Morse Graphs can effectively estimate the **Regions of Attraction** (RoAs) of dynamical systems, including closed-box ones.

Morse Graphs: Topological Tools for Analyzing the Global Dynamics of Robot Controllers (WAFR 2022)

MOTIVATION

 RoA estimation is essential for understanding the conditions under which a <u>controller can</u>

 RoAs can be used for <u>controller composition</u> that work from a wider swath of the **Data-Efficient Characterization of the Global Dynamics of Robot Controllers with Confidence Guarantees (ICRA 2023)**

MOTIVATION

 Reduce data requirements of Morse Graphs using Gaussian Processes as a surrogate model

- Table 1 The morse graph is applied in a variety of systems (controllers) and compared to alternative methods
- Table 2 Data requirements for the Morse Graph are lower than the alternative for most cases

Table 1								
Benchmark	L-NN ^[1]	L-LQR	L-SOS	Ours: MG				
Pend (LQR)	61.33%	61.33%	61.33%	1.66%				
Pend (Learned)	81.44%			1.25%				
Acro (LQR)	10.94%	73.16%	74.34%	3.64%				
Acro (Hybrid)	86.21%			1.25%				
Ack (LQR)	83.03%	82.87%	82.87%	100%				
Ack (Corke)	27.81%		29.35%	$\mathbf{24.5\%}$				
Ack (Learned)	8.53%			0.00%				

0		
	c	a
	4	0

Table 2					
Benchmark	L-NN	Ours: MG			
Pend (LQR)	667.1M	6.6 M			
Pend (Learned)	341.9M	6.6 M			
Acro (LQR)	5.7B	1.1B			
Acro (Hybrid)	533M	2.1B			
Ack (LQR)	9.9M	520M			
Ack (Corke)	37.5M	13M			
Ack (Learned)	704.6M	520 M			

Acro (Hybrid)

Table 1							
Benchmark	L-NN ^[1]	L-LQR/S	OS	TopMG	GPMG		
Quad (Learned)	-	N.A.		-	1.0		
Pend (LQR)	0.98	0.7 / 0.03		0.97	0.91		
Car (Learned)	-	N.A.		1.0	1.0		
Land (TOC)	-	N.A.		1.0	0.79		
Ack (Learned)	0.91	N.A.		1.0	1.0		
Acro (LQR)	0.89	0.27 / 0.26		0.96	1.0		
Acro (Hybrid)	0.14	N.A.		0.99	1.0		
Table 2							
Benchmark	L-NN ^[1]	TopMG	Ours: GPMG		Dim		
Quad (Learned)	-	-	25,000		2		
Pend (LQR)	667.1M	6.6M	120,000		2		
Car (Learned)	-	6.6M		3,000	3		
Land (TOC)	-	1M	300,000		3		
Ack (Learned)	704.6M	520M	10,000		3		
Acro (LQR)	5.7B	1.1B	1	100,000	4		

2.1B

533M

[1] Richards, Spencer M., Felix Berkenkamp, and Andreas Krause. "The lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems." Conference on Robot Learning. PMLR, 2018.

Ewerton R. Vieira

2.5M

DATA-INSPIKE

Edgar Granados

Aravind Sivaramakrishnan

Yao Song Marcio Gameiro

Konstantin Mischaikow

