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Introduction

Upper bounds

Alternate Approach
Group Testing: Pooling technique to 

identify k defective elements from a population of n items.

Noiseless case 

O(k log n) tests are necessary — counting

O(k2 log n) tests are sufficient — disjunct matrices

non-defectives defectives
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k-Disjunct Matrix: Binary matrix A such that: 
Union of any k columns does not contain any other column. 

Outcomes

Efficient Decoding algorithms: O(n) time. 

1) Select all columns that are contained in the outcome vector

2) Remove from [n] all items that appear in a 0 test outcome

Deletion Noise:  
Some test outcomes get deleted.

Position of deletions are unknown.
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4-deletions

- Can we identify all k defectives after deletions of  test outcomes?

- How many tests are necessary and sufficient for accurate recovery?

- Design efficient recovery algorithms. 

Δ

Problem

Setup

Deletion disjunct matrix:  Binary matrix A  {0, 1}m x n such that for any set of k 
columns S  [n], |S|  k, and any column j  S,  lcs(  Ai, Aj ) < m - 

∈
⊂ ≤ ∉ ∪i∈S Δ

Trivial Construction: Let B be a k-disjunct matrix with O(k2 log n) rows. 

Construct A by repeating each row of B  times. (Δ + 1)

Decoding algorithm:  
A: Deletion disjunct matrix

x*  {0,1}n (unknown), y* = Test(A, x*), y = del(y*, ) 
- Recover original outcome vector y* as follows: 


- greedily complete each run of 0’s or 1’s to the next multiple of 

- Recover the test outcomes for B, z

- Use regular GT recovery algorithms with z = Test(B, x*).

∈ Δ

(Δ + 1)

#tests = O(  k2 log n)Δ

. 

. 

.

row 1 of B, repeated  times(Δ + 1)

row m of B, repeated  times(Δ + 1)

Q: How to construct asymmetric deletion disjunct matrices?

Q: Can we tighten the LB?  
Q: How to decode efficiently? 

Lower bound
Necessary Condition: 

Binary matrix A such that for any two disjoint sets of k columns S, T  [n], |S|, |T|  k,

lcs(  Ai,   Aj ) < m - 

⊂ ≤
∪i∈S ∪j∈T Δ

Any two unions of distinct set of columns should have all distinct m-  length 
subsequences. 

Δ

Simple counting argument gives us m > ( (k + ) log n).Ω Δ

Asymmetric deletion distance da(x,y):  
Let x, y be n-length binary strings.

da(x,y) is the maximum number of deletions  such that for any m-  
length subsequences, x’ of x and y’ of y

there exists an index i  [m- ] such that x’i = 1 and y’i = 0

Δ Δ

∈ Δ

Correctness:  

- Any adversary can delete at most  test outcomes. 

- Therefore, they cannot delete all outcomes corresponding to the 

repetitions of any single row of B.


- e.g. for a run of s( ) 0’s, after at most  deletions, we will be left 
with a run of least (s-1)(  + 1) + t  consecutive 0’s (for t <  +1)

Δ

Δ + 1 Δ
Δ Δ

Asymmetric deletion disjunct matrix:  Binary matrix A  {0, 1}m x n 
such that for any set of k columns S  [n], |S|  k, and

an column j  S,  da(  Ai, Aj ) > 

∈
⊂ ≤

∉ ∪i∈S Δ

Decoding Algorithm 
A: Asymmetric deletion disjunct matrix

x*  {0,1}n (unknown), y* = Test(A, x*), y = del(y*, )


- Let S = 

- For each column v of A:


- for each m-  length subseq v(i) of v: 


- if there is no p  [m- ], s.t. y(p) = 0 and v(i)(p) = 1, 

- then add v to S


-  Return S

∈ Δ
∅

Δ
∈ Δ

Correctness: Follows from the properties of asymmetric 
deletion disjunct matrix A. 

Runtime: O(n m2  ) — inefficient for large Δ Δ

Work in Progress

A: Testing Matrix with m rows, n columns

x*  {0,1}n (unknown), 

y* = Test(A, x*), 

y = del(y*, ) — deletion of  arbitrary entries from y*

∈

Δ Δ

Construction: random Bernoulli matrices with p = O(1/k)  are 
asymmetric deletion disjunct matrices with high probability if


m = Ω(k2 log n + kΔ)


