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Motivated by today’s greatest foundational data 
science challenges arising in medicine, healthcare, 
and beyond, our vision is to develop a mathematical 
foundation that integrates trans-disciplinary 
perspectives and enables applications that can 
ultimately benefit everyone worldwide. 

MISSION

Research Focus

•Rochester:
•Ajay Anand 
•Andrew McDavid 
•Beilei Xu 
•Chenliang Xu 
•Edgar Bernal 
•Gonzalo Mateos
Buckstein 
•Gaurav Sharma 
•Robert Strawderman
•Wendi Heinzelman

•Cornell:
•Samprit Banerjee 
•Joe Guinness 
•Mert Sabuncu
•Jayadev Acharya 
•Chris De Sa 
•James Booth 
•David Ruppert
•Mahsa Shoaran

Founding GDSC Key Personnel

•Machine Learning in Medicine (Virtual) 
Seminars 
•Monthly Series
•Recruiting Speakers 

•Machine Learning in Medicine 2021 
Symposiums:
•Virtual symposium in January 2021
• In-person symposium in Oct/Nov 2021 
@ Weill Cornell Medicine

GDSC: Machine Learning in Medicine Additional GDSC Activities 

•Postdoctoral Researchers and Graduate 
Students
•Research Workshops  
•Annual research conferences (SciML in 2021)
•Annual GDSC research “studio”
•MLIM++
•REU: Grad for All (Summers)
•Rochester (Area) Data Science Consortium
•Healthcare Data Science Modules
•Teach-the-Teacher: High School Data Science 
Outreach
•Rotating Research Short Course
•CAMSAP’19 tutorial: Connecting The Dots: 
Identifying Network Structure Of Complex 
Data Via Graph Signal Processing
•University Rochester Goergen Institute for 
Data Science 
•Cornell Center for Data Science for Enterprise 
& Society.

Selected Research Highlights

• Wagner, A. B., Hill, E. L., Ryan, S. E., Sun, Z., Deng, G., Bhadane, 
S., Martinez, V. H., Wu, P., Li, D., Anand, A., Acharya, J., & 
Matteson, D. S. (2020). Social distancing merely stabilized COVID-
19 in the US. Stat (International Statistical Institute), e302. 
Advance online publication. https://doi.org/10.1002/sta4.302

•Now partnered with NC3 and Palantir:

NSF Awards 1934985 & 1934962
June 2021. Contact: matteson@cornell.edu
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•David S. Matteson (Stat, CU) 
•Mujdat Cetin (EE, UR) 
•CoPIs:
•Aaron Wagner (EE, CU)  
•Alex Iosevich (Math, UR)
•Daniel Gildea (T-CS, UR)
•Daniel Stefankovic (T-CS, UR)
•David Bindel (T-CS, CU)
•Gennady Samorodnitsky (Math, CU)
•Tongtong Wu (Stat, UR)
•Qing Zhao (EE, CU)

GDSC Leadership

•Empower & inspire all interested students 
from Western New York area to pursue 
advanced degrees. 
•Targeting traditionally under-represented 
STEM groups.
•Advising, information, skills and training 
needed to succeed in graduate school, 
academic careers, and industry. 
•Coursework, Research and Mentoring. 
•Year 1 program simplified demographic 
breakdown: 8 Women, 2 Hispanics, 1 African-
American, 7 Cornell, 6 UR, 1 Geneseo CC,1 
Rochester Institute of Technology. 
• https://web.math.rochester.edu/people/faculty/iosevich/ste
mforall2020.html 

GDSC: Grad for All 2020 & 2021 

GDSC Research Associates & Collaborators

(i) Topological Data Analysis. The challenges that high-
dimensional, incomplete, and noisy data present are 
great, but in many applications, exploiting the 
topological nature of the problem is possible. GDSC 
aims to develop new fundamental methods and 
theory to rigorously explore the promise of this unique 
approach.
(ii) Data Representation. Data compression, 
embeddings, and dimension reduction play a 
fundamental role in data science. Inspired by new core 
challenges in biomedical imaging, genomics, and 
neural-spike training data, GDSC aims to develop novel 
source models and distortion measures, and 
ultimately seek a unifying theoretical framework 
across domains and disciplines.
(iii) Network & Graph Learning. Many of the 
fundamental challenges in applying data science to 
non-homogeneous populations are best explored 
through a network or graph structure. GDSC aims to 
develop new techniques for parameter-dependent 
eigenvalue problems in spectral community detection, 
density-estimation methods on networks, and a 
theoretical framework for time-varying graphical 
models to study dynamic variable relations in time-
evolving networks.
(iv) Decisions, Control & Dynamic Learning. 
Sequential decisions are high-stakes in medicine. GDSC 
aims to utilize systems and control-engineering 
methods to improve health and disease management 
and develop new foundational theories and methods 
for label-efficient active learning and dynamic 
treatment regimes.
(v) Diverse & Complex Modalities. Big data is complex 
data, and major new innovations are needed. GDSC 
aims to develop theoretical frameworks for inference 
under computational and privacy constraints and for 
high-dimensional data without parametric model 
assumptions. Text, image, and audio data present 
further challenges. To address such challenges, GDSC 
aims to explore transition systems for graph parsing of 
natural language and new fusion approaches for fully 
multimodal analysis.

• Toryn Schafer
• Michael Jauch
• Sean Ryan
• Marie Duker
• Andrew Thomas

• Elaine Hill
• Victor Hernandez
• Dongmei Li
• Zhengwu Zhang

COVID-19 Working Group

• Blanca, A., Chen, Z., Stefankovic, D., and Vigoda, E. (2020). 
Hardness of Identity Testing for Restricted Boltzmann Machines 
and Potts models. Proceedings of Machine Learning Research, 
vol 125, pages 514-529. PMLR.

• Davidow, M. and Matteson, D. S. (2020). Factor analysis of mixed 
data for anomaly detection. preprint arXiv:2005.12129.

• Ekmekci, C., & Cetin, M. (2021). Model-Based Bayesian Deep 
Learning Architecture for Linear Inverse Problems in 
Computational Imaging.

• Frank, A.-S. J., Matteson, D. S., Solvang, H. K., Lupattelli, A., and 
Nordeng, H. (2020b). Extending balance assessment for the 
generalized propensity score under multiple imputation. 
Epidemiologic Methods, 9(1).

• Gelsinger, M. L., Tupper, L. L., and Matteson, D. S. (2019). Cell 
line classification using electric cell-substrate impedance sensing 
(ecis). The International Journal of Biostatistics, 16(1).

• McDavid, A., Corbett, A. M., Dutra, J. L., Straw, A. G., Topham, D. 
J., Pryhuber, G. S., ... & Holden-Wiltse, J. (2021). Eight practices 
for data management to enable team data science. Journal of 
Clinical and Translational Science, 5(1).

• Saboksayr, S. S., Mateos, G., & Cetin, M. (2021). Online 
Discriminative Graph Learning from Multi-Class Smooth Signals. 
preprint arXiv:2101.00184.

• Tang, B. and Matteson, D. S. (2021). Graph-based continual 
learning. ICLR 2021 preprint arXiv:2007.04813.

• Wu, H., & Matteson, D. S. (2020). Adaptive Bayesian Changepoint 
Analysis and Local Outlier Scoring. preprint arXiv:2011.09437.

• Zhang, W., Grin, M., and Matteson, D. S. (2020). Modeling 
nonlinear growth followed by long-memory equilibrium with 
unknown change point. preprint arXiv:2007.09417.



Drift vs Shift: Decoupling Trends & Changepoint Analysis
David S. Matteson, with Haoxuan Peter Wu & Sean Ryan

Cornell University (TRIPODS w/URochester) & the National Institute of Statistical Sciences (NISS)

Introduction
• Goal: Distinguish global/macro patterns from local/micro fluctuations
• ‘Drift’ describes the micro-level evolution of a process.

This may appear as variation about gradual trends.
• ‘Shifts’ refer to discontinuities, rapid changes, or major breaks in trend.

These represent macro-level changes in a process.
• Both might be mechanistically or stochastically generated and/or modeled.

However, causes of shifts are typically di�erent from those of drift.
• While understanding such di�erences is a prime objective, this first requires

distinguishing: Drift vs Shift.
Tools include:
• Trend Filtering • Dynamic Linear Models (DLM)
• Stochastic Volatility • Change Point Analysis
• Outlier Detection • Bayesian (Time Series) Analysis
• Dynamic/Adaptive Shrinkage • Machine Learning (Regularization)

Challenges

Fig 1 Change in Mean Fig 2 Adaptive Outliers

Fig 3 Stochastic Volatility Fig 4 Linear Trend

• Outliers violate common Gaussian noise assumptions.
• Heterogeneity leads to over-prediction of changepoints.

Fig 5 Global land surface air temperature (top); CPU cloud usage (bottom).

• Real world data has complex patterns and trends.
• Outliers and heterogeneity are the norm.
• Nature of changepoints ambiguous.

Solutions
• Model based ABCO: Adaptive Bayesian Changepoints w/ Outliers[1].
• A two-step Bayesian ‘decoupling’ method developed via DLM[2].

ABCO Model
Given a time series {yt}, ABCO supposes the decomposition:

yt = —tmean
signal

+ ’t
additive
outlier

+ ‘t
heteroskedastic

noise

• Trend Signal {—t}
Ref "Dynamic Shrinkage Process" [3], ABCO uses global-local shrinkage priors
on the Dth order di�erence (—D, D = 1, 2) on the state variable {—t}:
—D—t = Êt,

ht+1 = µ + („1 + „2st)(ht ≠ µ) + ÷t+1,
Êt ≥ N(0, ·2

Ê⁄2
Ê,t = eht),

÷t+1 ≥ Z(–, —, 0, 1).
Z-distribution: log inverted Beta; heavy left-tail

- Changepoint: threshold “ & indicator st =
(

1 if log(Ê2
t ) > “

0 if log(Ê2
t ) Æ “

.

• Additive Outlier {’t}
The outlier term {’t} follows a "horseshoe+" shrinkage prior:

(’t|‡’,t) ≥ N(0, ‡2
’,t)

(‡’,t|·’ , ÷’,t) ≥ C+(0, ·’÷’,t)
·’ ≥ C+(0, ‡·,’)

÷’,t ≥ C+(0, ‡÷,’)
with half-Cauchy C+(·) and prior shrinkage hyper-parameters ‡·,’ , ‡÷,’ .

- Outlier: custom cuto� & locally adaptive score ot := eE
 

‡2
’,t

‡2
’,t + ‡2

‘,t

!
.

• Heteroskedastic Noise {‘t, ‡2
‘,t}

The noise {‡2
‘,t} follows a stochastic volatility model of order 1.

yt = —t + ’t + ‘t,

log(‡2
‘,t) = µ‘ + „‘(log(‡2

‘,t) ≠ µ‘) + ›‘,t,

‘t ≥ N(0, ‡2
‘,t),

›‘,t ≥ N(0, ‡2
›).

• Dynamic Regression Generalizations
Set xxxt = (x1,t, ..., xp,t) as p predictors at time t, and ÊÊÊ,hhh,µµµ,„„„,÷÷÷ analogously.
yt = xxxÕ

t———t + ’t + ‘t —D—t+1 = ÊÊÊt

Êj,t ≥ N(0, ·2
Ê,0·

2
Ê,j⁄

2
Ê,j,t = ehj,t) hhht+1 = µµµ + („„„1 + „„„2ssst)(hhht ≠ µµµ) + ÷÷÷t+1

ABCO Simulations

Algorithms Rand Avg. ø Adj. Rand Avg. ø Avg. Di�. CP ¿ Avg. Dist. to True ¿
ABCO 0.9380.9380.938 0.8730.8730.873(0.022) 0.510.510.51 0.030.030.03

E.Divisive 0.848 0.655(0.022) 3.68 58.45
Pelt 0.730 0.361(0.016) 10.88 128.36
WBS 0.686 0.352(0.021) 106.65 144.45
BCP 0.841 0.595(0.024) 22.00 60.16

Fig 6 Length-1000 time series with shift and SV(1) variance model
log(‡2

‘,t) = „‘ log(‡2
‘,t≠1) + –t, –t ≥ N(0, ‡2

–), „‘ = 0.9, ‡– = 0.4.

Fig 7 Robustness plus Outlier Scoring. Fig 8 Linear Meetup Model.

ABCO Applications

Fig 9 On Well-Log data, nuclear magnetic response within rock formations, origi-
nally published in [4] as a good framework for changepoint detection.

Fig 10 On Amazon Cloudwatch Service CPU Utilization data.

Fig 11 On George W. Bush Approval Rating data.

Decoupling Approach
• Dynamic Linear Models (DLM)

Given a time series YYY = (y1, ..., yn)Õ, a predictor series XXX = (x1, ..., xn)Õ,
yt = xt—t + ‘t, ‘t ≥ N(0, ‡2

‘,t),
—D—t = Êt, Êt ≥ N(0, ‡2

Ê).

• Decoupled Regularized Loss
Denote —̄̄—̄— as the posterior mean of k MCMC draws {———(i), i = 1, ..., k} of {—t}.

Decoupled loss: L⁄(e———) = ||WWW 1/2(XXX ¶ —̄—— ≠ XXX ¶ e———)||22 + q⁄(e———).

• WWW = diag(w1, ..., wn) is diagonal with weights for each measurement being
wi = 1/‡̄2

‘,i, for i = 1, ..., n.

• Penalty function q⁄() induces sparsity into —̃—— with form

q⁄(—̃——) = ⁄
X

t

1
|Ât|

| —D —t|,

where Ât = 1
k

Pk
i=1 —D—

(i)
t and D = 1, 2 controls the type of change.

• Changepoint Selection
Given ⁄, denote ÷⁄ as the time indices which {—D—̃t ”= 0}.

Diagnostic tool: R2
⁄ = 1

k

kX

i=1

||———(i) ≠ ———
(i)
÷ ||2

||———(i) ≠ —̄——
(i)||2

where —̄——
(i) = 1

n
Pn

t=1 —
(i)
t , and the optimal ⁄ determined by least changepoints

given E[R2
⁄] exceeds a certain threshold.

* Multiple Predictors & Covariates
Set predictors XXX = blockdiag(xxxÕ

1, ...,xxxÕ
n) with xxxi = (xi,1, ..., xi,p)Õ, and

covariates ZZZ = (zzz1, ..., zzzn) with zzzi = (zi,1, ..., zi,l)Õ.
yt = xxxÕ

t———t + –––Õzzzt + ‘t, ‘t ≥ N(0, ‡2
‘,t), —D———t = ÊÊÊt, ÊÊÊt ≥ N(0,���Ê,t).

Extend the model with the decoupled loss:
L⁄(e———, e–––) = ||WWW 1/2(XXX—̄—— + ZZZ–̄–– ≠ XXXe——— ≠ ZZZe–––)||22 + q⁄(e———),

q⁄(e———) = ⁄
nX

t=1

GX

g=1

1
|ÂÂÂg,t|

| —D ———g,t|.

Decoupling Simulations

Bayesian
DLM

Decoupled

Comp.
F1-Score

Fig 12 Gaussian Noise (left); Outliers (middle); Stochastic Volatility (right).
DC-DS: decoupled results with shrinkage. DC-RW: decoupled with random walk.

Decoupling Applications

Fig 13 Apple Daily Stock Return Fig 14 SP500 Daily Stock Return

Fig 15 Decoupled vs Rolling OLS {—t} Fig 16 Scatter of Paired Returns

Conclusions
• A framework for inferring changepoints from posteriors produced by Bayesian

time-varying parameter models.
• By decoupling trend modeling and changepoint analysis, we allow fitting an

arbitrarily complex model to deal with intricacies inherent in data.
• Extensions: higher order trend changes, regression coe�cients, multivariate.
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