A3D3: Accelerating Al Algorithms

Institutions: California Institute of Technology, University of California San Diego, Duke University, University of Illinois Urbana-Champaign, Massachusetts Institute of Technology, University of Minnesota Twin Cities, Purdue University, University of Washington Seattle, University of Wisconsin Madison

A3D3 Institute

Goals: To pursue next generation Al Algorithms combined with next generation processor technology to develop Al algorithms that can be run *Fast* to solve **real-time scientific problems with Al** Domains: High Energy Physics, Multi-Messenger Astronomy, Neuroscience

Data-Driven

Research Domains

A3D3¹ aims to be a nexus for exchanging new ideas, algorithms and tools between scientific domains, AI communities and industry partners for AI-Hardware co-design Our focus is on 3 different scientific domains

Neuroscience We aim to build Al that can perform real-time readout and control of the Brain through Brain Machine Interfaces. We aim to process behaviors for restorative therapy

<figure>

to gain back functions.

Multi-Messenger Astronomy We aim to build AI that can run realtime AI reconstruction of gravitational waves (LIGO), neutrinos (IceCube, DUNE), and telescope signals (ZTF) rapidly. Sending a signal from one experiment to another (LIGO to telescope) can allow for new profound discoveries.

Reward

High Energy Physics We are working on Al algorithms that can process data in sub-microsecond time scales to deal with the ultra low latency challenge needed to process all 40 Million collisions per second with data at over 1 Petabit/second!

etector Ilisions	L1 trigger	high-level trigger	

data analysis

we can run **Fast ML!**

FPGA Tools To perform low latency batch-1 processing of the information we rely on FPGAs with specialized tools we have developed including HLS4ML,qKeras/qONNX,PyL og,ScaleHLS, and more! **As-a-Service Tools** A major goal of our institute is to bring these tools to science as-aservice helps integration, our tools: SONIC,ML4GW,Faast

Flexibility in resource selection
High cost but good for shortterm development

ng)	High Performand Computing (HPC	
election out	 Fair-share schedu GPU clusters 	

Hardware and Electronic Design Automation (EAD) tools

air-share scheduler	Expensive industry
	100IS
SDSC : 220 GPUs	Open source solutions

ML4GW/HERMES - MLOps for fast end-to-end deployment

ML Challenges

- Working to make ML challenges to highlight low latency domain⁴
- Highlight our different scientific domains

 Aiming to connect with MLPerf science & Other organizations aimed at scientific challenges

Computing For Science Algorithms from our computer

 Algorithms from our computer science members can be tuned to achieve optimal low latency and performance for science. Collaboration for success!

References[1] https://a3d3.ai[2] https://fastmachinelearning.org[3] https://arxiv.org/abs/2007.10359[4] https://arxiv.org/abs/2207.07958[5] https://arxiv.org/abs/1804.06913[6] https://torchsparse.mit.edu/[7] https://github.com/hst10/pylog[8] https://github.com/hanchenye/scalehls

