

NA61++/SHINE: Physics opportunities from ions to pions

Neutrino long baseline physics: general considerations

December 15-17, 2022, CERN

S.Bolognesi (CEA, IRFU)

INTRODUCTION:

- Beamlines and fluxes of present and future LBL experiments

- **Lesson learned** from present generation of LBL and hadro-production experiments

Despite all these differences: general common needs for hadroproduction tuning: the topic of this talk

Accelerator experiments

- Different proton energy (30 GeV, 120 GeV)
- Different focusing of hadrons
- Different on/off-axis angle (selection of most relevant hadrons)
- $\rightarrow\,$ different neutrino energy flux at Near Detectors
- Different baseline length \rightarrow different oscillated neutrino energy spectrum

Accelerator experiments: nm fluxes and spectra

DUNE: ~0.4-4 GeV

Lessons learned

- First order: pC $\rightarrow \pi$, K multiplicity and kinematics

 With replica target: able to tune also re-interactions in target + minimize the impact of total proton cross-section uncertainty (important to define exactly what do we measure for proton xsec: see Y.Nagai@WAMP)

- **Next:** re-interactions in the other elements of the beamline (not C) + hadrons outside the present NA61 acceptance

T2K (with intensive tuning from NA61 data-taking!)

Example for next LBL (DUNE): clear need of measurements on replica of future targets

FUTURE NEEDS:

- Precision prospects for future LBL generation

 \rightarrow Implication on precision for hadro-production measurements

Very rough evaluation! Detailed studies for next generation LBL on-going ...

$$v_{\mu} \operatorname{disappearance: sin}^{2} \theta_{23}$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \operatorname{sin}^{2}(2\theta) \operatorname{sin}^{2} \left(\underbrace{1.27 \frac{\Delta m_{ji}^{2} [eV^{2}] L[km]}{E_{\nu} [GeV]}}_{\text{frequency}} \right) \quad \text{(simplified 2-flavors approximation)}$$

$$\operatorname{sin}^{2} 2\theta_{23} \sim \operatorname{amplitude of the } v_{\mu} (\overline{v}_{\mu}) \atop \text{disappearance (neutrino rate normalization)}$$

$$\operatorname{Full 3-flavour formula at T2K E,L (D.Carabadjac)} = 0$$

Best global fit (NH)

 $0.450\substack{+0.019\\-0.016}$

 $42.1^{+1.1}_{-0.9}$

0

0.2

0.4

0.6 0.8

1

NuFit 5.1

Control of overall neutrino rate (flux normalization before oscillation): for 1 degree precision \rightarrow few % on normalization

 $\sin^2 \theta_{23}$

 $\theta_{23}/^{\circ}$

58

56

54 sealed

-50^θ

48

46

1.25 1.50

100

80

60

40

20

 $\sim \Delta m_{32}^2$

0.50

0.25

 $P(\nu_{\mu} \rightarrow \nu_{\mu}), \%$

 $\sim \sin^2(2\theta_{23})$

0.75 1.00 E, GeV 1.2 1.4 1.6 1.8 2 Reconstructed neutrino energy (GeV)

Prospects

Prospects for DUNE and HK: factor 2-3 better $\sin^2\theta_{23}$ measurement than today for each single experiment \rightarrow **need control at ~<1% on flux normalization**

A systematics with leading impact on total flux rate is the total proton cross-section (aka interaction length): today ~2%

v_{μ} disappearance: $|\Delta m^2_{32}|$

- Need control on neutrino energy: avoid bias in energy scale + precise flux peak/shape before oscillation + precise treatment of nuclear effects like binding energy Roughly linear: relative E_{ν} precision ~ relative Δm^2 error (eg, few MeV at T2K for 2% on Δm^2)

Prospects

Prospects for DUNE and HK: for each single experiment factor 2-3 better Δm^2 measurement then global fit today \rightarrow control at ~<0.5% on "energy scale"

Most challenging systematics on flux shape comes from hadron rescattering error and untuned interactions (outside NA61 phase space)

Thanks to replica target in T2K: ~ 30% reinteractions in target now under control \rightarrow still 10% of re-interactions in beamline. New measurements on other target material

v_{e} appearance: $\theta_{_{23}}$ octant

Prospects

For today best fit values of θ_{23} we expect both HK and DUNE to reach ~4-5 sigma sensitivity to reject the wrong octant: huge increase in statistics of v_{a} sample

The most important background is the **intrinsic** v_e **component inside the flux** (already present before oscillation): ~10%

To measure v_e oscillated signal normalization at ~1% (octant degeneracy breaking) need to have a relative precision on the v_e intrinsic background <5 %

$\nu_{_{e}}$ flux today

Today uncertainty on v_e flux already at 5% level before ND constraints and **strong** correlation between v_e and v_e flux uncertainties:

0-3 GeV 0-3 GeV 0-3 GeV 0-3 GeV 0-3 GeV 0-3 GeV

Correlations of T2K flux uncertainties

ν_{e} flux vs ν_{μ} flux

 \mathbf{v}_{e} flux at the oscillation peak energy is dominated by μ decay coming from from π ,K decays \rightarrow correlation with \mathbf{v}_{μ}

(+ direct K decays into v_{e} at higher energy, K0 subdominant)

 $\begin{array}{c} & \text{All} \rightarrow \nu \\ & \text{K}^{0} \rightarrow \nu \\ & & \\ \hline & \pi \rightarrow \nu \\ & & \\ \hline & \mu \rightarrow \nu \\ & & \\ \hline & \text{ND, On axis} \end{array}$

 v_v/v_a appearance: CPV and MH

Prospects

Prospects for next generation: 5σ on CPV and MH

What is really important are v_e / \overline{v}_e anticorrelations, they must be below 2% (the lower, the better \rightarrow direct impact on sensitivity and ultimate limitation to it)

No direct anticorrelation from flux uncertainties (but need to constrain v contamination into \overline{v} [aka wrong sign])

Correlations of T2K flux uncertainties

$$v_e/\overline{v}_e$$
 appearance: δ_{CP} measurement

Search for CPV and measuring dCP are two very different experimental targets. Prospects for dCP precision ~10-15 degrees from each experiment of next generation

$$\mathcal{A}_{CP} \equiv \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})} \simeq -\frac{\sin 2\theta_{12} \sin \delta}{\sin \theta_{13} \tan \theta_{23}} \Delta_{21} + \text{matter effects},$$

$$P_{long-baseline} \simeq \frac{\sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{13} \sin \theta_{13} \sin \theta_{13} \sin \theta_{23}} \Delta_{12} + \frac{1}{2} \alpha \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos \theta_{13} \sin \theta_{13} \sin \theta_{13} \sin \theta_{13} \sin \theta_{13}} \Delta_{12} + \frac{1}{2} \alpha \sin^{2} \theta_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{3} \Delta}{\varphi_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{3} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{13} \sin^{2} \theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{13} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{13} \cos^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}{\varphi_{23} \sin^{2} \theta_{23} \sin^{2} \theta_{23} \sin^{2} \Delta}$$

$$\frac{\varphi_{long-baseline}}{\varphi_{23} \sin^{2} \theta_{23} \sin^{2} \theta_{2$$

app v Mode e-like derivative vs δ_{CP}) is dominated by the second 1.03 Nominal term: precise energy spectrum measurement 12° shift in δ_{CP} 1.025 0.5% energy scale shift $(\cos \delta_{CP} \text{ dependence})$ dominate the resolution 1.02 Example from HK HK 10 years (2.7E22 POT 1:3 v:v) 1.015 osc v_e CC Number of Events Ratio to nominal L.Munteanu 1.01 250 osc \overline{v}_{e} CC Nufact2021 NC 1.005 200 v. CC \overline{v}_e CC 150 $v_{\mu}/\overline{v}_{\mu}$ CC 0.995 100 0.99 0.985 50 0.98 1.2 0.2 0.4 0.6 0.8 0 0^{-} 0.8 0.2 0.4 0.6 v beam 1 1.2 Energy [GeV] v Reconstructed Energy (GeV) 1-ring e-like + 0 decay e

Important to enhance MH sensitivity

Important to enhance MH sensitivity

Important to enhance MH sensitivity

Summary of needs for future

The way to face the accuracy challenge is to improve the model of our systematic uncertainties, including hadroproduction uncertainties:

i.e. complete and detailed parametrization of the uncertainties as a function of neutrino energy and flavour (as of today) but also as a function of parent particle type, angle, rescattering etc. \rightarrow all this encoded into our LBL analyses

The challenge

The statistics will be huge: to accurately constrain systematics uncertainties we need the correct model of them

 \rightarrow having a full parametrization depending on all the fundamental physics degrees of freedom will allow to control the physics meaningfullness of ND postfit constraints $_{SK \; \nu_{\mu}, \; \nu \text{-mode}}^{SK \; \nu_{\mu}, \; \nu \text{-mode}}$

→ even FD statistics is so large to constrain systematics together with oscillation parameters by exploiting the fact that **they are not completely degenerate** between them

Example of "energy scale": $\nu_{_{\mu}}$ can constrain it for $\nu_{_{z}}.$

Correlations between $\nu_{_{\rm u}}$ and $\nu_{_{\rm e}}$ (and $\nu/\overline{\nu})$

uncertainties needs to be well modeled

Energy [GeV]

BACK-UP

Proton beam

 $P(kW) \propto POT \ (10^{20}) \times E_p \ (GeV)/T \ (10^7 \ s)$

Next generation of experiments: 1-2 MW (larger POT and/or E)

Proton beam

Pion spectra for different proton momenta

ſ			
$p_0 \; ({\rm GeV}/c)$	$\langle n_{\pi} \rangle$	$\langle p_T \rangle \; ({\rm MeV}/c)$	K/π
10	0.68	389	0.061
20	1.29	379	0.078
40	2.19	372	0.087
80	3.50	370	0.091
120	4.60	369	0.093
450	10.8	368	0.098
		•	

Roughly speaking: higher proton energy produce more pions without increasing much their transverse momentum

(but lower energy typically allows larger repetition rate)

Target

Shape: cylindrical (or ruler) along proton beam direction to maximize the probability of protons to interact (~50-100cm)
 (but re-interactions of hadrons inside the target are an additional complication)

Transversal section should be $\sim 3\sigma$ of proton beam width ($\sim 5-10$ mm)

- Low Z (Aluminium, Berillium, Carbon, …) high probability of proton interacting and low probability of radiating (loosing energy in the target)
- **Need cooling** (air or water): larger the beam intensity → hotter the target

Horns

E_v (GeV)

Atmospheric parameters: v_{μ} disapp

in energy scale Precision at few % level (\rightarrow few MeV)

- Correlated effects in neutrino and antineutrino (assuming CPT invariance)

Atmospheric parameters: v_{μ} disapp

- Measurement proportional to number of observed muon neutrino at oscillation maximum \rightarrow need control of ν_{μ} overall normalization at few % (again correlated between nu and nubar)

- Maximal mixing $\theta_{23} \sim \pi/4$ would be a very interesting symmetry. Away from that, octant degeneracy due to quadratic dependence on $\sin^2 2\theta$ $\theta_{23} \in [0; \pi/4]$ - lower octant

2 $\theta_{23} \in [\pi/4, \pi/2]$ - upper octant

