such as
 - Enterprise: Databricks/Spark on Clouds
 - Industry: Kubernetes, Google Pathways (for complex models), NVIDIA RAPIDS (GPU)
 - HPC: Parsl, Radical Pilot, Jupyter Notebooks
 - Apache: Arrow and Parquet optimize vector performance (RAPIDS, Cylon)

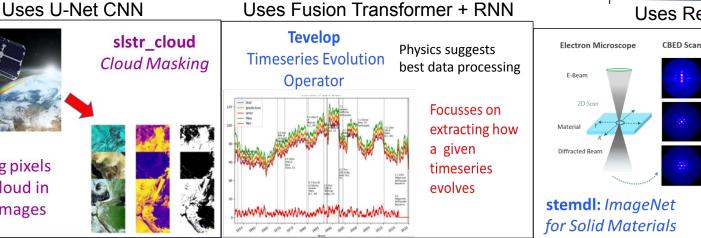

Impact: HDR and larger cyberinfrastructure

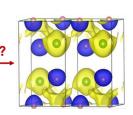
- Today Industry leads in many aspects of Big Data technology and we should collaborate with them
- Minimize differences between supercomputers and clouds as probably best technology aimed at clouds and we certainly want to use both
- In MLPerf, largest systems (4096 TPU-v4-fastest or 4216 A100's on a single training) run on clouds and not HPC Systems
- Models are "first class" components of cyberinfrastructure
 - Software 2.0 describes next generation programming as training models with Big Data
 - 30 years ago, algorithms (for solving partial differential equation and particle simulations) were at forefront of parallel computing
 - Deep Learning is dominant

Current data/cyberinfrastructure needs

- Please join and contribute to MLCommons Research and Science WG
 - https://github.com/mlcommons/science
- Improve and Add to 4 Science Benchmarks to fill out patterns of Foundation Models on next slide
- Also from **MLCommons HPC** working group
 - **CosmoFlow** (3D CNN regression on cosmology simulations)
 - **DeepCAM** (2D CNN segmentation, identifying weather phenomena)
 - **OpenCatalyst** (Graph NN predicting energy and forces in atomic catalyst systems)

candle-uno medicine for cancer – drug response measurement


Fully


Connected

Network

Uses Resnet-50 CNN Electron Microscope CBED Scan **Material Properties**

Identifying pixels that are cloud in satellite images

Classification of space groups, 40GB dataset with 230 spacegroups

Deep learningbased precision

Current data/cyberinfrastructure needs

- I just look at models: Design & Develop Foundation Al Models with appropriate high-performance, easy-to-use cyberinfrastructure in end-to-end systems, including data engineering, parallelism, storage and data movement, security, and the user interface
- Foundation Models for each of the ~8 different patterns of Science Data Analytics
- Overall Reasoner based on reinforcement learning and large language models to learn the world's knowledge and control experiments, networks, computers; 4 out of 7
- Image-based systems for astronomy, pathology, microscopy, and light scattering; last slide
- **Graph-based systems** such as in social media and traffic studies; represent molecular and other structure;
- Dense systems to map structure to properties as in drug discovery;
- Time series and sequence (Recurrent, Transformer) models as in language, earth, and environmental science;
- GAN/Diffusion models to generate scenarios as in datasets to test experimental system.
- **Surrogate** models (deep learning models trained on results of simulations) have distinctive issues where there is no current consensus
- All Network types can be mixed together as in text to image system DALL-E