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Introduction

• Goal: Distinguish global/macro patterns from local/micro fluctuations
• ‘Drift’ describes the micro-level evolution of a process.

This may appear as variation about gradual trends.
• ‘Shifts’ refer to discontinuities, rapid changes, or major breaks in trend.

These represent macro-level changes in a process.
• Both might be mechanistically or stochastically generated and/or modeled.

However, causes of shifts are typically different from those of drift.
• While understanding such differences is a prime objective, this first requires

distinguishing: Drift vs Shift.
Tools include:
• Trend Filtering • Dynamic Linear Models (DLM)
• Stochastic Volatility • Change Point Analysis
• Outlier Detection • Bayesian (Time Series) Analysis
• Dynamic/Adaptive Shrinkage • Machine Learning (Regularization)

Challenges

Fig 1 Change in Mean Fig 2 Adaptive Outliers

Fig 3 Stochastic Volatility Fig 4 Linear Trend

• Outliers violate common Gaussian noise assumptions.
• Heterogeneity leads to over-prediction of changepoints.

Fig 5 Global land surface air temperature (top); CPU cloud usage (bottom).

• Real world data has complex patterns and trends.
• Outliers and heterogeneity are the norm.
• Nature of changepoints ambiguous.

Solutions
• Model based ABCO: Adaptive Bayesian Changepoints w/ Outliers[1].
• A two-step Bayesian ‘decoupling’ method developed via DLM[2].

ABCO Model
Given a time series {yt}, ABCO supposes the decomposition:

yt = βtmean
signal

+ ζt
additive
outlier

+ ϵt
heteroskedastic

noise

• Trend Signal {βt}
Ref "Dynamic Shrinkage Process" [3], ABCO uses global-local shrinkage priors
on the Dth order difference (△D, D = 1, 2) on the state variable {βt}:
△Dβt = ωt,

ht+1 = µ + (ϕ1 + ϕ2st)(ht − µ) + ηt+1,
ωt ∼ N(0, τ2

ωλ
2
ω,t = eht),

ηt+1 ∼ Z(α, β, 0, 1).
Z-distribution: log inverted Beta; heavy left-tail

- Changepoint: threshold γ & indicator st =

{
1 if log(ω2

t ) > γ

0 if log(ω2
t ) ≤ γ

.

• Additive Outlier {ζt}
The outlier term {ζt} follows a "horseshoe+" shrinkage prior:

(ζt|σζ,t) ∼ N(0, σ2
ζ,t)

(σζ,t|τζ , ηζ,t) ∼ C+(0, τζηζ,t)
τζ ∼ C+(0, στ,ζ)
ηζ,t ∼ C+(0, ση,ζ)

with half-Cauchy C+(·) and prior shrinkage hyper-parameters στ,ζ , ση,ζ .

- Outlier: custom cutoff & locally adaptive score ot := Ẽ

(
σ2
ζ,t

σ2
ζ,t + σ2

ϵ,t

)
.

• Heteroskedastic Noise {ϵt, σ2
ϵ,t}

The noise {σ2
ϵ,t} follows a stochastic volatility model of order 1.

yt = βt + ζt + ϵt,

log(σ2
ϵ,t) = µϵ + ϕϵ(log(σ2

ϵ,t) − µϵ) + ξϵ,t,

ϵt ∼ N(0, σ2
ϵ,t),

ξϵ,t ∼ N(0, σ2
ξ).

• Dynamic Regression Generalizations
Set xxxt = (x1,t, ..., xp,t) as p predictors at time t, and ωωω,hhh,µµµ,ϕϕϕ,ηηη analogously.
yt = xxx′

tβββt + ζt + ϵt △Dβt+1 = ωωωt
ωj,t ∼ N(0, τ2

ω,0τ
2
ω,jλ

2
ω,j,t = ehj,t) hhht+1 = µµµ + (ϕϕϕ1 + ϕϕϕ2ssst)(hhht − µµµ) + ηηηt+1

ABCO Simulations

Algorithms Rand Avg. ↑ Adj. Rand Avg. ↑ Avg. Diff. CP ↓ Avg. Dist. to True ↓
ABCO 0.9380.9380.938 0.8730.8730.873(0.022) 0.510.510.51 0.030.030.03

E.Divisive 0.848 0.655(0.022) 3.68 58.45
Pelt 0.730 0.361(0.016) 10.88 128.36
WBS 0.686 0.352(0.021) 106.65 144.45
BCP 0.841 0.595(0.024) 22.00 60.16

Fig 6 Length-1000 time series with shift and SV(1) variance model
log(σ2

ϵ,t) = ϕϵ log(σ2
ϵ,t−1) + αt, αt ∼ N(0, σ2

α), ϕϵ = 0.9, σα = 0.4.

Fig 7 Robustness plus Outlier Scoring. Fig 8 Linear Meetup Model.

ABCO Applications

Fig 9 On Well-Log data, nuclear magnetic response within rock formations, origi-
nally published in [4] as a good framework for changepoint detection.

Fig 10 On Amazon Cloudwatch Service CPU Utilization data.

Fig 11 On George W. Bush Approval Rating data.

Decoupling Approach
• Dynamic Linear Models (DLM)

Given a time series YYY = (y1, ..., yn)′, a predictor series XXX = (x1, ..., xn)′,
yt = xtβt + ϵt, ϵt ∼ N(0, σ2

ϵ,t),
△Dβt = ωt, ωt ∼ N(0, σ2

ω).

• Decoupled Regularized Loss
Denote β̄̄β̄β as the posterior mean of k MCMC draws {βββ(i), i = 1, ..., k} of {βt}.

Decoupled loss: Lλ(β̃ββ) = ||WWW 1/2(XXX ◦ β̄ββ −XXX ◦ β̃ββ)||22 + qλ(β̃ββ).

•WWW = diag(w1, ..., wn) is diagonal with weights for each measurement being
wi = 1/σ̄2

ϵ,i, for i = 1, ..., n.

• Penalty function qλ() induces sparsity into β̃ββ with form

qλ(β̃ββ) = λ
∑
t

1
|ψt|

| △D βt|,

where ψt = 1
k

∑k
i=1 △Dβ

(i)
t and D = 1, 2 controls the type of change.

• Changepoint Selection
Given λ, denote ηλ as the time indices which {△Dβ̃t ̸= 0}.

Diagnostic tool: R2
λ = 1

k

k∑
i=1

||βββ(i) − βββ
(i)
η ||2

||βββ(i) − β̄ββ
(i)||2

where β̄ββ(i) = 1
n

∑n
t=1 β

(i)
t , and the optimal λ determined by least changepoints

given E[R2
λ] exceeds a certain threshold.

* Multiple Predictors & Covariates
Set predictors XXX = blockdiag(xxx′

1, ...,xxx
′
n) with xxxi = (xi,1, ..., xi,p)′, and

covariates ZZZ = (zzz1, ..., zzzn) with zzzi = (zi,1, ..., zi,l)′.
yt = xxx′

tβββt +ααα′zzzt + ϵt, ϵt ∼ N(0, σ2
ϵ,t), △Dβββt = ωωωt, ωωωt ∼ N(0,ΣΣΣω,t).

Extend the model with the decoupled loss:

Lλ(β̃ββ, α̃αα) = ||WWW 1/2(XXXβ̄ββ +ZZZᾱαα−XXXβ̃ββ −ZZZα̃αα)||22 + qλ(β̃ββ),

qλ(β̃ββ) = λ
n∑
t=1

G∑
g=1

1
|ψψψg,t|

| △D βββg,t|.

Decoupling Simulations

Bayesian
DLM

Decoupled

Comp.
F1-Score

Fig 12 Gaussian Noise (left); Outliers (middle); Stochastic Volatility (right).
DC-DS: decoupled results with shrinkage. DC-RW: decoupled with random walk.

Decoupling Applications

Fig 13 Apple Daily Stock Return Fig 14 SP500 Daily Stock Return

Fig 15 Decoupled vs Rolling OLS {βt} Fig 16 Scatter of Paired Returns

Conclusions
• A framework for inferring changepoints from posteriors produced by Bayesian

time-varying parameter models.
• By decoupling trend modeling and changepoint analysis, we allow fitting an

arbitrarily complex model to deal with intricacies inherent in data.
• Extensions: higher order trend changes, regression coefficients, multivariate.
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