

NA61/SHINE ++ strong interactions program

Maja Maćkowiak-Pawłowska (WUT) for the NA61/SHINE Collaboration

NA6I/SHINE - UNIQUE MULTIPURPOSE FACILITY: Hadron production in hadron-nucleus and nucleus-nucleus collisions at high energies

CERN Prévessin

BEAMLINE

FRN-Meyrin

ACCELERATORS

and the second second second second second

NA61/SHINE++

- Energy scan with light and medium mass ions to study the diagram of strongly interacting matter
- \bullet Measurements of heavy hadron resonances in large statistic p+p interactions
- Measurements with antiproton beams
- Measurements of hadron emission from the LBNF and HYPER-K replica targets
- Data for flux predictions in neutrino experiments using very low energy beams

NA61/SHINE: Heavy-ions current status

Present results on nucleus-nucleus collisions:

- $\bullet\ p{+}p$ and Pb+Pb/Au+Au in broad energy range
- \bullet Be+Be, Ar+Sc and Xe+La in the SPS energy range

Heavy-ions and p+p

Small and heavy systems can be roughly described with the existing most popular models:

- Pb+Pb/Au+Au by PHSD, which includes transition to the QGP phase at high enough energy density,
- p+p by SMASH in lower energies and PHSD in higher energies via string production 5

Intermediate systems

Existing models fail to describe the system size dependence

Possible interpretation of the data

post-LS3 program

Possible explanations - references Onset of strings:

- SMASH: PRC, 94, 5, 054905, 2016 and J. Phys. G, 47, 6, 065101, 202
- UrQMD: Prog. Part. Nucl. Phys., 41, 255–369, 1998 and NPA, 936, 1–5, 2015

Onset of deconfinement:

• SMES: Acta Phys.Polon. B30 (1999) 2705; PHSD: PRC, 78, 034919, 200; and NPA, 831, 215–242, 2009

Onset of QGP fireball:

- colour ropes: NPB, 245, 449-468, 1984.
- string fusion: NPB, 390, 542–558, 1993; PLB, 287, 154–158, 1992; EPJA, 51, 4, 44, 2015; Phys. Rep., 599, 1–50, 2015; and PRD, 103, 9, 094029, 2021.
- core fragmentation: PRL., vol. 98, p. 152301, 2007.
- string melting: PRC, 72, 064901, 2005.
- percolation: EPJC, 32, 547–553, 2004; and PLB, 640, 96–100, 2006.
- AdS/CFT duality: PRC, 90, 1, 014901, 2014; PRD, 90, 2, 025031, 2014; PRC, 92, 1, 014011, 2015

First data-taking after LS2

- Significant increase in the TPC raw data quality (new electronics):
 - Noise reduction
 - Cluster shape improvement
- New DAQ performed better than expected up to 1.6 kHz event rate for p+C interactions

Success of the detector upgrade

The same detector set-up is planned for the post-LS3 measurements

Proposal to **measure** collisions of **light** and **intermediate** mass nuclei

p _{beam} (A GeV/c)	$p_{\text{beam}} = \sqrt{s_{NN}} A \text{ GeV/c}$ (GeV)		¹⁶ O # days	²⁴ Mg # days	⁴⁰ Ar # days	
13	5.1	7	7	7	7	
30	7.6	7	7	7	7	
150	16.8	7	7	7	7	

- $\bullet~\sim$ 100M events per reaction
- ¹⁶O beam already in 2024?

Primary vs secondary beams

Note, LHC and NA60++ request Pb beam. Can NA61++ use fragmented Pb instead of primary beam?

Experience shows the superiority of primary over secondary beams

In case of secondary beams, beam identification and separation between isotopes becomes a problem.

Fraction of Be/all \approx 3-5%

Primary and secondary beams - future

- $\bullet\,$ Primary beams of $^{10}\text{B},\,^{16}\text{O},\,^{24}\text{Mg}$ and ^{40}Ar are considered
 - there is presently no separate source test stand for source or beam developments \rightarrow all tests have to be done on operational source.
 - need of extended beam diagnostics at source
- Secondary ⁴He beam under consideration
 - $+ \,$ possibility to separate He from d and Li
 - no separation 4 He from 3 He?

NA61++ and NA60++ post LS3 requests **String**

	NA61++	NA60++			
objective	phase diagram	charmonia			
	studies	and open-charm production			
beams	10 B (primary)/ ⁴ He(secondary),				
	¹⁶ O,	Pb			
	²⁴ Mg(primary),				
	⁴⁰ Ar(primary)				

Complementary programs

Possible targets

- For each beam ion candidate, the target with similar or a bit higher nuclear mass is desired.
- $\bullet\,$ The solid/compact targets are in favor due to possibility of installation in VD.

projectile		4 He $/^{1}$	⁰ B				¹⁶ O			^{24}Mg		⁴⁰ Ar	
target	⁴ He(liquid),	/ ⁹ B	e- ¹²	C	¹⁶ O(water)		³² S		⁴⁵ Sc			
		⁷ Li				¹⁹ F (LiF)			²⁴ Mg		40	⁴⁰ Ca	
i. H	I								-		_		
Neptregen 2 1008 IIA								13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Hellum 4.002s 2
3 Lington 1 1 1 1 1 1 1 1 1 1 1 1 1							reperties	S B Beron Mali 23	Carbon 12.00 24	7 N Mitragan M.8007 24	в О Стурет 15.999 24	Phonine Marries 31	10 Ne 20100 24
Na Mg	Adulte estimates Transformetals Transf									Čl	År		
223 34475 243 2441 2442 1442 IIIB	IVB VB	VIB VIIB	VIIIB	VIIIB	VIIIB	IB	IIB	26.982	28085	30,974	32.86	25.45 2-8-7	28 948 244
K Ca Sc	Ťi Ÿ	Cr Mn	Fe	Сo	Ňi	Cu	Zn	Ga	Ge	Âs	Se	Br	Kr
Potassium Calcium Scandium 37.5193 46.9378 44.95598 24.61 24.62 24.42	Titanium Vanadium 47.843 56.945 2-6-10-2 2-6-10-2	Chromium Manganese 51,9941 54,938044 24/51 24/52	Iron \$5.845 3-8-10-2	Cobalit 54,923 2-8-8-2	Nickel 58,493 2-5-16-2	Copper 63344 24/8-1	Zine 45.38 2-5-15-2	Gallium 48.323 2-8-8-3	Germanium 72,433 3-8-8-4	Arsenic 34,922 2-8-8-5	Selenium 28,971 2-8-8-6	79.904 245-18-7	83798 24-84

Water target for ¹⁶O beam

- For 10% interaction probability \sim 10 cm³ of water is needed (2.5x2.5x1.58 m^3),
- Water-tight container needed (bigger volume to eliminate interactions with walls?); can be installed in VD,
- $\bullet\,$ clear separation of central O+O from O+H background:

• Fraction of O+O interactions below the energy deposited in O+H interactions estimated with RQMD.RMF model (SPSC-P-330-ADD-13):

pxygen beam (GeV/c)
$$13A$$
 $30A$ $150A$ PSD upper cut(GeV) 120 380 2300 fraction (%) 12 16 17

16

Summary

- The physics case for studying the light and intermediate-mass nuclei collisions is study of the onset of fireball.
- Rough plan of the measurements was presented.
- Further beam/source studies are needed, and any input/improvement is most welcome!
- Next steps:
 - Decision on the continuation of NA61/SHINE or a new experiment's proposal in the first half of 2023
 - Addendum or Lol by summer 2023

Thank you

NA61/SHINE would like to thank the CERN EP, BE, HSE and EN Departments for support

Search for the critical point

- No indications of CP so far \rightarrow
- SPS energy range remains possible location of the CP
- Possible CP signatures improvement post-LS3:
 - higher-order moments of multiplicity and net-charges, e.g. stat. uncertainty of κ₄/κ₂[net] for new data drops by 10 (30% → 3%)
 - intermittency depending on the reaction σ_{stat} will drop 3-10 times
 - HBT correlations (for Be+Be current statistics is minimal for analysis)

Model predictions

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark-gluon plasma impact J/Ψ production?

Medium reduces probability of J/Ψ production

$$P(c\overline{c} \rightarrow J/\psi) \equiv rac{\langle J/\psi
angle}{\langle c\overline{c}
angle} \equiv rac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$$

 $P_{vacuum}(c\overline{c}
ightarrow J/\psi) > P_{medium}(c\overline{c}
ightarrow J/\psi)$

Low-Energy Beamline Project

- \bullet A new tertiary low-E (1-20GeV) hadron beamline at CERN SPS H2 (same as NA61/SHINE)
- Positive evaluation from the SPSC committee first data-taking planned in 2024 (depending on funding) CERN-SPSC-2021-028; CERN-SPSC-2022-022

Improvement of the beam-line

Large emittance of the low-momentum (below 40A GeV/c) ion beams is always a factor reducing the data-taking efficiency

- Ongoing efforts for improvement of the low energy ion beam emittance in SPS and in H2 beam-line in collaboration with BE-OP and BE-EA
- Ongoing efforts in investigating new innovative focusing techniques based on electrostatic lenses ("Gabor-lenses")
- First tests are planned before LS3

Summary

• Status and plans for 2022-2025:

- The detector upgrade is completed.
- First physics data taking in spring 2022
- Ideas for 2027+:
 - Study of the diagram of high-energy nuclear collisions energy scan with low and medium mass ions
 - Measurements of heavy hadrons and resonances in large statistics p+p interactions
 - ► Measurements with anti-proton beams
 - ► Hadron emission study using replica targets from the LBNF and HYPER-K
 - Measurements to improve quality of flux predictions in neutrino experiments using very low energy beams

Multi-strange particles in NA61/SHINE -there is more

 The only results on Ξ⁰(1530) production in p + p in the SPS energy range
 Other existing results on

• Other existing results on $\equiv^{0}(1530)$ production only by ALICE at $\sqrt{s_{NN}} = 7$ TeV

Eur.Phys.J.C 81 (2021) 911

• Study of exotic baryons requires a large-statistics data sample