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Motivation: Lifting Multiscale Basis Dictionaries to Graphs
For conventional digital signals and images sampled on regular lattices,
Multiscale Basis Dictionaries including wavelet packet dictionaries (which in
turn include wavelet bases) and local cosine dictionaries have a proven track
record of success, e.g.: JPEG 2000 Image Compression Standard; Modified
Discrete Cosine Transform (MDCT) in MP3; Discriminant feature extraction
for signal classification; . . .

Want to lift/generalize these dictionaries to the graph setting for graph signal
processing and graph data analysis

Shannon wavelet on R Graph wavelet packet vector

Roadmap So Far
We have developed the graph versions of the local cosine and wavelet packet dictionaries for
analysis of graph signals sampled at nodes.

All these are based on the hierarchical partitioning of either a primary graph G or the
so-called dual graph G⋆.

Let Ω be a domain to be hierarchically partitioned. Then, we have the correspondence:

Classical Basis Dict. Ω Graph Basis Dict. Ω

Hier. Block DCT time axis HGLET G
LCT time axis LP-HGLET G

Haar-Walsh WPs time/freq. axes GHWT/eGHWT G

Cmpt-Supp. WPs frequency axis LP-NGWPs G⋆

Shannon WPs frequency axis NGWPs G⋆

HGLET := Hierarchical Graph Laplacian Eigen Transform [Irion-Saito (2014)];

GHWT := Generalized Haar-Walsh Transform [Irion-Saito (2014)];

eGHWT := extended GHWT [Saito-Shao (2022)];

NGWPs := Natural Graph Wavelet Packets [Cloninger-Li-Saito (2021)];

LP-HGLET/NGWPs := Lapped-HGLET/NGWPs [Li (2021)]

Underlying Philosophy/Basso Continuo:
Split =⇒ “Organize” =⇒ Merge

Higher-Order Graph Signals
Recently there has been great interest in analyzing higher-order graph signals.

Data are sampled over oriented k-simplices of a graph for some k ∈ N
For k = 0, these signals take values over nodes of a graph as usual
For k = 1, these signals take values over oriented edges of a graph
For k = 2, these signals take values over oriented triangles of a graph

Examples: regional weather data, molecular chemistry, neuronal networks, social networks,
discrete exterior calculus/geometry, . . .

Buoys drifting around
Madagascar

Gene expression correlations
[Govek et al. 2019]

Authorship Graph [Ebli et
al. 2022]

Representing Higher-Order Graphs
A simplicial complex represents a combinatorial description of a topological
space that can be represented and handled by a computer.

The k-simplices in a simplicial complex are typically captured by boundary
matrices Bk−1, Bk expressing adjacency and relative orientation of each
k-simplex σ with each (k − 1)-simplex α or (k + 1)-simplex β respectively.

[Bk−1]ασ =


1 α, σ have consistent orientation

−1 α, σ have inconsistent orientation

0 otherwise
[Bk]σβ =


1 σ, β have consistent orientation

−1 σ, β have inconsistent orientation

0 otherwise

Hodge Laplacian
The Hodge Laplacian [e.g., L.-H. Lim: SIAM Review (2020); M. T. Schaub et
al.: Signal Process. (2021)] provides a spectral decomposition for a signal
measured on k-simplices in a given simplicial complex.
Since the k-Laplacian has both “upper” and “lower” parts, we need a new
notion of ‘neighbors’. Two k-simplices are ’adjacent’ if either:

they have a (k − 1)-simplex in common as a facet; or
they are both facets of some (k + 1)-simplex in the complex.

Hodge Laplacian via Boundary Matrices:

Lk := BT
k−1Bk−1 +BkB

T
k ; Dk := diag(Lk)

Example Simplicial Complex

B0 =


−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1



B1 =


−1 0
1 0
−1 −1
0 1
0 −1


B2 = O

L0 =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2



L1 =


3 0 0 −1 0
0 3 0 0 −1
0 0 4 0 0
−1 0 0 3 0
0 −1 0 0 3


L2 =

[
3 1
1 3

]
Partitioning Simplicial Complexes

The random-walk normalized Hodge Laplacian Lrw
k := D−1

k Lk also admits a Fielder vector,
whose sign provides a partition on k-simplices minimizing a relaxed version of Normalized Cut.

Lk induces a signed graph on the k-simplices, with [Lk]στ < 0 when σ, τ have consistent
orientations, and [Lk]στ > 0 when σ, τ have inconsistent orientations.

Unlike Lrw
0 , the components of ϕ0 of L

rw
k may change their signs in general; hence

ϕ1 ⊙ signϕ0 provides the Fielder vector.

While the Hodge Laplacian optimizes for encoding topological information, modification such
as the signed Laplacian is more closely connected to the appropriate Cut objective.

Any other good bipartition method can be used for building our multiscale basis dictionaries.

A hierarchical partitioning of a triangle graph with k = 2

k-Haar Basis
We can use the partitioning induced by the Fielder vector to develop a top-down,
piecewise constant, and locally concentrated basis with good approximation
properties. However, there are some challenges:

Since the division is not symmetrically dyadic, we need to compute the scaling
factor for each atom separately.

The presence of both upper and lower boundary terms means that the
discrete nodal domain theorem does not always apply.

The 0-Haar basis on 4× 4 grids The 2-Haar basis on a triangle graph

Haar Approximation of the Citation Complex

From Ebli et al. 2022

The citation complex [Patania et al. 2017] can be created by linking papers, authors, and
co-authors from the CORA citation network. Specifically, we use the subgraph suggested by
[Elbi et al. 2022].

Each Paper node has a citation value corresponding to the number of citations of the paper.

Each Author node has a citation value corresponding to the total publications of the author.

Each (k + 1)-simplex value is equal to the sum of the k-neighbors (see above).

Edge Signal Approximation Face Signal Approximation

Summary
Proposed a hierarchical partitioning method for simplicial complexes using Hodge Laplacians

Developed the k-Haar transform for signals on simplicial complexes, which is a part of our
multiscale higher-order graph signal basis dictionaries for graph signals on simplicial complexes

Will develop tools to visualize and interpret important basis vectors for signals on simplicial
complexes including graph embedding methods

Will extend the k-Haar transform to the k-Haar/Walsh wavelet packet dictionary

Will develop the k-HGLET dictionary using the eigenvectors of the Hodge Laplacians

Will lift Best Basis [Coifman-Wickerhauser (1992)], Local Discriminant Basis, Local
Regression Basis [Saito et al. (1995; 1997; 2002; . . . )] for signals on simplicial complexes
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