

Phase transitions, chiral symmetries

Elena Bratkovskaya (GSI, Darmstadt & Uni. Frankfurt)

for the PHSD group

NA61++/SHINE: Physics opportunities from ions to pions

15-17 December, CERN

1

The phase diagram of QCD \rightarrow thermal properties of QCD in the (T, μ_B) plain

Information from lattice QCD

□ Scalar quark condensate $\langle q\bar{q} \rangle$ is viewed as an order parameter for the restoration of chiral symmetry: $\langle \bar{q}q \rangle = \begin{cases} \neq 0 & \text{chiral non-symmetric phase;} \\ = 0 & \text{chiral symmetric phase.} \end{cases}$

 \rightarrow both transitions occur at about the same temperature T_c for low chemical potentials

Hadron-string transport models (HSD, UrQMD) versus observables at ~ 2000

Exp. data are not reproduced in terms of the hadron-string picture
→ evidence for partonic degrees of freedom + ?!

NA49: PRC66 (2002) 054902

HSD, UrQMD: PRC 69 (2004) 032302

The goal:

to study the properties of strongly interacting matter under extreme conditions from a microscopic point of view

Realization:

to develop a dynamical many-body transport approach 1) applicable for strongly interacting systems, which includes: 2) phase transition from hadronic matter to QGP

3) chiral symmetry restoration

The tool: PHSD approach

2004-2022

Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Initial A+A collisions :

 $N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons$

Partonic phase

Partonic phase - QGP:

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

 Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

dissolution of pre-hadrons \rightarrow partons

- Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase

Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD

PHSD

Non-equilibrium dynamics: description of A+A with PHSD

PHSD: highlights

V. Konchakovski et al., PRC 85 (2012) 011902; JPG42 (2015) 055106; Astr. Nachr. 342 (2021) 715

PHSD provides a good description of ,bulk' observables (y-, p_T -distributions, flow coefficients v_n , ...) from SIS to LHC

PHSD: even when considering the creation of a QGP phase, the K⁺/ π ⁺,horn⁺ seen experimentally by NA49 and STAR at a bombarding energy ~30 A GeV (FAIR/NICA energies!) remains unexplained !

➔ The origin of 'horn' is not traced back to deconfinement ?!

W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya, PRC 93, 014902 (2016)

Chiral symmetry restoration via Schwinger mechanism

□ Initial stage of HIC: string formation

□ the ,flavor chemistry' of the final hadrons in the PHSD is mainly defined by the LUND string model

□ 'quark flavor chemistry' in the LUND model is determined by the Schwinger-formula

□ According to the Schwinger-formula, the probability to form a massive $s\overline{s}$ pair in a string-decay is suppressed in comparison to a light flavor pair $(u\overline{u}, d\overline{d})$:

$$\frac{P(s\bar{s})}{P(u\bar{u})} = \frac{P(s\bar{s})}{P(d\bar{d})} = \gamma_s = \exp\left(-\pi \frac{m_s^2 - m_q^2}{2\kappa}\right)$$

with κ - string tension; in vacuum: κ ~0.9 GeV/fm=0.176GeV²

☐ m_s, m_q (q=u,d) – constituent ('dressed') quark masses

 m_s , m_a (q=u,d) – constituent ('dressed') quark masses: 'dressing' of bare quark masses is due to the coupling to the scalar quark condensate $\langle q\bar{q} \rangle$:

In vacuum (e.g. p+p collisions) :

$$m_q^V = m_q^0 - g_s < q\overline{q} >_V$$

bare quark masses:

$$V \equiv vacuum$$

$$(V) \equiv vacuum$$

 $m_u^0 = m_d^0 \approx 7 \, MeV, \ m_s^0 \approx 100 \, MeV$

vacuum scalar quark condensate fixed from Gell-Mann-Oakes-Renner relation $f_{\pi}^2 m_{\pi}^2 = -rac{1}{2}(m_u^0 + m_d^0) < ar{q}q >_V$ $\langle q\bar{q} \rangle_{V} \approx -3.2 fm^{-3}$

Constituent quark masses in vacuum :

$$(\mathbf{m}_{q} \equiv \mathbf{m}_{q}^{V}) \quad \boldsymbol{m}_{u}^{V} = \boldsymbol{m}_{d}^{V} \approx \boldsymbol{0.35 GeV}, \quad \boldsymbol{m}_{s}^{V} \approx \boldsymbol{0.5 GeV}$$

II. In medium (e.g. A+A collisions) :

In the presence of a hot and dense hadronic medium, the degrees of freedom modify their properties, e.g. the in-medium constituent quark masses:

$$m_q^* = m_q^0 + (m_q^V - m_q^0) \frac{\langle q\overline{q} \rangle}{\langle q\overline{q} \rangle_V}$$

* mean-field results (1PI)

The behavior of the scalar quark condensate $\langle q \overline{q} \rangle$ in the hadronic medium (baryons + mesons) can be obtained e.g. from

B. Friman et al., Eur. Phys. J. A 3, 165, 1998

non-linear $\sigma - \omega$ model: where $\Sigma_{\pi} \approx 45 \text{ MeV}$ is the pion-nucleon Σ -term, $\frac{\langle qq \rangle}{\langle q\bar{q} \rangle_V} = 1 - \frac{\Sigma_\pi}{f_\pi^2 m_\pi^2} \rho_S - \sum_r \frac{\sigma_h \rho_S''}{f_\pi^2 m_\pi^2}$ $\sigma_{\rm h} = m_{\pi}/2$ for light mesons; $=m_{\pi}/4$ - strange mesons baryonic mesonic Scalar field $\sigma(x)$ mediates the scalar medium medium interaction of baryons with the surrounding medium with a g, coupling 1) ρ_s is the scalar density of baryonic matter : from PHSD from non-linear $\sigma - \omega$ model: $m_{\sigma}^{2}\sigma(x) + B\sigma^{2}(x) + C\sigma^{3}(x) = g_{s}\rho_{S} = g_{s}d \int \frac{d^{3}p}{(2\pi)^{3}} \frac{m_{N}^{*}(x)}{\sqrt{p^{2} + m_{N}^{*2}}} f_{N}(x,\mathbf{p})$ $m_{N}^{*}(x) = m_{N}^{V} - g_{s}\sigma(x)$ $\Box \sigma(x)$ is determined locally by solution of the nonlinear gap equation ;

□ parameters $g_{s_j} m_{\sigma}$, B, C are fixed to reproduce the main nuclear matter quantities, i.e. saturation density, binding energy per nucleon, compression modulus and the effective nucleon mass.

2) ρ_s^{h} is the scalar density of mesons of type $h \rightarrow$ from PHSD

Scalar quark condensate in the hadronic medium

PHSD: Ratio of the scalar quark condensate $< q \bar{q} >$

$$< q \bar{q} > V$$

compared to the vacuum as a function of *x,z* (*y*=0) at different time *t* for central Au+Au collisions at 30 AGeV

□ restoration of chiral symmetry: $\langle q\overline{q}\rangle/\langle q\overline{q}\rangle_V \rightarrow 0$

W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya, PRC 93, 014902 (2016), arXiv:1510.04120

Chiral symmetry restoration vs. deconfinement

□ Chiral symmetry restoration via Schwinger mechanism (and non-linear $\sigma - \omega$ model) changes the "flavour chemistry" in string fragmentation (1PI): $\langle q \overline{q} \rangle / \langle q \overline{q} \rangle_V \rightarrow 0 \rightarrow m_s^* \rightarrow m_s^0 \rightarrow s/u \text{ grows}$

→ the strangeness production probability increases with the local energy density ε (up to ε_c) due to the partial chiral symmetry restoration!

The strange quark number N_s as a function of time in 5% central Au+Au collision at 30 AGeV

Chiral symmetry restoration leads to the enhancement of strangeness production during the string fragmentation in the beginning of HIC in the hadronic phase

PHSN

Excitation function of hadron ratios and yields

Chiral symmetry restoration leads to the enhancement of strangeness production in string fragmentation in the beginning of HICs in the hadronic phase. → The "horn" structure is due to the interplay between CSR and deconfinement (QGP)

Sensitivity to the system size: A+A collisions

A. Palmese et al., PRC94 (2016) 044912 , arXiv:1607.04073

If the system size is smalle

- **The peak of K+/\pi+ disappears**
- □ the peak of $(\Lambda + \Sigma^0)/\pi$ remains in the same position in energy, but getting smaller

□ In p+A collisions strange to non-strange particle ratios show no peaks

6

A. Palmese et al., PRC94 (2016) 044912 , arXiv:1607.04073

m_T spectra of pions and K^{+/-} at AGS-SPS energies

B

→ Hardening of m_T spectra of pions and kaons with increasing beam energy due to the growing fraction of the QGP

Excitation function of T_{eff}

Alessia Palmese

→ Increase of slope Teff due to the QGP

→ Small effect of chiral symmetry restoration on slope Teff

Elementary p+p, p+n reactions: PHSD "tune" of LUND model (PYTHIA, FRITIOF)

V. Kireyeu, I. Grishmanovskii, V. Kolesnikov, V. Voronyuk, and E. B., Eur.Phys.J.A 56 (2020) 223; e-Print:2006.14739 [hep-ph]

Elementary reactions p+p, p+n, n+n

Existing experimental data on p+p are pure Practically NO data on p+n reactions

V. Kireyeu et al., Eur.Phys.J.A 56 (2020) 223

➔ NA61++ can improve the situation with p+p data

- The strangeness 'enhancement' ('horn') seen experimentally by NA49 and STAR at a bombarding energy ~20-30 A GeV (FAIR/NICA energies!) cannot be attributed only to the deconfinement
- □ Including essential aspects of chiral symmetry restoration in the hadronic phase, we observe a rise in the K^+/π^+ ratio at low $\sqrt{s_{NN}}$ and then a drop due to the appearance of a deconfined partonic QGP medium
- → the ,horn' structure is due to the interplay between CSR and deconfinement (QGP)

❑ Harderning of m_T spectra due to the QGP

Outlook

HIC's:

- Explore experimentally different strangeness observables: yields, ratios K⁺/π⁺, K⁻/π⁻ and (Λ+Σ⁰)/π as well as y- and p_T – distributions and flow harmonics v_n
- from heavy A+A to light A+A
- for p+A
- ➔ system size scan
- The experimental data on p+p and p+n are needed!

Cosmic rays:

can help to understand meson+baryon reactions (which are secondary elementary reactions in HIC's)

 \rightarrow study K⁻ + A, π ⁻ + A reactions

