Drift vs Shift: Decoupling Trends & Changepoint Analysis David S. Matteson, with Haoxuan Peter Wu & Sean Ryan Cornell University (TRIPODS w/URochester) & the National Institute of Statistical Sciences (NISS)

Introduction

- **Goal**: Distinguish global/macro patterns from local/micro fluctuations
- 'Drift' describes the micro-level evolution of a process.
- This may appear as variation about gradual trends.
- 'Shifts' refer to discontinuities, rapid changes, or major breaks in trend. These represent macro-level changes in a process.
- Both might be mechanistically or stochastically generated and/or modeled. However, causes of shifts are typically different from those of drift.
- While understanding such differences is a prime objective, this first requires distinguishing: **Drift vs Shift**.

- Model based ABCO: Adaptive Bayesian Changepoints w/ Outliers[\[1\]](#page-0-0).
- A two-step Bayesian 'decoupling' method developed via DLM[[2\]](#page-0-1).

Tools include:

-
-
-
-
- Trend Filtering Dynamic Linear Models (DLM)
- Stochastic Volatility Change Point Analysis
- Outlier Detection Bayesian (Time Series) Analysis
- Dynamic/Adaptive Shrinkage Machine Learning (Regularization)

Challenges

Fig 3 Stochastic Volatility Fig 4 Linear Trend

- **Outliers** violate common Gaussian noise assumptions.
- **Heterogeneity** leads to over-prediction of changepoints.

Fig 5 Global land surface air temperature (top); CPU cloud usage (bottom).

- Real world data has complex patterns and trends.
- Outliers and heterogeneity are the norm.
- Nature of changepoints ambiguous.

Solutions

ABCO Model

where $\bar{\pmb \beta}^{(i)}$ $=\frac{1}{n}$ *n* $\sum_{t=1}^{n}$ β (*i*) $t^{(l)}$, and the optimal λ determined by least changepoints given $E[R_{\lambda}^2]$ *λ*] exceeds a certain threshold.

Iultiple Predictors & Covariates

Set predictors $\boldsymbol{X} = \text{blockdiag}(\boldsymbol{x}_1)$ $\boldsymbol{r}_1',...,\boldsymbol{x}_{\gamma}'$ $\mathbf{x}_i = (x_{i,1}, ..., x_{i,p})'$, and covariates $\mathbf{Z} = (\mathbf{z}_1, ..., \mathbf{z}_n)$ with $\mathbf{z}_i = (z_{i,1}, ..., z_{i,l})'$. $y_t = \boldsymbol{x}^{\prime}_t$ $\epsilon_t^{\prime} \beta_t + \alpha^{\prime} z_t + \epsilon_t$, $\epsilon_t \sim N(0, \sigma_{\epsilon}^2)$ $\overset{(2)}{\epsilon}{,}t), \qquad \overset{(1)}{\triangle}{}^D\boldsymbol{\beta}_t = \boldsymbol{\omega}_t$ $\boldsymbol{\omega}_t \sim N(0,\pmb{\Sigma}_{\omega,t}).$ **Bayesian** DLM

Fig 12 Gaussian Noise (left); Outliers (middle); Stochastic Volatility (right). DC-DS: decoupled results with shrinkage. DC-RW: decoupled with random walk.

Given a time series
$$
\{y_i\}
$$
, AUCO suppose the decomposition:
\n $y_i = \frac{y_i}{n}$ and $\frac{y_i}{n}$ and $\frac{y_i}{n}$

- Wu and David S Matteson. Adaptive bayesian changepoint analysis and local outlier scoring. arXiv preprint arXiv:2011.09437, 2020.
- Wu, Sean Ryan, and David S Matteson. Decoupling trends and changepoint analysis. arXiv preprint arXiv:2201.06606, 2022.
- [3] Daniel Kowal, David S. Matteson, and David Ruppert. Dynamic shrinkage process. Journal of the Royal Statistical Society: Series B, 2018.

ochastic Variance modeled by ABCO w/ Stochastic Volatili

Stochastic Variance modeled by ABCO w/ Constant Volatili

ABCO Applications

On Well-Log data, nuclear magnetic response within rock formations, origi-published in [\[4\]](#page-0-3) as a good framework for changepoint detection.

Fig 10 On Amazon Cloudwatch Service CPU Utilization data.

h Trend Filtering Resu

Fig 11 On George W. Bush Approval Rating data.

Decoupling Approach

• **Dynamic Linear Models (DLM)**

series
$$
\mathbf{Y} = (y_1, ..., y_n)'
$$
, a predictor series $\mathbf{X} = (x_1, ..., x_n)'$,
\n $y_t = x_t \beta_t + \epsilon_t, \ \epsilon_t \sim N(0, \sigma_{\epsilon, t}^2),$
\n $\Delta^D \beta_t = \omega_t, \qquad \omega_t \sim N(0, \sigma_{\omega}^2).$

• **Decoupled Regularized Loss**

Denote $\overline{\beta}$ as the posterior mean of *k* MCMC draws $\{\beta^{(i)}, i = 1, ..., k\}$ of $\{\beta_t\}.$

Decoupled loss:
$$
L_{\lambda}(\widetilde{\boldsymbol{\beta}}) = ||W^{1/2}(\boldsymbol{X} \circ \bar{\boldsymbol{\beta}} - \boldsymbol{X} \circ \widetilde{\boldsymbol{\beta}})||_2^2 + q_{\lambda}(\widetilde{\boldsymbol{\beta}}).
$$

 $W = diag(w_1, ..., w_n)$ is diagonal with weights for each measurement being $w_i = 1/\bar{\sigma}^2_{\epsilon}$ $\frac{z}{\epsilon, i}$, for $i = 1, ..., n$.

 \bullet Penalty function $q_\lambda()$ induces sparsity into $\tilde{\pmb{\beta}}$ with form

$$
q_{\lambda}(\tilde{\boldsymbol{\beta}}) = \lambda \sum_{t} \frac{1}{|\psi_t|} |\Delta^D \beta_t|,
$$

where $\psi_t = \frac{1}{k}$ *k* $\sum_{i=1}^{k} \Delta^{D} \beta_{t}^{(i)}$ $t^{(i)}$ and $D = 1, 2$ controls the type of change. **hangepoint Selection**

Given λ , denote η_{λ} as the time indices which $\{\Delta^D \tilde{\beta}_t \neq 0\}.$

Diagnostic tool:
$$
R_{\lambda}^{2} = \frac{1}{k} \sum_{i=1}^{k} \frac{||\beta^{(i)} - \beta_{\eta}^{(i)}||^{2}}{||\beta^{(i)} - \bar{\beta}^{(i)}||^{2}}
$$

Extend the model with the decoupled loss:

\n
$$
L_{\lambda}(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\alpha}}) = ||\boldsymbol{W}^{1/2}(\boldsymbol{X}\bar{\boldsymbol{\beta}} + \boldsymbol{Z}\bar{\boldsymbol{\alpha}} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}} - \boldsymbol{Z}\widetilde{\boldsymbol{\alpha}})||_{2}^{2} + q_{\lambda}(\widetilde{\boldsymbol{\beta}}),
$$
\n
$$
q_{\lambda}(\widetilde{\boldsymbol{\beta}}) = \lambda \sum_{t=1}^{n} \sum_{g=1}^{G} \frac{1}{|\boldsymbol{\psi}_{g,t}|} |\Delta^{D} \boldsymbol{\beta}_{g,t}|.
$$

Decoupling Simulations

Decoupled

Comp. F1-Score

Decoupling Applications

Fig 15 Decoupled vs Rolling OLS $\{\beta_t\}$ Fig 16 Scatter of Paired Returns

Conclusions

- A framework for inferring changepoints from posteriors produced by Bayesian time-varying parameter models.
- By decoupling trend modeling and changepoint analysis, we allow fitting an arbitrarily complex model to deal with intricacies inherent in data.
- Extensions: higher order trend changes, regression coefficients, multivariate. **References**

42:2243–2281, 2014.

^[4] Joseph J. K. Ó Ruanaidh and William J. Fitzgerald. Numerical bayesian methods applied to signal processing. Statistics and Computing, 1996.

^[5] Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: likelihood inference and comparison with arch models. Review of Economic Studies, 65:361–393, 1998.

^[6] David S. Matteson and Nicholas A. James. A nonparametric approach for multiple change point analysis of multivariate data. Journal of the American Statistical Association, 109:334–345, 2014.

^[7] Anindya Bhadra, Jyotishka Datta, Nicholas G. Polson, and Brandon Willard. The horseshoe+ estimator for ultra sparse signals. Bayesian Analysis, 12:1105–1131, 2017.

^[8] Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. Annals of Statistics,

^[9] Chandra Erdman and John W. Emerson. A fast bayesian change point analysis for the segmentation of microarray data. Bioinformatics, 24:2143–2148, 2008.