

HDR Institute Imageomics

Charles Stewart

Professor, Department of Computer Science, Rensselaer Polytechnic Institute

This presentation represents the combined efforts of the members of the Imageomics team.

Data/cyberinfrastructure best practices: Code

- GitHub
 - For code, documents and docker images
- Culture shift for biologists
- Goal is full adoption
 - Imageomics course

Data/cyberinfrastructure best practices:

NSI

- Raw images and associated metadata
 - Extensive initial organization
 - ARK Id's

Data

- Biological knowledge:
 - Ontologies
 - Phylogenetic relationships (trees)
 - Knowledge graphs
 - Taxonomic keys
- Intermediate results
 - Curated image sets
 - Results of preprocessing / derived metadata
 - · Model training splits
 - · Output at each stage of eachpipeline
- ML models
- "Final" ML results
 - Trait predictions, species classifications, distance metrics
 - These become inputs to biological trait analysis

Multimedia	Image Quality Metadata	Extended Image Metadata	
Ark ID	Ark ID 6/82m58s		
AccessURI	https://bgnn.tulane.edu	https://bgnn.tulane.edu//ark:/89609/6j82m58s.jpg	
BatchName GLIN-INHS			
CreateDate	CreateDate 2020-03-02		

Data/cyberinfrastructure best practices: Reproducibility Via Workflows

download_image generate_metadata Cropped image Segmentation Morphological_analysis

- Goals:
 - End-to-end reproducibility
 - Drop-in replacements of algorithms / tuned parameters
- Based on Snakemake
 - Components are docker containers
 - Hosted on github
 - Rebuilt automatically
- Prototype example: fishes analysis from our pre-cursor BGNN project

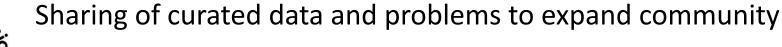
Data/cyberinfrastructure best practices: Computation

- Local GPUs
 - One GPU machine with 8 NVIDIA A6000 GPUs
 - For quick debugging and initial model training
- Ohio Supercomputer Center
 - 2 GPU clusters (160 NVIDIA Tesla P100; 164 NVIDIA Volta V100)
 - One more (~100 NVIDIA A100 GPUs) being commissioned
- AWS for large scale training
 - Foundation model

Data/cyberinfrastructure best practices: Models

- HuggingFace
- Docker images
- Auto-configured and auto-generated
-
- First deployment in progress

Impact: HDR and larger cyberinfrastructure


- Workflow / metadata management for
 - Complex scientific systems from heterogeneous and multiple data sources
 - Reproducibility
- Data / model products
 - Biology-focused foundation models and knowledge-guided models
- Biological products
 - Ontologies
 - Trait / phylogeny and other predictions / hypotheses

Current data/cyberinfrastructure needs

- Access to more compute power for training
- Versioning of intermediate data results
- Easier access to large-scale data sets
- Continued cultural improvements: ethos of reproducibility
 - Commits
 - Workflows
 - Data storage and data versioning
 - Maintenance

Open Q&A/Discussion and Conclusion

