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N DUINE EXPERIDIERES

* [he Deep Underground Neutrino Experiment (DUNE) will use neutrinos
created at Fermilab In lllinois and sent through the karth to a large detector at the
Sanford Underground Research Facility (SURF) in South Dakota
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8 DUNE EXPERIMITEES
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[ he beam will encounter a capable
surte of near detectors and then a
large liquid Argon detector 1490 m
underground at SURF, with space for
/O klon of mas
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Primary goal Is

Drecision

measlrements of

flavor neutrino

MIXINg parameters
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-xtracting oscillation parameters or finding a

35M signal

in DUNE data will require

precise simulations of the entire experiment, starting with the neutrino beam:
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| 20 GeV protons @ 1.2 MW (upgradable to
241 My

3 horns + long target optimized for sensitivity
to CP violation

Horn current polarity can be switched to
provide neutrino or antineutrino-enriched
beams
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reinteractions In the target and other beam materials, and decay to neutrinos

Bl it Using Geants version | 0.3.p03 with the QGSP._BERT Physics List
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» [his simulation produces predicted neutrino fluxes at all DUNE detectors:
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i - helirino fluxes trom the | DR; used for all current [DUNE physics studies

Not completely final beam design (see backup)
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P EC | SIMULATRCES

Phys. Rev. D 100, 112004 (2019) / arXiv:1909.06294
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But we know that these flux predictions are not

r

sufficiently precise to meet DUNE's needs:

Kaons in 60 GeV m+C —» K+X

= nteractions, measured at NA6 | /SHINE and
compared to two Geant4 models, as well as

Gibuu and Fluka.

Many models differ significantly from
data; model developers are always trying to
improve, but it Is not realistic to expect perfect
predictions of all processes that matter to flux
predictions.



https://arxiv.org/abs/1909.06294

EORREC [ING TRE SIMULATICS

S0 we have to fix our predictions
* [he only practical way to do this i1s through reweighting

also used by NOVA and SBN experiments for NuMI fluxes:

+ Complete information about cascades |eading to a neutrino Is
= euic  [OF each proton on target and stored In the flux tuples

* Interactions are weighted
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»  Weights for events with multiple interactions in the ancestor chain are

the product of the weight for each interaction

A second welg
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Nt Is applied to account for

nential exponential decay of beam:

DUNE uses the PPFX packaged developed for MINERVA ana
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EORREC | ING TRE SIMULATSES
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Data sets currently used:

NA4Y |58 GeV protons (LUukPhys.|.Cad 6 A7 U ST
hys, L5, )36 (20 5

Barton et al. 100 GeV protons (IFhys. Rev. D 2 28 o
NALD pC = (CEX G i e

MIPP K/pi ratios (A.V. Lebedev Thesis)

ncorporation of new NA6| and EMPHATIC data is ongoing

—xtensions of data;

pC = WX cross section asstmed 16 be ke salfic
nC — X and vice versa (Isospin symmetry)

Carbon data used for other nuclel (with larger uncertainty —
stay tuned for more discussion of uncertainties)

|58 GeV proton data used for incident energies between |2
and 120 GeV, with scaling taken from Fluka



FROPAGAT ING UNCERTAINTIES

Uncertainties on the external data constraints are

propagated to uncertainties on our flux and other simulated 35000 B~ -

distributions using a “Many=Universes” method: 20000 £ :
ool
5000 E

& Ol cach event in addition to the central value weights %0 20 40 50 50 700 720

neutrino energy (GeV)

we have discussed:

RMS of resulting weighted
distributions gives uncertainty
on those distributions

w =€

—Iold.. o0uc) H fData (xFapT7 E)

reweightable fmc (zg, pr, E)

interactions

*  We also store many (~1000) welights constructed from
data cross sections varied according to their

uncertainties (taking into account correlations)

0 20 40 60 80 100 120
neutrino energy (GeV)

* For Interactions uncovered by data, large (40%) are
assumed
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Kaon production from proton
interactions with carbon that
are covered by external data




Pie L UX UNCERTAIN TS
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Pie L UX UNCERTAIN TS

Far detector, v-mode, v,
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Pie L UX UNCERTAIN TS

Far detector, v-mode, v,

5
e i —— Total hadron prod.
- - Other
s 0.2 pC — 7
g pC — K
——— Meson inclusive
Qﬁ) 0.15 | NucleonA
- L Target-dbsorption
s e - Q#iter absorption
- =
= L
g 005 s o
ﬂ O - ,f—v . — BRI
0 D 10 15 20

Uncertainty associated with
attenuation of the beam In the
target



POCUSING FLUX UNCER FATRNE
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REES UNMEASURED IN | ERACTICHSS

Flavor: v ; Target: carbon; covered; ND “10° Flavor: v,; Target: carbon; notCovered; ND
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REES UNMEASURED IN | ERACTICHSS

Flavor: v,; Target: carbon; notCovered; ND
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REES UNMEASURED IN T ERACTICHSS

» Phase space of unmeasured interactions:
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REES UNMEASURED IN T ERACTICHSS

» Phase space of unmeasured interactions:
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REES UNMEASURED IN T ERACTICHSS

» Phase space of unmeasured interactions:

Inc:k+; Prod:pi+; Flavor: v, ; Target: carbon; notCovered; ND

DUNE Work in Progress
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have proven
to be the gold standard of hadron production
measurements for neutrino experiments

DUNE will

first planned for =20 4

Ongoing upgrades of the target will require
repeated replica target measurements
over the course ol DUNES el

Initial prototype will be 1.5 m long; length will
eventually be extended to 1.8 m f feasible

26



BEELS: CORRELATION MATRICTES

» Results of a study that looked at the impact of hadron production correlations on a portion

of the DUNE hadron production flux uncertainties:
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* Fux uncertainties are strongly dependent on assumed correlations of flux uncertainties

* |In most cases, the data we are using have not reported correlation matrices and we are
ouessing at what they might look like

B = iedlly” nieed accurate correlation matrices

L
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Recall that even the “covered by data interaction make some leaps of faith:

B X (10ss seclion assumed to be the same as n € = | — X and vige =
(isospin symmetry)

- Carbon data used for other nuclei (with larger uncertainty)
| 58 GeV proton data used for many incident energies

Hightest priority for thin target data are the “not covered”
Interactions, but also need guidance on extrapolation across different incident
energies, nuclel and validation of 1sospin assumptions

DUNE would also greatly benefit from more overlap between the people
producing hadron production measurements and people

iImplementing those in flux predictions
28



L ONCLUSICHE

DUNE will make precise measurements of heutrino oscillation parameters and search for
CP-violation and a variety of BSM physics

» All of DUNE's accelerator-based measurements rely on an accurate beam simulation

- Many of the interactions that will create neutrinos in the LBNF beam line have hever

been measured and are not well understood theoretically
» Highest DUNE hadron production needs

- Replica target measurements (but will have to make these repeatedly)
nteractions not currently covered by data

Data over a range of incident energy and target nucleus
- Covariance matrices for all datasets

* Help from the HP community using these data

Thank You for Listening!

0



BALKUE



R EIN | CHANGES 1O BEANT ETS.

Bince thie TDR design of the beam has progressed, with some changes that afrect the hetirifno b

* Target
* Horn A
f o B
¢ Born C

R

)

DUNE Technical Design Report (TDR)

Graphite cylinder L=2.2m, r=8mm
Inside titanium container

downstream (DS) — "~ |
support

-SIGN

Double target, L = 1m each
r=8mm

1 \
J

Cantilever, L = 1.5m

r=8mm

upstream support

Citln
(Hopefully will

rent Design

be extended to |4 il
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R EIN | CHANGES 1O BEANT ETS.

» Since the DR design of the beam has progressed, with some changes that affect the neutrino flux

e lHroet
e Horn A
o B

o O

To Be Added

B
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Many different handles for Beyond the Standard Model:

» Non-standard Oscillations
» Broad coverage for sterile neutrino searches
» Abillity to see tau neutrinos

» New particles with Cosmic Origin

_ g - Large mass, low backgrounds, excellent imaging
< [ Simuiation
% 5 — DUNE ND+FD 90% C.L. N . ; 3
£ ?.2:;25:,.?;;::?@“‘ W - New particles produced In hadron-nucleus
. interactions:

| — NOMAD 90% C.L.
1073 | ---KARMEN2 90% C.L.
— — MINOS and Daya Bay/Bugey-3 90% C.L°

* |Intense beam, excellent near detectors at ~500

[~ —SBND + MicroBooNE + T600 90% C.L.
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