Valuable measurements for cosmic ray anti-nuclei

Pierre Salati – LAPTh & Université Savoie Mont Blanc

Outline

 Coalescence measurements and He cosmic rays
 Transparency of the Milky Way to ³He nuclei
 ³He nuclei and beautiful dark matter
 ⁴He nuclei, truth and cosmic hedgehogs Based on 1808.08961, 2202.01549, 2006.16251 and 2211.00025

NA61++/SHINE: Physics opportunities from ions to pions – CERN – December 16, 2022

AMS-02 and possible anti-He events

V. Choutko, Cosmic Heavy Anti-Matter, COSPAR E1.3-05-22, July 17th 2022

- AMS-02 has observed few events in the mass region from 0 to 10 GeV with charge Z = -2 and rigidity $\mathcal{R} < 50$ GV. The masses of all events are in the ³He and ⁴He mass region. As of 2018, 6 events ³He and 2 events ⁴He.
- The event rate is 1 anti-helium in \sim 100 million helium.

• Massive MC background simulations are carried out to evaluate significance. So far 35 billion He events simulated vs 6.8 billion He event triggers for 10 years. AMS-02 did not find background to the anti-helium events. At this level, the MC simulations are difficult to validate.

Courtesy Antje Putze, TeVPA 2015

Anti-helium production and the coalescence factor coalescence \equiv fusion of $\bar{p} \& \bar{n}$ into \bar{d} , ³He or ⁴He $\mathbf{k_2}$ $\mathbf{k_1}$ $2\mathbf{\Delta} = \mathbf{k_1} - \mathbf{k_2} \left(\overline{p} \setminus \overline{n} \right) ||\mathbf{\Delta}|| \le p_0$ coalescence momentum $p_0 = p_{\text{coal}}/2$ $d^{3}\mathcal{N}_{\bar{d}}(\mathbf{K}) = \int d^{6}\mathcal{N}_{\bar{p},\bar{n}} \{\mathbf{k_{1}},\mathbf{k_{2}}\} \times \mathcal{C}(\mathbf{\Delta}) \text{ where } \mathbf{K} = \mathbf{k_{1}} + \mathbf{k_{2}}$ $B_{2} = \frac{E_{\bar{d}}}{E_{\bar{n}}E_{\bar{n}}} \int d^{3}\Delta \ \mathcal{C}(\Delta) \simeq \frac{m_{\bar{d}}}{m_{\bar{n}}m_{\bar{n}}} \left\{ \frac{4}{3}\pi \ p_{0}^{3} \equiv \frac{\pi}{6} \ p_{\text{coal}}^{3} \right\}$ Coalescence factor B_2 $\frac{E_{\bar{d}}}{\sigma} \frac{d^{3}\sigma_{\bar{d}}}{d^{3}\mathbf{K}} = B_{2} \left\{ \frac{E_{\bar{p}}}{\sigma} \frac{d^{3}\sigma_{\bar{p}}}{d^{3}\mathbf{k}_{1}} \right\} \left\{ \frac{E_{\bar{n}}}{\sigma} \frac{d^{3}\sigma_{\bar{n}}}{d^{3}\mathbf{k}_{2}} \right\}$

Anti-helium production and the coalescence factor coalescence \equiv fusion of $\bar{p} \& \bar{n}$ into $\bar{d}, \overline{{}^{3}\text{He}}$ or $\overline{{}^{4}\text{He}}$ Η p $\mathbf{k_2}$ $\mathbf{k_1}$ \overline{n} $2\Delta = \mathbf{k_1} - \mathbf{k_2}$ $||\mathbf{\Delta}|| \le p_0$ coalescence momentum $p_0 = p_{\text{coal}}/2$

Production on anti-nuclei with mass A

$$\begin{split} \frac{E_{\bar{A}}}{\sigma_{\mathrm{in}}} \frac{d^{3}\sigma_{\bar{A}}}{d^{3}\boldsymbol{k}_{\bar{A}}} &= B_{A} \left\{ \frac{E_{\bar{p}}}{\sigma_{\mathrm{in}}} \frac{d^{3}\sigma_{\bar{p}}}{d^{3}\boldsymbol{k}_{\bar{p}}} \right\}^{Z} \left\{ \frac{E_{\bar{n}}}{\sigma_{\mathrm{in}}} \frac{d^{3}\sigma_{\bar{n}}}{d^{3}\boldsymbol{k}_{\bar{n}}} \right\}^{A-Z} \text{ with } \boldsymbol{k}_{\bar{p}} &= \boldsymbol{k}_{\bar{n}} = \boldsymbol{k}_{\bar{A}}/A \\ \\ \begin{aligned} & \text{Coalescence factor } B_{A} \\ B_{A} &= \frac{m_{A}}{m_{p}^{Z} m_{n}^{A-Z}} \left\{ \frac{\pi}{6} p_{\mathrm{coal}}^{3} \right\}^{A-1} \end{split}$$

Determination of the coalescence momentum

ALICE provides an experimental determination of B₂ and B₃.
 p
 p production cross-section is measured.
 Approximately the same value for p₀ from d
 d, t
 d and ³He

S. Acharya et al., Phys. Rev. C97 (2018) 024615

Determination of the coalescence momentum

S. Acharya et al., Phys. Rev. C97 (2018) 024615

Local source term for anti-nuclei production in cosmic-rays

$$q_{\rm sec}(\overline{\rm He} \,|\, E_{\overline{\rm He}}, \boldsymbol{x}) = \sum_{i \in {\rm p}, \alpha} \sum_{j \in {\rm H}, {\rm He}} 4 \,\pi \int dE_i \, \Phi_i(E_i, \boldsymbol{x}) \, n_j(\boldsymbol{x}) \, \frac{d\sigma_{ij \to \overline{\rm He}}}{dE_{\overline{\rm He}}} (E_i, E_{\overline{\rm He}}) \, dE_i(E_i, E_i) \, dE_i($$

 \bar{p} production modeled as in M. di Mauro et al., Phys. Rev. **D90** (2014) 085017

Secondary anti-helium fluxes

- Interactions of high-energy cosmic-ray protons and helium nuclei on the ISM yield a **secondary anti-He flux** well below AMS-02 sensitivity.
- The same conclusion holds for DM decays or annihilations although M. Winkler and T. Linden have proposed a nice counter-example based on $\overline{\Lambda}_b$ production if pure ³He events Winkler+[2006.16251].
- Very recently, M. Winkler, P. De La Torre Luque and T. Linden have proposed a scenario where DM is coupled to a dark QCD sector where dark pions decay into t-quarks Winkler+[2211.00025]

2) Transparency of the Milky Way to ${}^{3}\overline{\text{He}}$ nuclei

Typical timescales for Galactic CR propagation

• From $\tau_{\text{inel}} = (\sigma_{\text{ine}} v_{\text{CR}} n_{\text{ISM}})^{-1}$, $\tau_{\text{diff}} = hL/K$ and $\tau_{\text{conv}} = h/V_C$, we build the typical timescale for the disk

$$rac{1}{ au_{ ext{disk}}} = rac{1}{ au_{ ext{inel}}} + rac{1}{ au_{ ext{conv}}\left\{1 - e^{- au_{ ext{diff}}/ au_{ ext{conv}}}
ight\}}$$

• Energy losses and diffusive reacceleration are respectively associated to the timescales $\tau_{\text{loss}} = T/|b|$ and $\tau_{\text{DR}} = T^2/D_{\text{EE}}$.

TABLE VI: Propagation parameters for the MIN, MED, and MAX configurations of the **QUAINT** models.

QUAINT	Γ <i>L</i>	δ	$\log_{10} K_0$	V_a	Vc	η
	[kpc]		$[\rm kpc^2/My]$	$[\rm km/s]$	$[\rm km/s]$	
MAX	6.840	0.504	-1.092	83.929	0.469	-1.001
MED	4.080	0.451	-1.367	52.066	0.239	-2.156
MIN	2.630	0.403	-1.643	18.389	0.151	-3.412

Typical timescales for Galactic CR propagation

• From $\tau_{\text{inel}} = (\sigma_{\text{ine}} v_{\text{CR}} n_{\text{ISM}})^{-1}$, $\tau_{\text{diff}} = hL/K$ and $\tau_{\text{conv}} = h/V_C$, we build the typical timescale for the disk

$$rac{1}{ au_{ ext{disk}}} = rac{1}{ au_{ ext{inel}}} + rac{1}{ au_{ ext{conv}}\left\{1 - e^{- au_{ ext{diff}}/ au_{ ext{conv}}}
ight\}}$$

• Energy losses and diffusive reacceleration are respectively associated to the timescales $\tau_{\text{loss}} = T/|b|$ and $\tau_{\text{DR}} = T^2/D_{\text{EE}}$.

TABLE VI: Propagation parameters for the MIN, MED, and MAX configurations of the **QUAINT** models.

QUAINT	Γ <i>L</i>	δ	$\log_{10} K_0$	V_a	Vc	η
	[kpc]		$[\rm kpc^2/My]$	m r] [km/s]	$[\rm km/s]$	
MAX	6.840	0.504	-1.092	83.929	0.469	-1.001
MED	4.080	0.451	-1.367	52.066	0.239	-2.156
MIN	2.630	0.403	-1.643	18.389	0.151	-3.412

Y. Génolini et al., Phys. Rev. **D104** (2021) 083005

Typical timescales for Galactic CR propagation

• From $\tau_{\text{inel}} = (\sigma_{\text{ine}} v_{\text{CR}} n_{\text{ISM}})^{-1}$, $\tau_{\text{diff}} = hL/K$ and $\tau_{\text{conv}} = h/V_C$, we build the typical timescale for the disk

$$rac{1}{ au_{ ext{disk}}} = rac{1}{ au_{ ext{inel}}} + rac{1}{ au_{ ext{conv}}\left\{1 - e^{- au_{ ext{diff}}/ au_{ ext{conv}}}
ight\}}$$

• Energy losses and diffusive reacceleration are respectively associated to the timescales $\tau_{\text{loss}} = T/|b|$ and $\tau_{\text{DR}} = T^2/D_{\text{EE}}$.

TABLE VI: Propagation parameters for the MIN, MED, and MAX configurations of the **QUAINT** models.

QUAINT	ΓL	δ	$\log_{10} K_0$	V_a	Vc	η
	[kpc]		$[\rm kpc^2/My]$	m r] [km/s]	$[\rm km/s]$	
MAX	6.840	0.504	-1.092	83.929	0.469	-1.001
MED	4.080	0.451	-1.367	52.066	0.239	-2.156
MIN	2.630	0.403	-1.643	18.389	0.151	-3.412

First measurement of the absorption of ${}^{3}\overline{\text{He}}$ nuclei in matter and impact on their propagation in the galaxy

arXiv:2202.01549 - ALICE Collaboration

3) ${}^{3}\overline{\text{He}}$ nuclei and beautiful dark matter

 \bullet In general, DM species annihilations do not produce a detectable amount of antihelium nuclei $^3\overline{\rm He}.$

• Since DM is at rest, the spectrum peaks at low energy $\neq O(10)$ GeV/n.

 \bullet Recently, a new proposal based on DM coupling to b quarks.

M. Winkler and T. Linden, Phys. Rev. Lett. **126** (2021) 101101

Counterarguments – Kachelriess+[2105.00799]

• To get the value of $f(b \to \Lambda_b)$ measured at LEP, WL21 have increased the probability **probQQtoQ** for diquark formation in hadronization from 0.09 to 0.24, playing havoc with other processes.

• This implies:

(i) an over production of protons and antiprotons at LEP by a factor of 2, (ii) an increase in proton yield with respect to kaon and pion yields $dN/dy|_{|y|<0.5}$ measured by ALICE at LHC.

• In default Pythia, $Br(\bar{\Lambda}_b \rightarrow {}^{\overline{3}}\overline{He}) \simeq 3 \times 10^{-6}$ may already be too large. Default Pythia overestimates branching ratios for several Λ_b decay channels. Mismodeling of diquark formation.

\sqrt{s} $\approx 10 \text{Ge}$	V 29–35 GeV	$7 \mid 91 \text{GeV}$	$130-200 { m GeV}$	Branching ratio	PDG	Pythia
Obs. $0.266 \pm 0.266 \pm$	$008 0.640 \pm 0.04$	$50 1.050\pm0.032 $	1.41 ± 0.18	$\Lambda_b o \Lambda_c^+ p \bar{p} \pi^-$	2.65×10^{-4}	$1.5 imes 10^{-3}$
WL21 0.640	1.161	2.102	2.33	$\Lambda_b o \Lambda_c^+ \pi^+ \pi^- \pi^-$	$7.7 imes 10^{-3}$	0.047
		+	$\Lambda_b o \Lambda \pi^+ \pi^-$	$4.7 imes 10^{-6}$	$2.0 imes 10^{-5}$	
p and p multiplicity in $e e$ annihilations			$\Lambda_b \to p \pi^- \pi^+ \pi^-$	$2.11 imes 10^{-5}$	$9.6 imes10^{-5}$	
				$\Lambda_b \to p K^- K^+ \pi^-$	4.1×10^{-6}	$1.7 imes 10^{-5}$
Destil	I	1	•	$B^0 o p \bar{p} K^0$	$2.66 imes 10^{-6}$	$6.1 imes 10^{-6}$
Particle	$\operatorname{proton}_{0,124} \rightarrow 0.000$	kaon	p_{100}	$B^0 o p \bar{p} \pi^+ \pi^-$	$2.87 imes 10^{-6}$	$5.6 imes 10^{-6}$
dN/dy, LHC	0.124 ± 0.009 0.328	0.280 ± 0.010 2.	100 ± 0.10	$B^0 ightarrow \Lambda_c^- p \pi^+ \pi^-$	$1.02 imes 10^{-3}$	$2.1 imes 10^{-3}$
$dn/dy, n_b$ tune	0.526	0.201	1.30	$\Lambda_c o p \pi^+ \pi^-$	$4.61 imes 10^{-3}$	0.012
dN/dy at mid-rapidity $ y < 0.5$				$\Lambda_c o p \pi^0$	$< 2.7 imes 10^{-4}$	$2.0 imes 10^{-3}$
at LHC at $\sqrt{s} = 7$ TeV for p, K^+ and π^+				$\Lambda_c \to \Lambda K^+ \pi^+ \pi^-$	$< 5 \times 10^{-4}$	$2.1 imes 10^{-3}$

Let us measure $Br(\bar{\Lambda}_b \rightarrow {}^{3}He)$ and see!

4) ${}^{4}\overline{\text{He}}$ nuclei, truth and cosmic hedgehogs

Production on anti-nuclei with mass A

$$\frac{E_{\bar{A}}}{\sigma_{\rm in}} \frac{d^3 \sigma_{\bar{A}}}{d^3 \mathbf{k}_{\bar{A}}} = B_A \left\{ \frac{E_{\bar{p}}}{\sigma_{\rm in}} \frac{d^3 \sigma_{\bar{p}}}{d^3 \mathbf{k}_{\bar{p}}} \right\}^Z \left\{ \frac{E_{\bar{n}}}{\sigma_{\rm in}} \frac{d^3 \sigma_{\bar{n}}}{d^3 \mathbf{k}_{\bar{n}}} \right\}^{A-Z} \text{ with } \mathbf{k}_{\bar{p}} = \mathbf{k}_{\bar{n}} = \mathbf{k}_{\bar{A}}/A$$

$$\frac{\text{Coalescence factor } B_A}{B_A = \frac{m_A}{m_p^Z m_n^{A-Z}}} \left\{ \frac{\pi}{6} p_{\rm coal}^3 \right\}^{A-1}$$

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_{\bar{p}} \frac{d^3 N_{\bar{p}}}{dp_{\bar{p}}^3} \right)^Z \left(E_{\bar{n}} \frac{d^3 N_{\bar{n}}}{dp_{\bar{n}}^3} \right)^{A-Z}$$

$$\chi\chi \to hh \to 2\bar{b}b \to \mathcal{O}(100) \pi$$

$$\chi\chi \to \phi\phi \to 2\bar{q}'q' \to N_{\pi'} \pi' \to N_{\pi'} \bar{t}t$$

M. Winkler, P. De La Torre Luque and T. Linden, arXiv:2211.00025

4) ${}^{4}\overline{\text{He}}$ nuclei, truth and cosmic hedgehogs

Production on anti-nuclei with mass A

$$\frac{E_{\bar{A}}}{\sigma_{\rm in}} \frac{d^3 \sigma_{\bar{A}}}{d^3 \boldsymbol{k}_{\bar{A}}} = B_A \left\{ \frac{E_{\bar{p}}}{\sigma_{\rm in}} \frac{d^3 \sigma_{\bar{p}}}{d^3 \boldsymbol{k}_{\bar{p}}} \right\}^Z \left\{ \frac{E_{\bar{n}}}{\sigma_{\rm in}} \frac{d^3 \sigma_{\bar{n}}}{d^3 \boldsymbol{k}_{\bar{n}}} \right\}^{A-Z} \text{ with } \boldsymbol{k}_{\bar{p}} = \boldsymbol{k}_{\bar{n}} = \boldsymbol{k}_{\bar{A}}/A$$

$$\frac{\text{Coalescence factor } B_A}{B_A = \frac{m_A}{m_p^Z m_n^{A-Z}} \left\{ \frac{\pi}{6} p_{\rm coal}^3 \right\}^{A-1}}$$

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_{\bar{p}} \frac{d^3 N_{\bar{p}}}{dp_{\bar{p}}^3} \right)^Z \left(E_{\bar{n}} \frac{d^3 N_{\bar{n}}}{dp_{\bar{n}}^3} \right)^{A-Z}$$
$$\chi \chi \to hh \to 2\bar{b}b \to \mathcal{O}(100) \pi$$
$$\chi \chi \to \phi\phi \to 2\bar{q}'q' \to N_{\pi'} \pi' \to N_{\pi'} \bar{t}t$$
$$\phi \to 2\varphi_1 \to 4\varphi_2 \to \dots 2^n \varphi_n \to 2^{n+1} \pi' \to 2^{n+1} \bar{t}t$$

M. Winkler, P. De La Torre Luque and T. Linden, arXiv:2211.00025

Benchmark models for enhanced ${}^{4}\overline{\text{He}}$ production

DM type	Annihilating	Decaying			
Input Parameters					
m_{χ} [TeV]	150	5000			
m_{ϕ} [TeV]	50.4	375			
$m_{\pi'}$ [GeV]	380	700			
$N_{\pi'}$	256	1024			
$\langle \sigma v angle$ [cm ³ s ⁻¹]	6.6×10^{-24}	_			
$\Gamma [s^{-1}]$	—	9×10^{-30}			
Antinuclei Events at AMS-02					
³ He	15.6	20.3			
$^{4}\overline{\text{He}}$	1.0	3.1			
ā	19.3	1.2			
Antinuclei Events at GAPS					
ā	0.7	0			

TABLE I. Input parameters of one annihilating and one decaying DM benchmark scenario. Also given are the predicted antihelium and antideuteron event numbers at AMS-02 (per ten years) and GAPS.

$$\bar{p}: \bar{d}: {}^{3}\overline{He}: {}^{4}\overline{He} = 3 \times 10^{4}: 3 \times 10^{2}: 18: 1$$

instead of the conventional ratios
$$\bar{p}: \bar{d}: {}^{3}\overline{He}: {}^{4}\overline{He} = 10^{10}: 10^{7}: 10^{4}: 1$$

M. Winkler, P. De La Torre Luque and T. Linden, arXiv:2211.00025

The message from heavy ion collisions

The conventional hierarchy is not much modified when the multiplicity increases

S. Acharya et al., JHEP **01** (2022) 106

Takeaway

 Anti-helium-3 and anti-helium-4 candidates may have been identified by AMS-02. Massive background simulations are carried out to evaluate significance. No He found but MC simulations are difficult to validate.

• ${}^{3}\overline{\text{He}}$ events

- Unless CR propagation and coalescence are very different from expected, AMS-02 should **not** see secondary CR ${}^{3}\overline{\text{He}}$.
- Interesting possibility from DM annihilating into $\bar{\Lambda}_b$ baryons.
- The branching ratio $Br(\bar{\Lambda}_b \rightarrow \overline{{}^{3}He})$ is a measurement of great importance.

• ${}^{4}\overline{\text{He}}$ events

There is no hope to detect a single event from CR spallation. Heavy ion collisions jeopardize Winkler et al. proposal of a dark QCD sector. If confirmed, a single ${}^{4}\overline{\text{He}}$ would be a major discovery.

• Observation of ${}^{3}\overline{\text{He}}$ and ${}^{4}\overline{\text{He}}$ events would imply a drastic revision of cosmology and would request a more fundamental theory than the standard model of particle physics. A few routes have already been explored.

Thanks for your attention