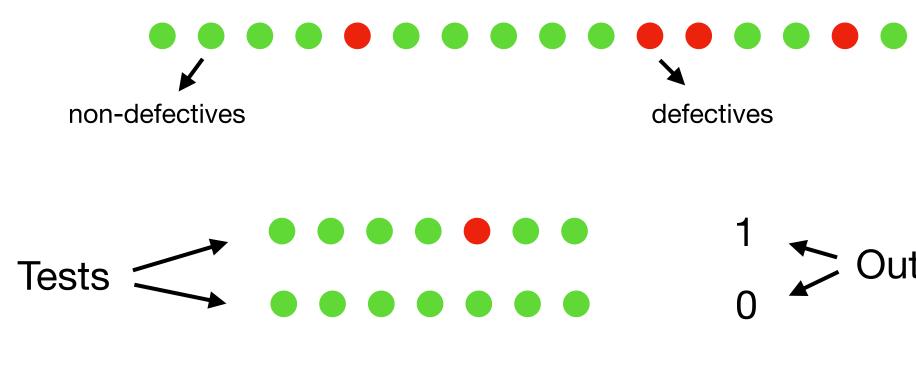


Deletion Resilient Group Testing Venkata Gandikota, EECS, Syracuse University Lower bound Asymmetric deletion distance d_a(x,y): **Necessary Condition:** Let x, y be n-length binary strings. Binary matrix A such that for any two disjoint sets of k columns S, T \subset [n], |S|, |T| \leq k, $lcs(\bigcup_{i \in S} A_i, \bigcup_{i \in T} A_j) < m - \Delta$ length subsequences, x' of x and y' of y Any two unions of distinct set of columns should have all distinct m- Δ length subsequences. > Outcomes Simple counting argument gives us $m > \Omega((k + \Delta) \log n)$. Upper bounds **Deletion disjunct matrix:** Binary matrix $A \in \{0, 1\}^{m \times n}$ such that for any set of k columns S \subset [n], |S| \leq k, and any column j \notin S, lcs($\cup_{i \in S} A_i, A_j$) < m - Δ an column j \notin S, d_a($\cup_{i \in S} A_i, A_j$) > Δ **Trivial Construction:** Let **B** be a k-disjunct matrix with O(k² log n) rows. Construct **A** by repeating each row of B ($\Delta + 1$) times. **Decoding Algorithm** A: Asymmetric deletion disjunct matrix row 1 of B, repeated $(\Delta + 1)$ times - Let $S = \emptyset$ - For each column v of A: row m of B, repeated $(\Delta + 1)$ times - for each m- Δ length subseq v⁽ⁱ⁾ of v: **#tests** = $O(\Delta k^2 \log n)$ - then add v to S - Return S **Decoding algorithm:** A: Deletion disjunct matrix deletion disjunct matrix A. $x^* \in \{0,1\}^n$ (unknown), $y^* = \text{Test}(A, x^*)$, $y = \text{del}(y^*, \Delta)$ **Runtime:** O(n m² Δ) — inefficient for large Δ - Recover original outcome vector y* as follows: - greedily complete each run of 0's or 1's to the next multiple of $(\Delta + 1)$ 4-deletions - Recover the test outcomes for B, z - Use regular GT recovery algorithms with $z = \text{Test}(B, x^*)$. $m = \Omega(k^2 \log n + k\Delta)$ **Correctness:** - Any adversary can delete at most Δ test outcomes. - Therefore, they cannot delete all outcomes corresponding to the repetitions of any single row of B. Q: Can we tighten the LB? - e.g. for a run of s($\Delta + 1$) 0's, after at most Δ deletions, we will be left **Q: How to decode efficiently?** with a run of least (s-1)(Δ + 1) + t consecutive 0's (for t < Δ +1)

Introduction

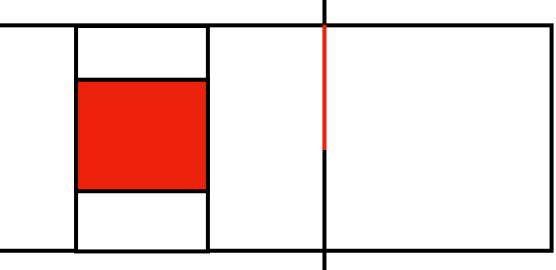
Group Testing: Pooling technique to identify **k** defective elements from a population of **n** items.



Noiseless case

O(k log n) tests are necessary — counting **O(k² log n)** tests are <u>sufficient</u> – disjunct matrices

k-Disjunct Matrix: Binary matrix **A** such that: Union of any *k* columns does not contain any other column.



Efficient Decoding algorithms: O(n) time.

- **1)** Select all columns that are contained in the outcome vector
- 2) Remove from [n] all items that appear in a 0 test outcome

Setup

Deletion Noise: Some test outcomes get deleted. Position of deletions are unknown.	0 1 0 0 0 1 0
A: Testing Matrix with m rows, n columns	
$x^* \in \{0,1\}^n$ (unknown),	
$y^* = \text{Test}(A, x^*),$	
y = del(y*, Δ) — deletion of Δ arbitrary entries from y*	

Problem

- Can we identify all k defectives after deletions of Δ test outcomes?
- How many tests are necessary and sufficient for accurate recovery?
- Design efficient recovery algorithms.

Alternate Approach $d_a(x,y)$ is the maximum number of deletions Δ such that for any m- Δ there exists an index $i \in [m-\Delta]$ such that $x'_i = 1$ and $y'_i = 0$ **Asymmetric deletion disjunct matrix:** Binary matrix $A \in \{0, 1\}^{m \times n}$ such that for any set of k columns $S \subset [n]$, $|S| \leq k$, and $x^* \in \{0,1\}^n$ (unknown), $y^* = \text{Test}(A, x^*)$, $y = \text{del}(y^*, \Delta)$ - if there is no $p \in [m-\Delta]$, s.t. y(p) = 0 and $v^{(i)}(p) = 1$, **Correctness:** Follows from the properties of asymmetric **Construction:** random Bernoulli matrices with p = O(1/k) are asymmetric deletion disjunct matrices with high probability if Work in Progress

Q: How to construct asymmetric deletion disjunct matrices?

joint work with Nikita Polyanskii and Haodong Yang

