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Abstract
We consider the problem of sequential multiple hypothesis testing with
nontrivial data collection cost. This problem appears, for example, when
conducting biological experiments to identify differentially expressed
genes in a disease process. This work builds on the generalized
α-investing framework that enables control of the false discovery rate in
a sequential testing setting. We make a theoretical analysis of the long
term asymptotic behavior of α-wealth which motivates a consideration of
sample size in the α-investing decision rule. Using the game theoretic
principle of indifference, we construct a decision rule that optimizes the
expected return (ERO) of α-wealth and provides an optimal sample size
for the test. We show empirical results that a cost-aware ERO decision
rule correctly rejects more false null hypotheses than other methods. We
extend cost-aware ERO investing to finite-horizon testing which enables
the decision rule to hedge against the risk of unproductive tests. Finally,
empirical tests on a real data set from a biological experiment show that
cost-aware ERO produces actionable decisions as to which tests to
conduct and if so at what sample size.

Goal
Our goal is to provide an α-investment rule to simultaneously and
optimally allocate our statistical error budget and experimental budget
across an unknown, and possibly infinite, number of tests via a
game-theoretic framework informed by our prior knowledge.

Problem Setup

▶ Hypotheses arrive sequentially in a stream. At each step, we must
decide whether to reject the current null hypothesis without having
access to the number of hypotheses (potentially infinite) or the future
p-values, but solely based on the previous decisions.

▶ A testing procedure provides a sequence of significance levels αj with
decision rule

Rj = 1 if pj ≤ αj , else Rj = 0 (1)
▶ In the online setting, we require that the set significance levels depend

only on prior tests.

αj = αj(R1,R2, . . . ,Rj−1) (2)

▶ We consider the generalized α-investing framework (Aharoni and
Rosset (2014)) where we make use of an α-wealth potential function
to bound test levels. If reject the hypothesis, we earn some α-wealth
back as a reward for a good investment.

▶ At each test, we have given α-wealth, W (j − 1), which is a statistical
error budget. For test j we must determine three quantities, αj , φj , ψj .
▶ αj is the significance of the j-th test.
▶ φj is the cost of the j-th test, we subtract this amount from the α-wealth.
▶ ψj is the reward we collect if we reject the j-th test.

▶ In general, we make the following update

W (j) = W (j − 1)− φj + Rjψj (3)

▶ αj , φj , and ψj are determined by an investment rule
IW (0)({R1,R2, . . .Rj−1}). Creating an investment rule is non-trivial,
but in order to control the marginal false discovery rate (mFDRη), we
must impose the following constraints.

φj ≤ W (j − 1)

0 ≤ ψj ≤ min

(
φj
ρj

+ α,
φj
αj

+ α− 1

)
(4)

▶ Where ρj is the best power of test j , which is an upper bound of power
across the alternative space. In many cases ρj = 1, although in
biological applications there may be some physical limitation on the
bounds of the alternative space, allowing the possibility of ρj < 1.

Related Work
Many investing rules I have been proposed for generalized α-investing
techniques.

Expected Reward Optimal (ERO)
▶ A natural consideration is to invest α-wealth in a greedy fashion.

Aharoni and Rosset (2014) propose that we optimize the expected
reward of each test, since adding wealth back into W provides us with
a larger budget for future tests.

▶ An ERO procedure seeks to maximize E(Rj)ψj .
▶ Aharoni and Rosset (2014) show that an ERO procedure selects an
αj , ψj , given a user-specified φj , as the solution of

φj
ρj

=
φj
αj

− 1 and ψj = min

(
φj
ρj

+ α,
φj
αj

+ α− 1

)
(5)

LORD
▶ Javanmard and Montanari (2018) propose Levels Based on Recent

Discoveries (LORD) where an investing rule allocates α-wealth to
tests based on the time since a recent, or a collection of recent
discoveries. Under certain conditions this method can control the false
discovery rate.

SAFFRON
▶ Ramdas et. al (2018) propose SAFFRON, an generalized α-investing

method that adaptively estimates the proportion of true-null
hypotheses. This method can be viewed as the online version of the
Storey-BH method. This is the first method that adapts to the
distribution of the streaming hypotheses.

Methodology

▶ The generalized α-investing decision rule is augmented to include a
notion of dollar-wealth W$(j)

(φj , αj , ψj ,nj) = I(Wα(0),W$(0))({R1, . . . ,Rj−1}), (6)

where nj is the sample size allocated for testing of the j-th hypothesis.
▶ A natural update plan for the dollar-wealth is

W$(0) = B (7)
W$(j) = W$(j − 1)− cjnj , (8)

where cj is the per-sample cost for data to test the j-th hypothesis,
and B is the initial dollar-wealth.

▶ The augmented optimization problem is identical to the one in Aharoni
and Rosset (2014) with objective maxφj ,αj ,ψj ,nj

Eθ(Rj)ψj and constraint
njcj ≤ W$(j).

▶ The resulting optimization problem has an infinite number of solutions
because φj is not constrained.

▶ We then cast the objective function in a Bayesian framework by
allowing for the specification of the prior probability of the null
hypothesis, qj = Pr[θj ∈ Hj ].

▶ Game Theoretic Formulation: Suppose that we have a zero-sum
game involving two players: the investigator (Player I) and nature
(Player II). Nature, independent of the investigator, chooses to hide
θj ∈ Hj with probability qj and θj ̸∈ Hj otherwise.

▶ The investigator selects, φj , such that they are indifferent as to
whether or not to conduct the experiment,

(−φj+ψj)·
[
αjqj + ρj(1 − qj)

]
+(−φj)·

[
(1 − αj)qj + (1 − ρj)(1 − qj)

]
= 0
(9)

▶ We briefly present the cost-aware α-investing method in algorithmic
form.

FDR and mFDR
▶ R(m) =

∑m
j=1 Rj and V (m) =

∑m
j=1 Vj , where Vj ∈ {0,1} indicates

whether the test Hj is both true and rejected
▶ With these variable definitions, the FDR is

FDR(m) = Pθ(R(m) > 0) Eθ
[

V (m)

R(m)
| R(m) > 0

]
= Eθ

[
V (m)

R(m) ∨ 1

]
,

▶ And the marginal false discovery rate is

mFDRη(m) =
Eθ
[
V (m)

]
Eθ
[
R(m) + η

].
Comparison to state of the art methods

▶ Simulated 1000 sequential Neyman-Pearson type tests, with 10000
repetitions.

▶ H0 : θj = 0, H1 : θj = 2, where σ = 1.
▶ Under H0, Zj ∼ N(0,1/

√
n), under H1, Zj ∼ N(2,1/

√
n).

▶ Each Hj is null with probability 0.9.
▶ We limit each run to use up to 1000 total samples.
▶ For non cost-aware schemes, we allow 1 sample per test.

The table is indexed by the φ allocation scheme (Scheme), and the
reward method (Method). Together, the Scheme and Method make an
investment rule I.

Tests True Rej False Rej mFDR
Scheme Method
constant α-spending 10.0 0.27 0.04 0.034

α-investing 15.9 0.43 0.07 0.046
α-rewards k = 1 15.2 0.42 0.06 0.045
α-rewards k = 1.1 18.5 0.45 0.06 0.042
ERO investing 18.2 0.49 0.08 0.050

relative α-spending 66.0 0.54 0.04 0.028
α-investing 81.1 0.85 0.09 0.047
α-rewards k = 1 80.7 0.83 0.09 0.047
α-rewards k = 1.1 89.8 0.86 0.08 0.043
ERO investing 82.3 0.89 0.10 0.051

other LORD++ 971.0 2.86 0.08 0.020
LORD1 1000.0 1.46 0.04 0.018
LORD2 1000.0 2.02 0.08 0.026
LORD3 1000.0 2.49 0.08 0.023
SAFFRON 1000.0 1.57 0.09 0.034

cost-aware ERO nj = 1 364.2 4.13 0.22 0.041
cost-aware ERO nj ≤ 10 39.5 3.93 0.20 0.040
cost-aware ERO nj ≤ 100 10.8 1.08 0.06 0.026
cost-aware ERO n∗j 6.0 0.61 0.03 0.019

Prostate Cancer Gene Expression Data

▶ Data collection and preprocessing
▶ Gene expression data was collected to investigate the molecular determinant of

prostate cancer. The data set contains 50 normal samples and 52 tumor samples
and each sample is a m = 6033 vector of gene expression levels.

▶ Considered one-sided Gaussian tests where θ̄j = log10(2)/σ̂j .
▶ A logistic function, using only the first two samples for each gene, was used to

compute the prior probability of the null hypothesis.
▶ The set of genes was permuted randomly and the cost-aware and original ERO

decision functions were computed.
▶ For the ERO comparison, we allocate the maximum number of available samples,

n = 50, for each test.
▶ For cost-aware ERO, if the optimal sample size was greater than the number of

available samples (n̄j = 50), the test was skipped, otherwise the one-sided
Gaussian test was performed with the optimal number of samples.

▶ We set the cost of each sample cj = 1, and W$ = 1000. Testing concludes when
either Wα or W$ is completely spent.

▶ Comparison to other algorithms

▶ ERO selects many tests, but rapidly expends W$.
▶ Cost-aware ERO is more conservative and only tests when the benefits outweigh

the risk of a dual-currency wealth state (Wα,W$).
▶ Across 1000 permutations, cost-aware ERO performed 4.6 tests and skipped

236.8 tests on average.
▶ The average optimal sample size was 44.2.

Discussion
Summary
▶ We extend generalized α-investing to address the problem of online

FDR control where the cost of data is not negligible.
▶ We propose a generalized α-investing procedure for sequential testing

that optimizes sample size and φ using the game-theoretic
indifference principle.

Limitations
▶ First, the optimality of the cost-aware ERO method may be sensitive

to misspecification in qj , although mFDRη is still controlled.
▶ Simulations with an increasing distance between the true qj and that

used by the cost-aware ERO method show that cost-aware ERO
performance degrades for misspecified values of qj

▶ Cost-aware ERO may aggressively spend available (Wα,W$) when
only considering the reward of a single test.

Future Work
▶ Investigate a principled risk-hedging approach to conserve some

wealth for future tests with the hope that a test with a more favorable
reward structure is over the horizon.
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