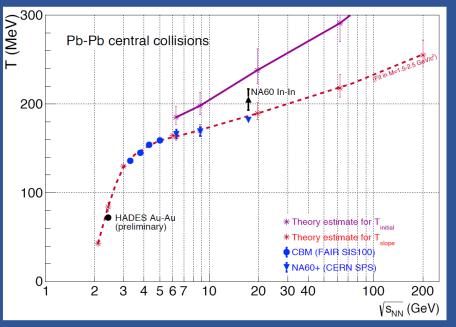
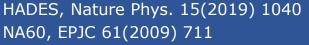

An(other) heavy-ion collision experiment at the CERN SPS: NA60+

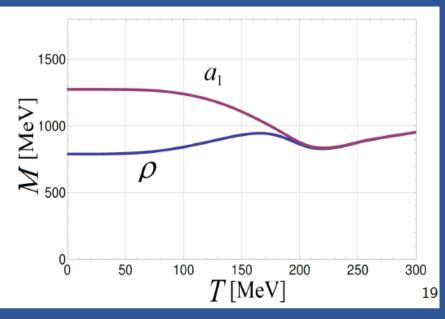
A new experiment at the CERN SPS


- □ Aim: perform accurate measurements of the dimuon spectrum from threshold up to the charmonium mass region, and of hadronic decays of charm and strange hadrons
- Energy scan with a Pb beam from top SPS energy ($\sqrt{s_{NN}}=17$ GeV) down to $\sqrt{s_{NN}}\sim 6$ GeV ($E_{lab}\sim 20$ A GeV)
- □ Based on a muon spectrometer (toroid field) coupled to a vertex spectrometer (dipole field) □ High luminosity, to access rare probes of QGP $\rightarrow \sim 10^6 \text{ s}^{-1}$ Pb ions/s



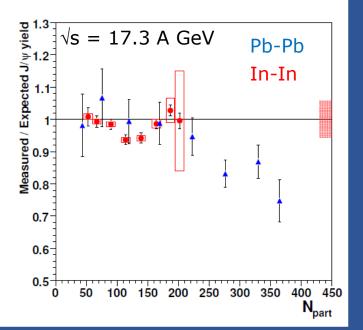
The "pillars" of the NA60+ physics case

Measure:


- Thermal dimuons from QGP/hadronic phase: caloric curve for first order transition
- ρ-a₁ modifications: chiral symmetry restoration
- Quarkonium suppression: signal of deconfinement
- Hadronic decays of charmed mesons/baryons: QGP transport coefficients

Extract temperature via fit $dN/dM \propto M^{3/2}exp(-M/T_s)$ \rightarrow Possible flattening in \sqrt{s} -dependence of T_s

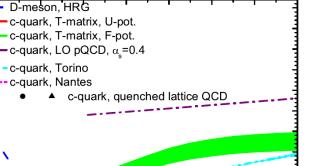
> Full chiral ρ -a₁ mixing → dimuon enhancement in the region $1 < M < 1.4 \text{ GeV/c}^2$

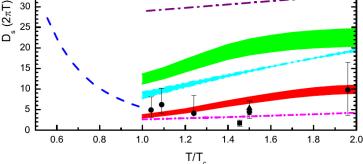

C. Jung et al., PRD 95 (2017) 036020

The "pillars" of the NA60+ physics case

Measure:

- Thermal dimuons from QGP/hadronic phase: caloric curve for first order transition
- ρ - a_1 modifications: chiral symmetry restoration
- Quarkonium suppression: signal of deconfinement
- Hadronic decays of charmed mesons/baryons: QGP transport coefficients

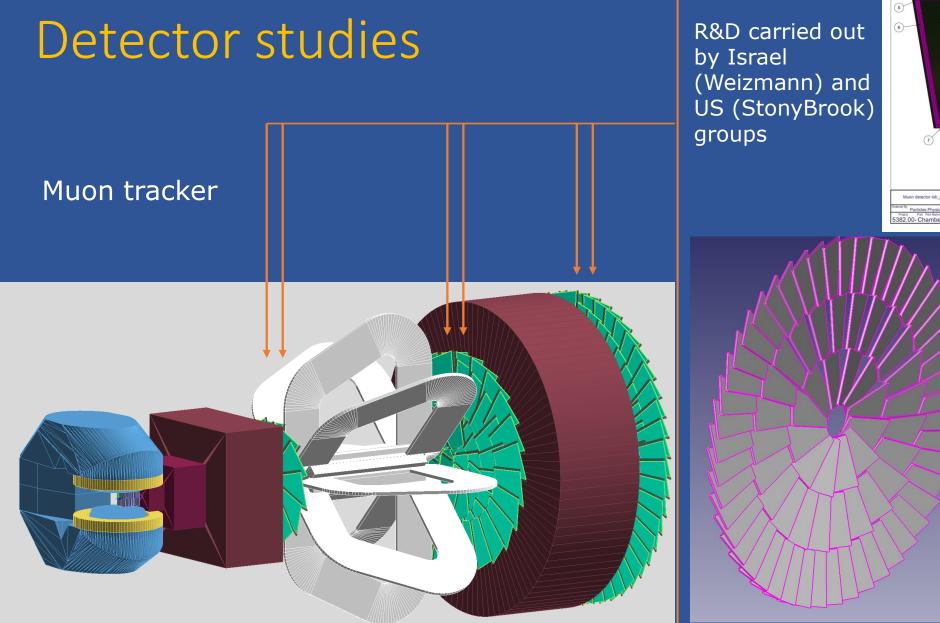

F. Prino and R. Rapp, J.Phys.G 43 (2016) 9, 093002

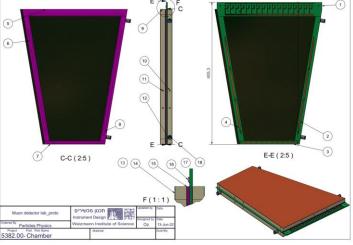


R. Arnaldi et al. (NA60), NPA830 (2009) 345

Explore the centrality
dependence of J/ψ
suppression vs √s
→ Detect deconfinement
threshold and correlate with T

Measure 2 and 3 prong decays of charmed mesons and baryons $\rightarrow R_{AA}, v_2$: transport coefficients $\rightarrow A$ D D : study badronization

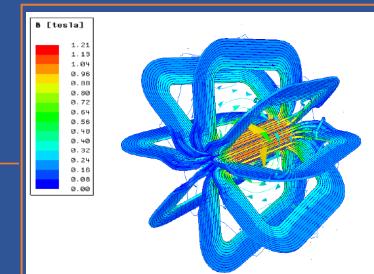



 $\rightarrow \Lambda_c$, D, D_s : study hadronization mechanisms

F. Scardina et al., PRC96 (2017) 044905

Also study strangeness production \rightarrow hadronic decays of K_S^0 , ϕ and hyperons

E. Scomparin – INFN Torino



- Relatively low incident flux: <2kHz/cm²
- Considering MWPC and/or GEM options
- First MWPC prototype on SPS test beam at the beginning of 2023

Complete spectrometer \rightarrow 264 modules \rightarrow ~100 m² surface

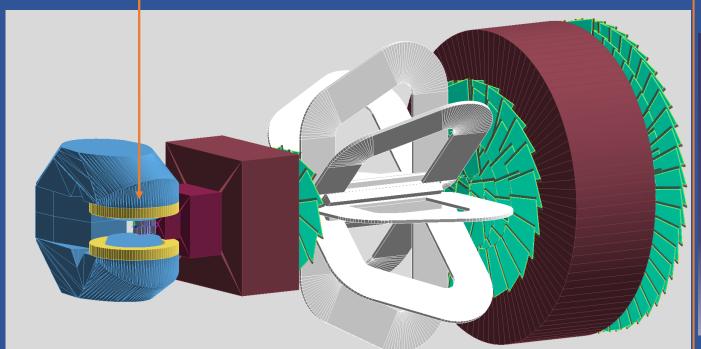
Detector studies

Toroidal magnet

Warm pulsed magnet \rightarrow 0.5 T over 120 m³

Eight sectors, 12 turns each

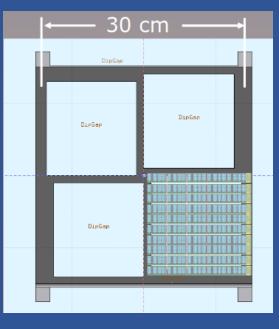
Current \rightarrow 190 kA, total power 3 MW


Demonstrator (scale 1:5) constructed and tested (CERN/INFN) → cross-check of various aspects of the design

Measurements of the magnetic field in the prototype in agreement with simulations within 3%

Detector studies

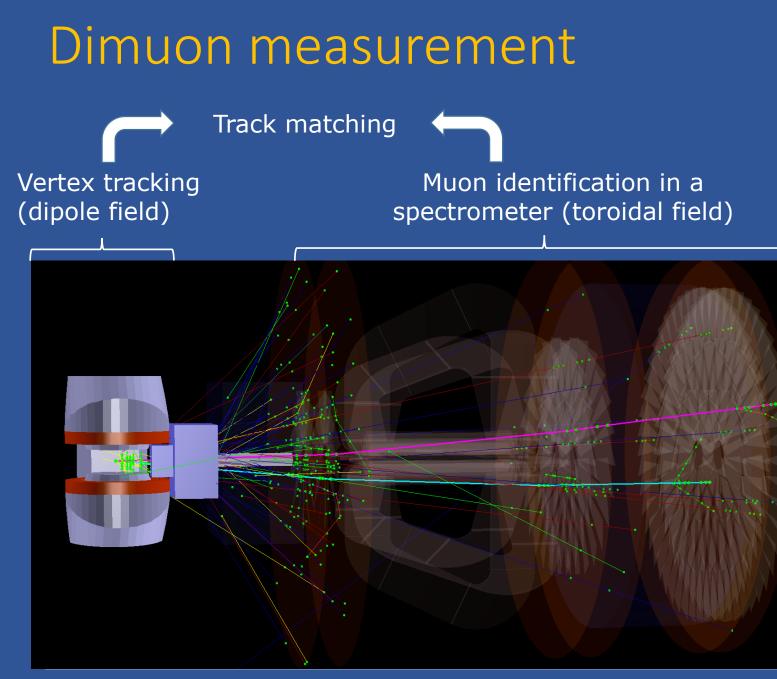
Vertex spectrometer



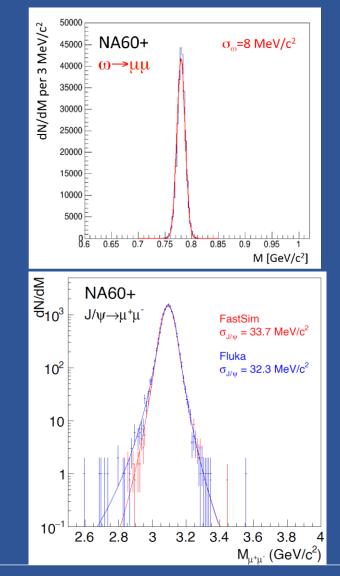
Common development ALICE → NA60+, state-of-the-art imaging technology TowerJazz 65 nm

Sensor thickness: few tens of μ m of silicon \rightarrow material budget < 0.1% X₀

Spatial resolution 5 µm

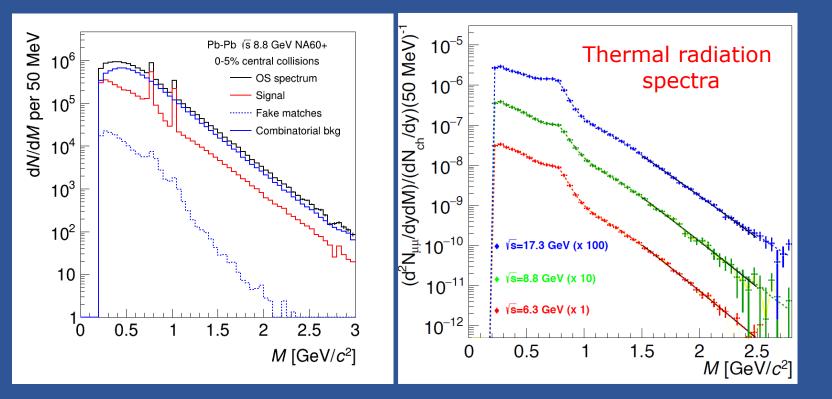


Cooling studies for NA60+ geometry \rightarrow mixed air+fluid


Four sensors per station

Five to ten stations in the spectrometer

MEP48 dipole magnet



Track matching: measure muon kinematics before multiple scattering and energy loss

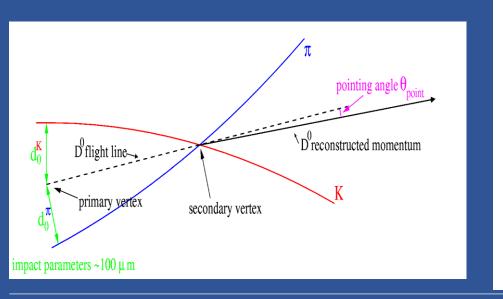
E. Scomparin – INFN Torino

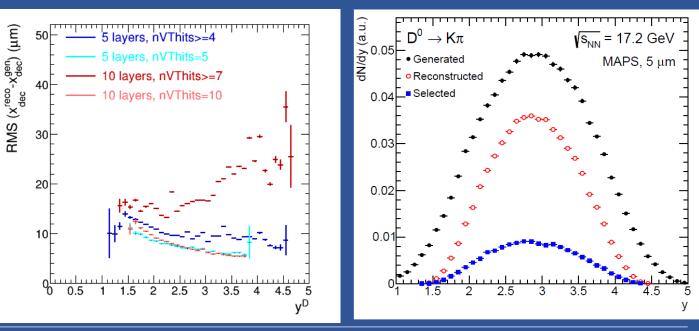
Dilepton spectrum

	Energy (GeV)	Thermal pairs	T _{slope}
2 months —	6.3	$3.52 \cdot 10^{6}$	$166 \pm 4.7 \pm 1$
1 month 🧲	8.8	$3.56 \cdot 10^{6}$	$169 \pm 4.4 \pm 1$
	17.3	$9.70 \cdot 10^{6}$	$182\pm1.8\pm1$

- Thermal radiation yield
 Dominated by ρ
 - contribution at low mass
 - □ Accessible up to M=2.5-3 GeV/c²
- ❑ Drell-Yan contribution
 → to be also estimated via p-A measurements
- Open charm Negligible dimuon source

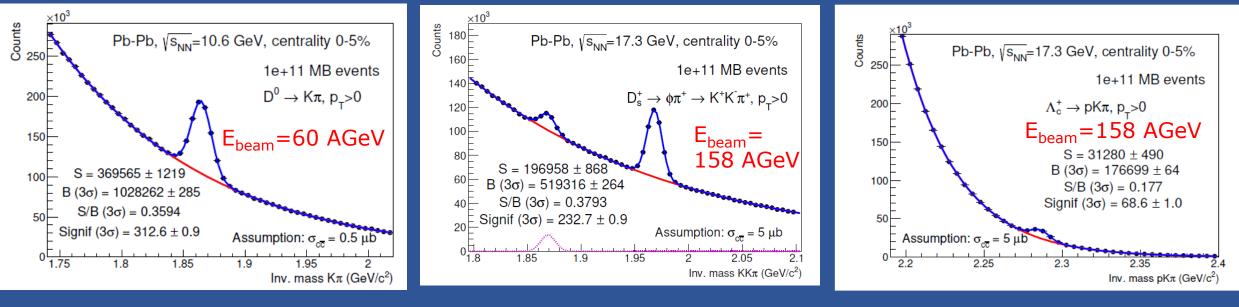
 ${\sim}1{\text{-}}3\%$ uncertainty on the evaluation of ${\rm T_{slope}}$


Accurate mapping of the region where T_{pc} is reached → Strong **sensitivity** to possible flattening due to 1st order transition


D-meson performance studies

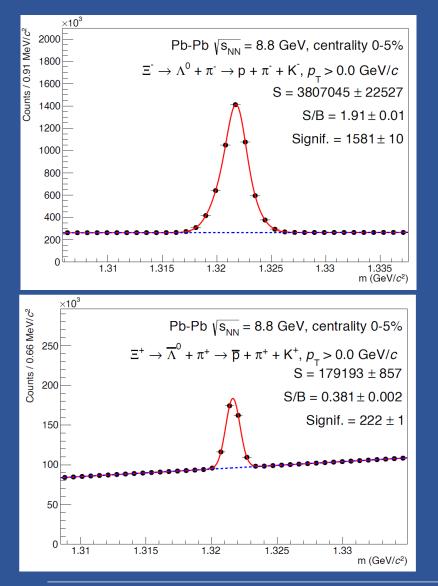
□ Fast simulations for central Pb-Pb collisions:

- \Box D-meson signal simulation: p_T and y distributions from POWHEG-BOX+PYTHIA
- \Box Combinatorial background: dN/dp_T and dN/dy of p, K and p from NA49
- □ Parametrized simulation of VT detector resolution + track reconstruction with Kalman filter
- □ Reconstruct D-meson decay vertex from decay tracks
- Geometrical selections based on displaced decay vertex topology
 - \Box For D⁰ in central Pb-Pb:
 - \Box initial S/B ~10⁻⁷


 $\Box \rightarrow$ after selections S/B ~ 0.5

Charm hadrons: performance plots

□ With 10¹¹ minimum bias Pb-Pb collisions (1 month of data taking)
 □ More than 3·10⁶ reconstructed D⁰ in central Pb-Pb collisions at √s_{NN}=17.3 GeV
 □ Allows for differential studies of yield and v₂ vs. p_T, y and centrality
 □ D⁰ accessible also at lower collision energies with statistical precision at the percent level
 □ Measurement of D_s yield feasible with statistical precision of few percent
 □ Λ_c baryon also accessible, possible improvement using timing layers under study



 $D^0 \rightarrow K\pi$

 $D_s^+ \rightarrow \Phi \pi \rightarrow KK\pi$

An(other) heavy-ion experiment: NA60+ CERN, December 15-17, 2022 $\Lambda_{c}^{+} \rightarrow \mathsf{D} \mathsf{K} \pi$

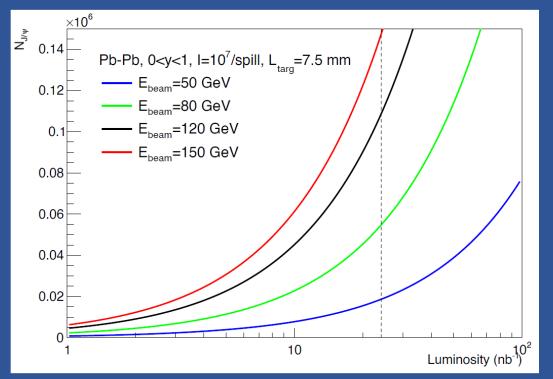
Strangeness measurements: hyperons

□ Hyperon decays simulated with EVtGen, decay products propagated in the VT using the fast simulation of NA60+
 □ Background from hadron production → NA49 results

□ Channels studied

$$\Lambda^0 o p + \pi^ \Xi^- o \Lambda^0 + \pi^ \Omega^- o \Lambda^0 + K^-$$

and charge conjugated

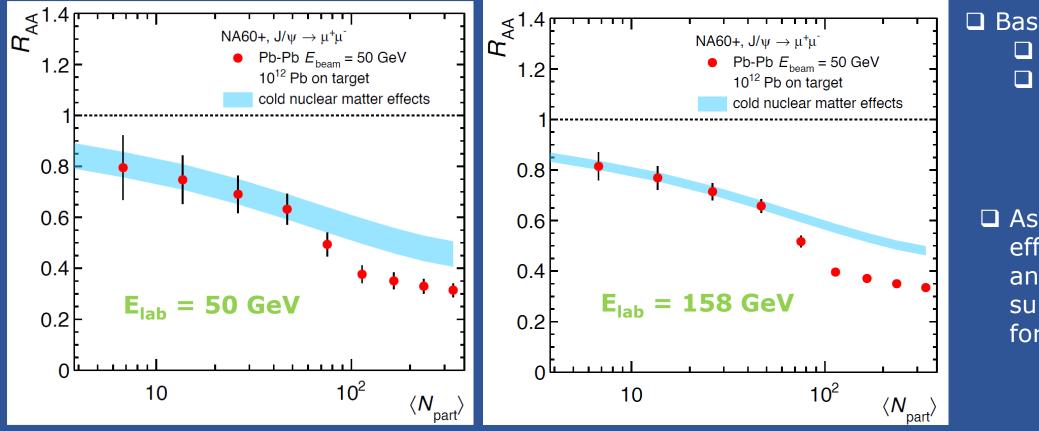

Topological selections applied

BDT employed to enhance the significance of the signal

- □ Among the variables:
 - □ Product of the impact parameter of decay tracks,
 - □ Distance of closest approac between the decay tracks
 - Decay length and the cosine of the pointing angle

□ Also $\phi \rightarrow KK$ and $K_s \rightarrow \pi\pi$ were studied

J/ψ in Pb-Pb collisions at (various) SPS energies



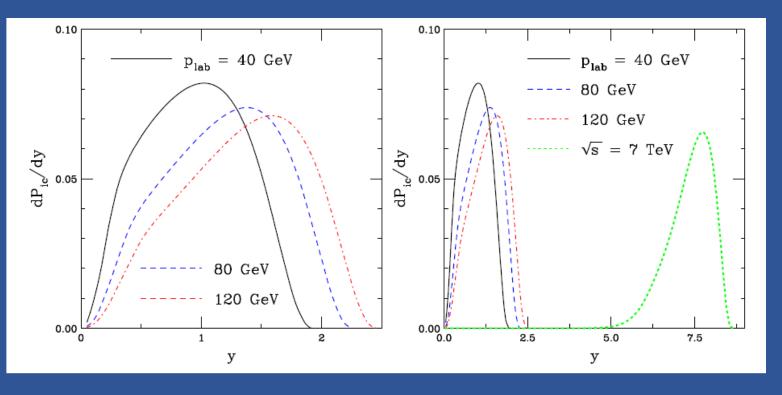
□ With ~10¹² incident Pb on a7.5mm Pb target (1month of data taking) $\rightarrow L_{int} \sim 24 \text{ nb}^{-1} \text{ NA60+ can aim at}$ □ ~0(10⁴) J/ ψ at 50 GeV □ ~0(10⁵) J/ ψ at 158 GeV

N.B.: a factor 3 overall suppression (CNM + QGP) is assumed in these estimates

Quarkonium production not studied below top SPS energies! Perform an energy scan in $E_{lab} = 20 - 158 \text{ GeV}$ \Box Decreasing \sqrt{s} : **Onset of** χ_c and $\psi(2S)$ melting \rightarrow to be correlated to T measurement via thermal dimuons Stronger CNM effects \rightarrow to be accounted for with pA data taking at the same \sqrt{s}

NA60+, R_{AA} estimate

Based on
 10¹² incident Pb
 pA reference:
 5 10¹³ incident p

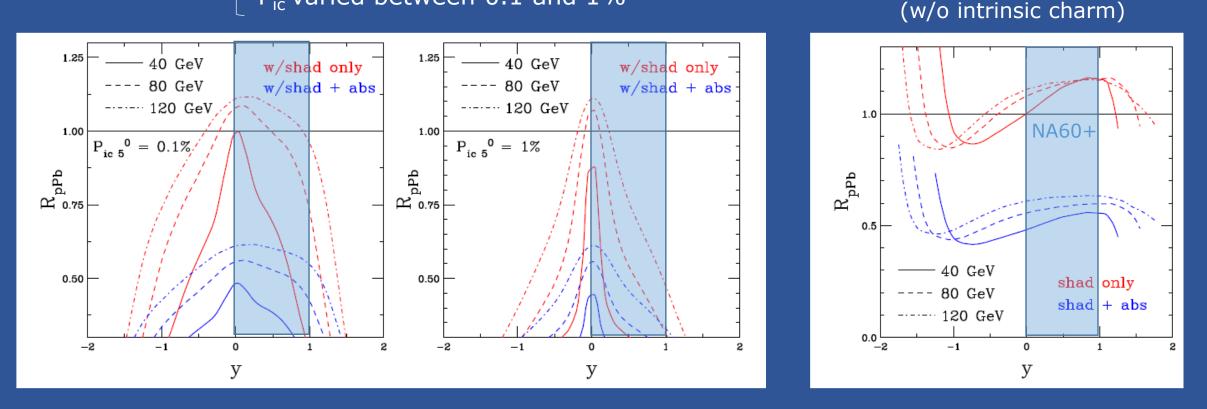

 Assume only CNM effects for N_{part}<50 and 20% extra suppression in Pb-Pb for N_{part}>50

\rightarrow Precise evaluation of anomalous suppression within reach even at low energy

Low- $\sqrt{s} J/\psi$: studying intrinsic charm

Intrinsic charm component of the hadron wavefunction |uudcc>
 Leads to enhanced charm production in the forward region

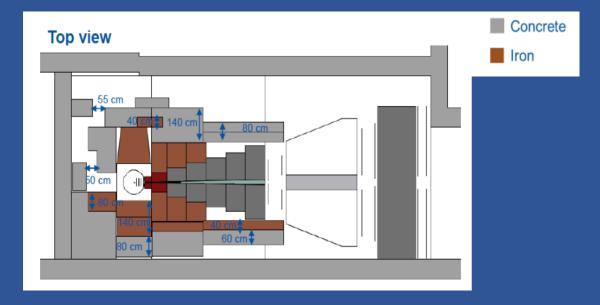
□ Hints from several experiments, but no conclusive results
 □ At colliders, forward x_F pushed to very high rapidity, difficult to measure
 → fixed-target configurations more appropriate

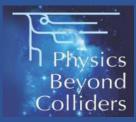

Assumed intrinsic charm content varied between 0.1% and 1%

R. Vogt, PRC 103, 035204 (2021) R. Vogt, arXiv:2207.04347

Low- $\sqrt{s} J/\psi$: studying intrinsic charm

p-Pb collisions

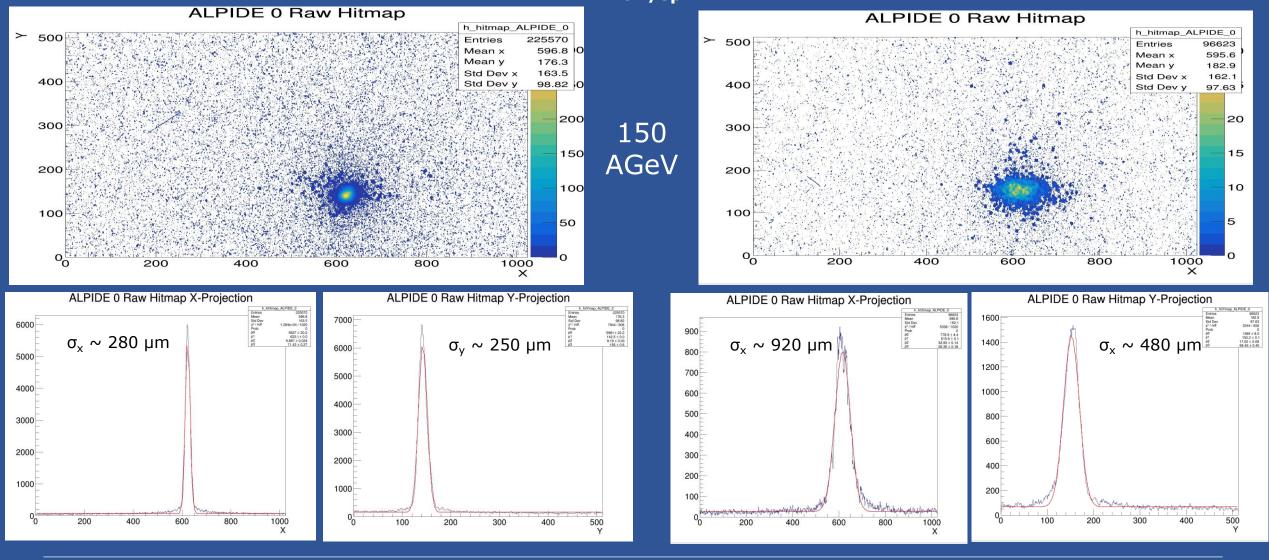

EPPS16 shadowing σ_{abs} = 9,10,11 mb at E_{lab} =120, 80, 40 GeV P_{ic} varied between 0.1 and 1%


 \Box R_{pPb} shape is dominated by intrinsic charm, already with P_{ic}=0.1%

Installation, beam, planning

- The experiment will be installed in the PPE138 experimental area in the SPS Nort Hall (H8 beam)
 Integration studies, including radioprotection
- aspects (shieldings), already quite advanced

□ Sub-mm beam optics was designed $(\sigma_x \sim \sigma_y \sim 0.2-0.4 \text{ mm down to low SPS energy})$ → tested in November at CERN


- Project recognized by CERN in the frame of the "Physics Beyond Collider" initiative
 - \rightarrow important technical support
 - from CERN groups
- □ Expression of Interest: May 2019
- Letter of Intent: ready for submission, by 2022
- Aim at taking first data in 2029 (after LHC long shutdown 3)
- 5-6 years data taking with a 1 month period with a primary Pb ion beam, one energy point per year
- Corresponding data taking with proton beams, for reference and QCD studies

First test beam in the H8 experiment location

Focused optics

Max beam intensity ~ 2 10⁵ /spill

Microcollimator

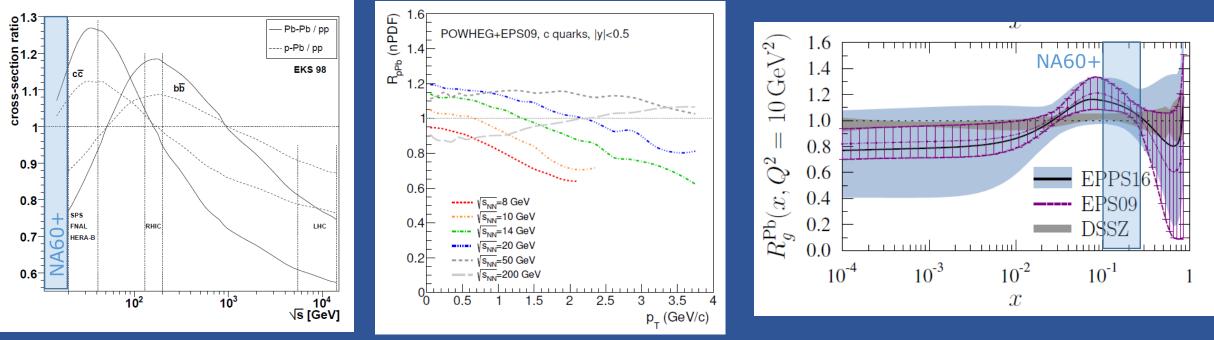
Conclusions

□ In addition to the future NA61++ program being planned in this workshop, the NA60+ project is aiming at a study of physics topics that can be addressed with an energy scan at the CERN SPS → emphasis on rare probes

□ A LoI will be submitted next week, the goal is to take data after LS3

Further discussions on possible synergies with the program of NA61++ will be a very important aspect, with the goal of building a solid ensemble of measurements for the next decade

Backup


Open charm at low √s in pA: nuclear PDFs

□ Sensitivity to **nuclear PDFs in p-A** collisions

 \square Probe EMC and anti-shadowing for $\sqrt{s_{_{\rm NN}}}$ ~ 10-20 GeV

□ Perform measurements with various nuclear targets to access the A-dependence of nPDF

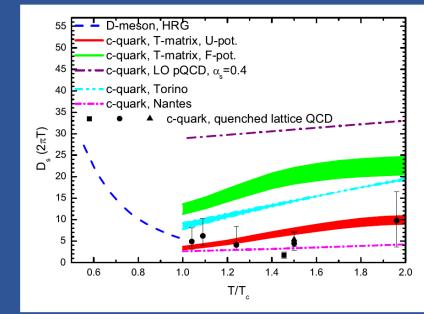
NA60+ offers a unique opportunity to investigate the large x_{Bj} region (study ratio to pA/pBe)
 0.1<x_{Bj}<0.3 at Q²~10-40 GeV²

Eskola et al. , EPJ C77 (2017) 13

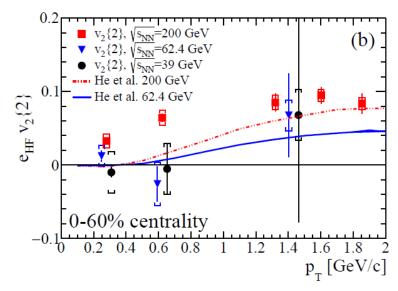
Lourenco, Wohri, Phys.Rept.433 (2006) 127

> An(other) heavy-ion experiment: NA60+ CERN, December 15-17, 2022

E. Scomparin – INFN Torino


Open charm in Pb-Pb: R_{AA} and v_2

□ Insight into **QGP transport properties**

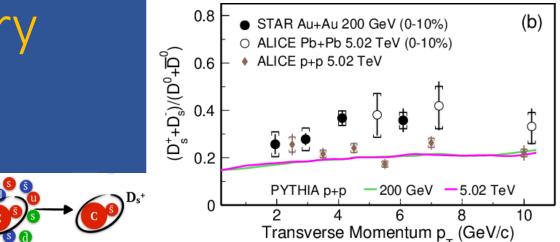

- \square Charm diffusion coefficient larger in the hadronic phase than in the QGP around $T_{\rm c}$
- □ Hadronic phase represents a large part of the collision evolution at SPS energies
 - Sensitivity to hadronic interactions
 - Test models which predict strongest in-medium interactions in the vicinity of the quark-hadron transition
- Measurement also important for precision estimates of diffusion coefficients at the LHC

\Box Study charm thermalization at low \sqrt{s}

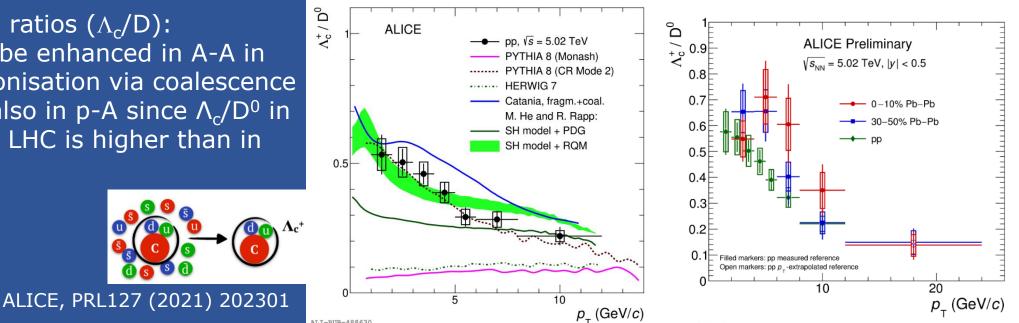
□ Current measurements of HF-decay electron v_2 at $\sqrt{s_{NN}}=39$ and 62 GeV/c from RHIC → Smaller v_2 than at $\sqrt{s}=200$ GeV → Not conclusive on $v_2>0$

Prino, Rapp, JPG43 (2016) 093002

STAR, PRC 95 (2017) 034907


Open charm hadrochemistry

□ Reconstruct different charm hadron species to get insight into hadronization mechanism


 \Box Strange/non-strange meson ratio (D_s/D): □ D_c/D enhancement expected in A-A collisions due to hadronisation via recombination in the strangeness rich QGP

Baryon/meson ratios (Λ_c/D):

□ Expected to be enhanced in A-A in case of hadronisation via coalescence \Box Interesting also in p-A since Λ_c/D^0 in pp (p-Pb) at LHC is higher than in e+e-

STAR, PRL 127 (2021) 092301 ALICE, PLB827 (2022) 136986

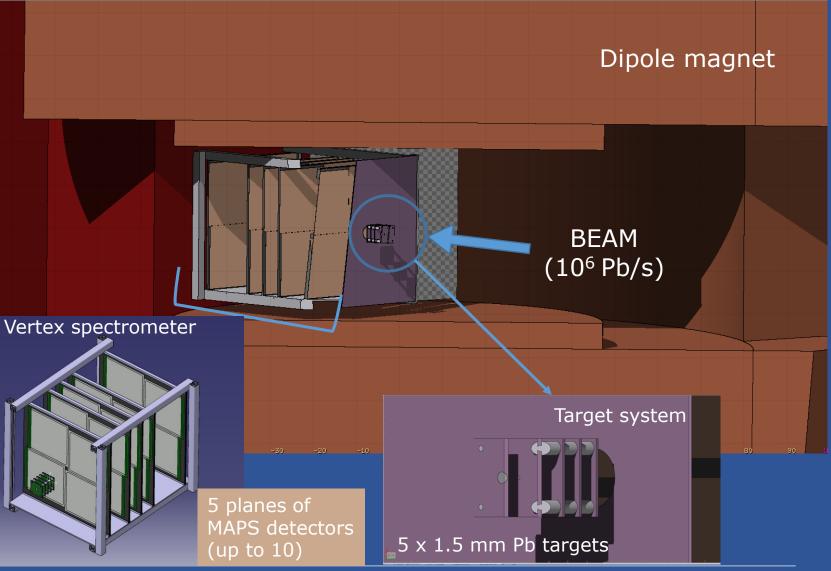
Total charm cross section

□ Total charm cross section in A-A collisions

- Measured so far by NA60 in In-In collisions from intermediate-mass dimuons with 20% precision
 NA60, EPJ C59 (2009) 607
- □ Upper limit from NA49 measurements of D⁰ mesons

NAOU, EPJ C59 (2009) 007

NA49, PRC73 (2006) 034910

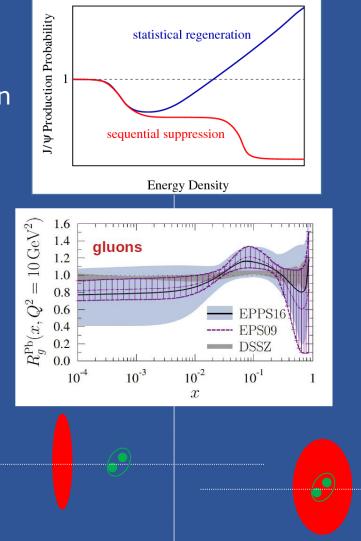

□ Precise measurement requires to reconstruct all meson and baryon ground states (D⁰, D⁺, D_s^+ and Λ_c^+ and their antiparticles)

Charm cross section ideal reference for charmonia

Towards a precise measurement of open charm at SPS energy

A measurement of hadronic decays is required

	Mass MeV)	cτ (μm)	Decay	BR
D ⁰	1865	123	K⁻π⁺	3.95%
D^+	1869	312	$K^{-}\pi^{+}\pi^{+}$	9.38%
D_s^+	1968	147	$\phi\pi^{^{+}}$	2.24%
Λ_{c}^{+}	2285	60	pΚ ⁻ π ⁺ pΚ ⁰ s Λπ ⁺	6.28% 1.59% 1.30%

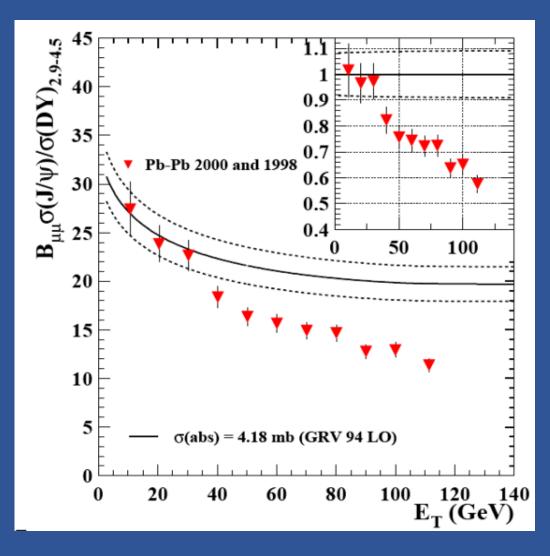

Charmonia: high vs low \sqrt{s}

Hot matter effects: regeneration counterbalances (overcomes) suppression

Collider (LHC)

Initial state effects: shadowing $x \sim 10^{-5} (y \sim 3),$ $x \sim 10^{-3} (y=0),$ $x \sim 10^{-2} (y \sim -3)$

(Final state) CNM effects: negligible, extremely short crossing time $\tau = L/(\beta_z \gamma) \sim 7 \ 10^{-5} \text{ fm/c} (\gamma \sim 3)$ $\tau = L/(\beta_z \gamma) \sim 4 \ 10^{-2} \text{ fm/c} (\gamma \sim -3)$

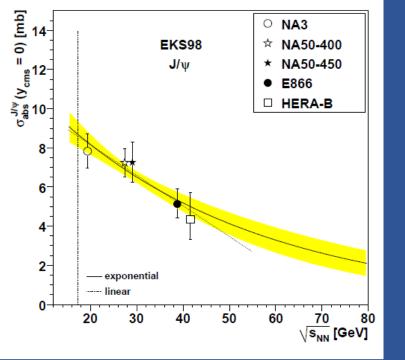

Fixed target (SPS)

Hot matter effects: suppression effects (if existing) dominate

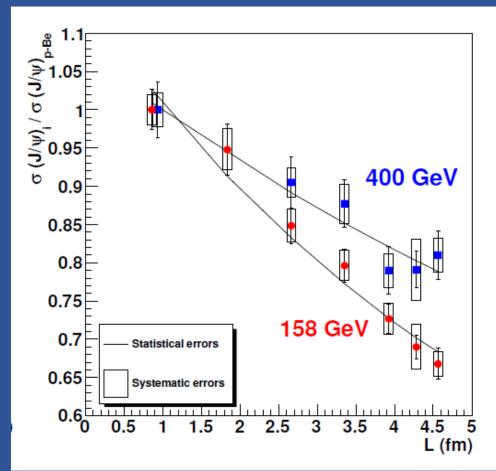
> Initial state effects: moderate anti-shadowing $x \sim 10^{-1} (y=0)$

(Final state) CNM effects: break-up in nuclear matter can be sizeable $\tau = L/(\beta_z \gamma) \sim 0.5 \text{ fm/c}(y=0)$

J/ψ suppression: Pb-Pb at top SPS energy


- □ Contrary to open charm, accurate studies were performed at \sqrt{s} =17.3 GeV (NA50, NA60)
- \Box J/ ψ yields normalized to Drell-Yan reference
- QGP-induced suppression evaluated with respect to a CNM reference obtained with systematic p-A studies
- □ ~30-40% anomalous suppression effect possibly due to disappearance of feed-down from χ_c and $\psi(2S)$

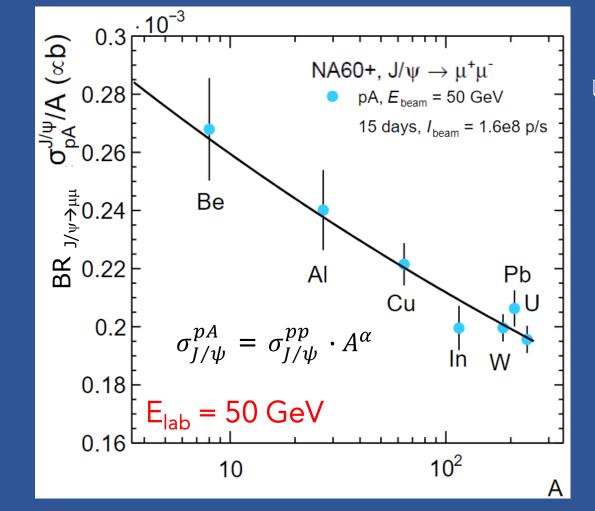
CNM effects are (very) large


❑ Shadowing effects are moderate
 ❑ Dominated by nuclear absorption
 → ~30% effect in p-Pb at √s_{NN} = 17 GeV

□ Strong √s-dependence

 \rightarrow CNM may become the dominant effect at low energy

Lourenco, Vogt, Woehri, JHEP 0902:014,2009



NA60, PLB 706 (2012) 263

L: thickness of nuclear matter crossed by the cc pair (evaluated with Glauber model)

E. Scomparin – INFN Torino

J/ψ in p-A collisions at (various) SPS energies

□ With I_{beam}~8x10⁸ p/20s spill, 7 targets with total interaction length 10% and 0.5 months of data taking NA60+ can aim at
 □ ~6000 J/ψ at 50 GeV
 □ ~50000 J/ψ at 158 GeV

 □ pp collisions unpractical
 → Use a system of several targets simultaneously exposed to the p beam

Prospects for $\psi(2S)$ measurements at low \sqrt{s}

Good charmonium resolution (~30 MeV for the J/ ψ) will help ψ (2S) measurements

Expectations based on

- 30 days PbPb, I_{beam} = 1e7 ions/spill
- 15 days pA, I_{beam} = 8e8 p/spill

d'lψ $E_{lab} = 80 \text{ GeV}$ (1e)120(je) σ^{ψ(2S)}/BR_{J/ψ}_ τ^{ψ(2S)}/BR_{J/ψ} ')/BR_{J/ψ}- 10^{-2} ь BR_{ψ(2S)→∝} BR_{\u0096(2S)-} $R_{\psi(2S)}$ m NA60+: $J/\psi, \psi(2S) \rightarrow \alpha^+ \alpha^-, E_{heam} = 80 \text{ GeV}$ NA60+: J/ψ , $\psi(2S) \rightarrow \infty^+ \infty^-$, $E_{\text{heam}} = 120 \text{ GeV}$ NA60+: J/ψ , $\psi(2S) \rightarrow \alpha^+ \alpha^-$, $E_{\text{beam}} = 158 \text{ GeV}$ • p-A, I_{beam} = 1.6e+08 p/s, 15 days • p-A, I_{beam} = 1.6e+08 p/s, 15 days • p-A, I_{beam} = 1.6e+08 p/s, 15 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days • Pb-Pb, I_{beam} = 2.0e+06 p/s ions/s, 30 days 10 10^{-3} 10 L (fm) . (fm՝ _ (fm)

 $\Box \psi(2S)/\psi$ measurement looks feasible down to $E_{lab} = 120$ GeV \Box Lower E_{lab} would require larger beam intensites/longer running times

E. Scomparin – INFN Torino

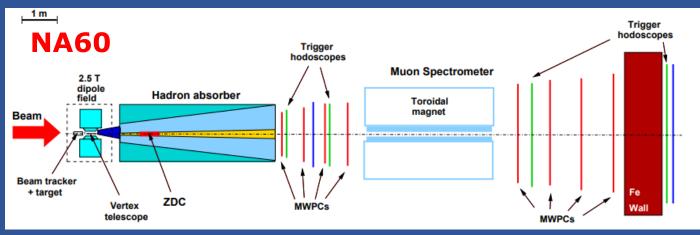
An(other) heavy-ion experiment: NA60+ CERN, December 15-17, 2022

(assuming stronger suppression for $\psi(\text{2S})$ than J/ $\psi)$

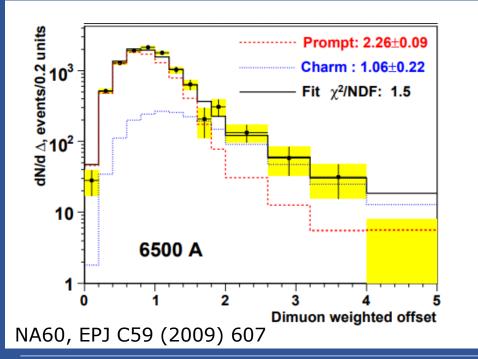
Conclusions

 \Box Open charm and charmonia in nuclear collisions \rightarrow no results below top SPS energy

 \Box Measurements from $\sqrt{s_{NN}} \sim 6$ to 17 GeV have a strong physics interest


- $\hfill\square$ QGP transport properties at high μ_B
- □ Charm thermalization and hadronization
- □ Intrinsic charm
- □ Onset of charmonium anomalous suppression (and correlation with temperature)

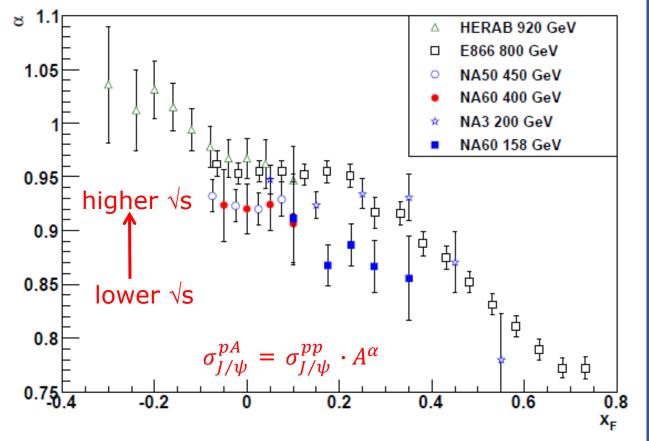
□ A new experiment at the CERN SPS has been designed for precise measurements of heavy-quark production → NA60+
 □ Couples state-of-the-art and well-known detection techniques


□ Project is part of the CERN Physics Beyond Collider Initiative
 □ Letter of Intent ready for submission to SPSC
 □ Aim is taking data after LHC Long Shutdown 3 → 2029 onwards!

Feedback on physics program and participation in the experimental effort are welcome!

Existing open charm results at SPS energy

- Match track(s) in a muon spectrometer to tracks in a vertex spectrometer
- → Excellent resolution on the muon kinematics
- → Separate prompt (DY+thermal) from nonprompt sources (open charm)



□ Analysis of open charm contribution (semileptonic decays of charm hadron pairs) leads, for In-In collisions at $\sqrt{s_{NN}}=17.3$ GeV, to $\sigma_{cc}=9.5\pm1.3$ (stat.) ±1.4 (syst.) µb assuming kinematic distribution as in PYTHIA6

→ Compatible with corresponding p-A measurements by NA50 and supporting the hypothesis of N_{coll} scaling

No other results available below top SPS energy

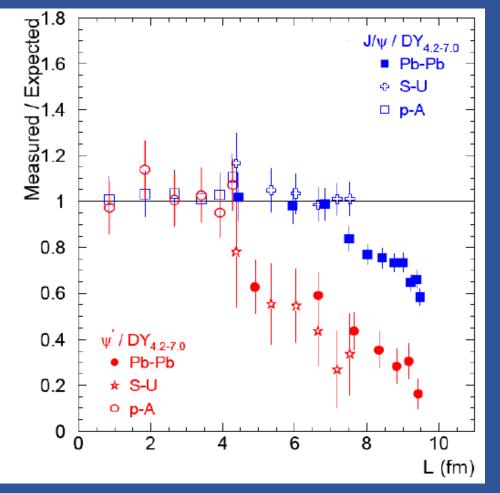
p-A results at fixed target: a complex environment

NA60 Coll., Phys. Lett. B 706 (2012) 263-367

 J/ψ yield in pA is modified with respect to pp, with a significant kinematic dependence

 \square α strongly decreases with x_F

I for a fixed x_{F} , stronger CNM at lower \sqrt{s}


Superposition of several effects

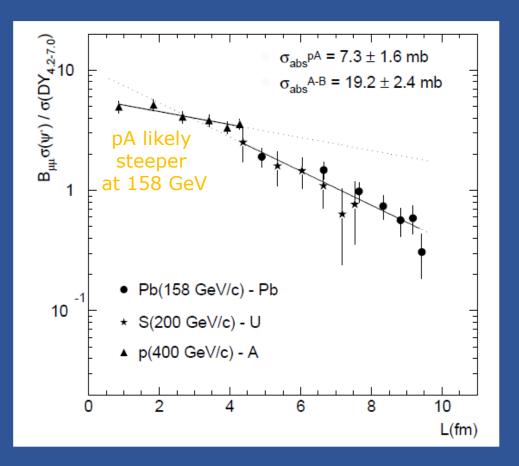
Shadowing Nuclear break-up Energy loss (at large x_F)

No consistent theory description over the whole x_F range

Excited charmonium states: $\psi(2S)$, χ_c

NA50, EPJC39 (2005) 335, EPJC49 (2007) 559

 \Box Clear ordering in the suppression when moving from J/ ψ to $\psi(2S)$


□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel
 → Lower by a factor ~100

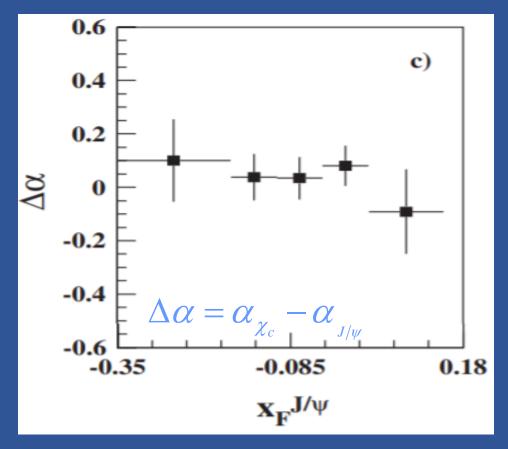
No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

Excited charmonium states: $\psi(2S)$, χ_c

Clear ordering in the suppression when moving from J/ψ to $\psi(2S)$

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector


□ Typical yields in the dilepton channel → Lower by a factor ~ 100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

χ_c measurements

□ ~25% of the J/ ψ comes from the χ_c decay → $\alpha(\chi_c)$ important to understand the J/ ψ suppression

 χ_c not measured at SPS (no AA data)

 Available results at HERA-B, pA@ 920 GeV
 (large χ_c sample: ~15000 χ_c -0.35<x_F ^{J/ψ}<0.15)

□ HERA-B observed no significant difference between $\alpha(\chi_c)$ and $\alpha(J/\psi)$

→ similar "global" CNM effects on both resonances in the covered kinematical range (average value $\Delta \alpha = 0.05 \pm 0.04$), but more accurate results are needed

 □ Non-trivial measurement, needs detection of low-momentum photon (<1 GeV)
 → conversion or calorimetry

HERA-B, Phys.Rev.D79:012001,2009