
Deletion Resilient Group Testing
Venkata Gandikota, EECS, Syracuse University

joint work with Nikita Polyanskii and Haodong Yang

Introduction

Upper bounds

Alternate Approach
Group Testing: Pooling technique to

identify k defective elements from a population of n items.

Noiseless case

O(k log n) tests are necessary — counting

O(k2 log n) tests are sufficient — disjunct matrices

non-defectives defectives

1

0
Tests

k-Disjunct Matrix: Binary matrix A such that:
Union of any k columns does not contain any other column.

Outcomes

Efficient Decoding algorithms: O(n) time.

1) Select all columns that are contained in the outcome vector

2) Remove from [n] all items that appear in a 0 test outcome

Deletion Noise:
Some test outcomes get deleted.

Position of deletions are unknown.

0

1

0

0

0

0

1

0

0

0

1

0

0

0

4-deletions

- Can we identify all k defectives after deletions of test outcomes?

- How many tests are necessary and sufficient for accurate recovery?

- Design efficient recovery algorithms.

Δ

Problem

Setup

Deletion disjunct matrix: Binary matrix A {0, 1}m x n such that for any set of k
columns S [n], |S| k, and any column j S, lcs(Ai, Aj) < m -

∈
⊂ ≤ ∉ ∪i∈S Δ

Trivial Construction: Let B be a k-disjunct matrix with O(k2 log n) rows.

Construct A by repeating each row of B times. (Δ + 1)

Decoding algorithm:
A: Deletion disjunct matrix

x* {0,1}n (unknown), y* = Test(A, x*), y = del(y*,)
- Recover original outcome vector y* as follows:

- greedily complete each run of 0’s or 1’s to the next multiple of

- Recover the test outcomes for B, z

- Use regular GT recovery algorithms with z = Test(B, x*).

∈ Δ

(Δ + 1)

#tests = O(k2 log n)Δ

.

.

.

row 1 of B, repeated times(Δ + 1)

row m of B, repeated times(Δ + 1)

Q: How to construct asymmetric deletion disjunct matrices?

Q: Can we tighten the LB?
Q: How to decode efficiently?

Lower bound
Necessary Condition:

Binary matrix A such that for any two disjoint sets of k columns S, T [n], |S|, |T| k,

lcs(Ai, Aj) < m -

⊂ ≤
∪i∈S ∪j∈T Δ

Any two unions of distinct set of columns should have all distinct m- length
subsequences.

Δ

Simple counting argument gives us m > ((k +) log n).Ω Δ

Asymmetric deletion distance da(x,y):
Let x, y be n-length binary strings.

da(x,y) is the maximum number of deletions such that for any m-
length subsequences, x’ of x and y’ of y

there exists an index i [m-] such that x’i = 1 and y’i = 0

Δ Δ

∈ Δ

Correctness:

- Any adversary can delete at most test outcomes.

- Therefore, they cannot delete all outcomes corresponding to the

repetitions of any single row of B.

- e.g. for a run of s() 0’s, after at most deletions, we will be left
with a run of least (s-1)(+ 1) + t consecutive 0’s (for t < +1)

Δ

Δ + 1 Δ
Δ Δ

Asymmetric deletion disjunct matrix: Binary matrix A {0, 1}m x n
such that for any set of k columns S [n], |S| k, and

an column j S, da(Ai, Aj) >

∈
⊂ ≤

∉ ∪i∈S Δ

Decoding Algorithm
A: Asymmetric deletion disjunct matrix

x* {0,1}n (unknown), y* = Test(A, x*), y = del(y*,)

- Let S =

- For each column v of A:

- for each m- length subseq v(i) of v:

- if there is no p [m-], s.t. y(p) = 0 and v(i)(p) = 1,

- then add v to S

- Return S

∈ Δ
∅

Δ
∈ Δ

Correctness: Follows from the properties of asymmetric
deletion disjunct matrix A.

Runtime: O(n m2) — inefficient for large Δ Δ

Work in Progress

A: Testing Matrix with m rows, n columns

x* {0,1}n (unknown),

y* = Test(A, x*),

y = del(y*,) — deletion of arbitrary entries from y*

∈

Δ Δ

Construction: random Bernoulli matrices with p = O(1/k) are
asymmetric deletion disjunct matrices with high probability if

m = Ω(k2 log n + kΔ)

