# Galactic cosmic-ray (GCR) propagation and nuclear production cross sections

1) GCR propagation in brief

- 2) Production XS in the AMS02 era
- 3) GCR perspective for NA61/SHINE





David Maurin (LPSC) dmaurin@lpsc.in2p3.fr



NA61++/Shine @ CERN 16 December 2022

### 1) Introduction: Galactic CR data (E~10<sup>8</sup>-10<sup>15</sup> eV)

#### Elemental spectra





- $\rightarrow$  How well do we know the astro. production?
- $\rightarrow$  Are there primary sources?
- $\rightarrow$  Is it a good place to look for dark matter?

### 1) Introduction: transport parameters



(astrophysics + particle physics)

Source term and transport parameters (diffusion, convection, reacceleration)  $\rightarrow$  "Free" parameters to determine from GCR data

### 1) Introduction: input ingredients



(astrophysics + particle physics)

Continuous and catastrophic losses → "Input" ingredients of the GCR calculation N.B.: large uncertainties on production cross sections

# 1) Introduction: secondary species from production XS



# Secondary species (<sup>2</sup>H<sup>3</sup>He, LiBeB, F, sub-Fe)

→ Secondary-to-primary ratios constrain the transport parameters
→ Production XS required (to calculate secondary species)



## 1) Introduction: XS key ingredient for many studies...



#### **Production XS for nuclei needed for:**

 $\rightarrow$  Astrophysical interpretation of GCRs

 $\rightarrow$  Astrophysical background calculation for anti-nuclei, positrons, gamma-rays, neutrinos

**Dark-matter induced** (from dark matter halo, ~300 kpc) 1) GCR propagation in brief

2) Production XS in the AMS02 era

3) GCR perspective for NA61/SHINE

## 2) AMS-02

Installed on ISS in May 2011

- $\rightarrow$  Circular orbit, 400 km, 51.6°
- $\rightarrow$  Continuous operation 24/7
- $\rightarrow$  Average rate  $\neq$  700 Hz (60 millions particles/day

More than 200 billion events so far!

N.B.: access "all" CR data via CRD DM et al. (2014, 2020) https://lpsc.in2p3.fr/crdb/

A game-changing experiment → high precision data → anomalies detected in spectra

### 2) AMS-02 data: systematics-dominated (~ 3% at best)

### **AMS-02 data uncertainties**

(Aguilar et al.)



N.B.: dominated by statistical uncertainties above ~100 GV



→ mostly OK in AMS02 era

 $\rightarrow$  big issue in AMS02 era!

### 2) Uncertainties on GCRs from production XS

Systematics from XS dominate over data CR uncertainties

(e.g., DM, Putze, and Derome, A&A 516, 67 (2010))

#### **Fixed propagation setup**



## 2) Uncertainties on GCRs from production XS

Systematics from XS dominate over data CR uncertainties

(e.g., DM, Putze, and Derome, A&A 516, 67 (2010))

#### Fixed propagation setup



# 2) Which GCR progenitors (projectiles)?



→ Main projectiles (for LiBeB and F): C, N, O, Ne, Mg, Si, Fe

### but

*Network of* ~1000 *reactions*:

- Top 10 reactions make ~80% of flux
- Next 100 reactions makes ~15% of flux
- The rest makes up to  $\sim 5\%$  of flux

Nuclear data coverage

- Most important reactions have data (but some only 1 point!)
- Most reactions have no data

## 2) Which production XS

Génolini, DM, Moskalenko & Unger, PRC 98, 034611 (2019)

#### **Ranking of XS (for B here)**

| Reaction $a+b \rightarrow c$                                    | Flux impact $f_{abc}$ [%] |      | $\sigma$ [mb] | Data         |   |
|-----------------------------------------------------------------|---------------------------|------|---------------|--------------|---|
|                                                                 | $\min$                    | mean | max           | range        |   |
| $\sigma(^{12}C + H \rightarrow ^{11}B)$                         | 18.0                      | 18.1 | 19.0          | 30.0         | ~ |
| $\sigma(^{12}C + H \rightarrow ^{11}C)$                         | 16.0                      | 16.2 | 17.0          | 26.9         | 1 |
| $\sigma(^{16}\text{O} + \text{H} \rightarrow^{11}\text{B})$     | 11.3                      | 11.8 | 12.0          | 18.2         | 1 |
| $\sigma(^{12}C + H \rightarrow ^{10}B)$                         | 7.20                      | 7.41 | 7.60          | 12.3         | 1 |
| $\sigma(^{16}\text{O} + \text{H} \rightarrow ^{10}\text{B})$    | 6.82                      | 7.03 | 7.21          | 10.9         | 1 |
| $\sigma(^{16}O + H \rightarrow ^{11}C)$                         | 5.67                      | 5.89 | 6.00          | 9.1          |   |
| $\sigma(^{11}B + H \rightarrow ^{10}B)$                         | 4.00                      | 4.07 | 4.20          | 38.9         | 1 |
| $\sigma(^{12}C + He \rightarrow ^{11}B)$                        | 2.50                      | 2.59 | 2.70          | 38.6         |   |
| $\sigma(^{12}C + He \rightarrow ^{11}C)$                        | 2.10                      | 2.14 | 2.20          | 32.0         |   |
| $\sigma(^{15}N + H \rightarrow ^{11}B)$                         | 2.00                      | 2.03 | 2.10          | 26.1         | 1 |
| $\sigma(^{12}C + H \rightarrow ^{10}C)$                         | 1.80                      | 1.87 | 1.90          | 3.1          | 1 |
| $\sigma(^{16}\text{O} + \text{He} \rightarrow ^{11}\text{B})$   | 1.67                      | 1.75 | 1.80          | 24.4         |   |
| $\sigma(^{13}C + H \rightarrow ^{11}B)$                         | 1.50                      | 1.53 | 1.60          | 22.2         |   |
| $\sigma$ <sup>(12</sup> C + H $\rightarrow$ <sup>10</sup> Be)   | 1.40                      | 1.48 | 1.50          | 4.0          | 1 |
| $\sigma(^{14}\text{N} + \text{H} \rightarrow ^{11}\text{B})$    | 1.30                      | 1.34 | 1.36          | 17.3         | 1 |
| $\sigma(^{12}C + He \rightarrow ^{10}B)$                        | 1.00                      | 1.06 | 1.10          | 15.8         |   |
| $\sigma(^{16}\text{O} + \text{He} \rightarrow ^{10}\text{B})$   | 0.99                      | 1.05 | 1.09          | 14.6         |   |
| $\sigma^{(24}Mg + H \rightarrow^{11}B)$                         | 0.98                      | 1.01 | 1.00          | 10.4         |   |
| $\sigma$ <sup>14</sup> N + H $\rightarrow$ <sup>11</sup> C      | 0.90                      | 0.92 | 0.94          | 11.9         |   |
| $\sigma$ <sup>(20</sup> Ne + H $\rightarrow$ <sup>11</sup> B)   | 0.87                      | 0.90 | 0.93          | 12.0         |   |
| $\sigma^{(16}O + He \rightarrow^{11}C)$                         | 0.83                      | 0.88 | 0.90          | 12.2         |   |
| $\sigma^{(16}O + H \rightarrow {}^{10}Be)$                      | 0.84                      | 0.87 | 0.91          | 2.2          | 1 |
| $\sigma^{(11B+H\rightarrow 10Be)}$                              | 0.81                      | 0.83 | 0.85          | 12.9         |   |
| $\sigma^{(14}N + H \rightarrow {}^{10}B)$                       | 0.77                      | 0.79 | 0.82          | 10.3         |   |
| $\sigma^{(15}N + H \rightarrow {}^{10}B)$                       | 0.72                      | 0.74 | 0.77          | 9.6          | 1 |
| $\sigma^{(28Si + H \rightarrow ^{11}B)}$                        | 0.39                      | 0.63 | 0.87          | [4.0. 9.5]   | • |
| $\sigma^{(13}C + H \rightarrow {}^{10}B)$                       | 0.59                      | 0.62 | 0.65          | 9.0          |   |
| $\sigma$ <sup>(24</sup> Mg + H $\rightarrow$ <sup>10</sup> B)   | 0.58                      | 0.60 | 0.62          | 6.2          |   |
| $\sigma^{(11}B + He \rightarrow {}^{10}B)$                      | 0.57                      | 0.58 | 0.59          | 50.0         |   |
| $\sigma^{(13}C + H \rightarrow^{11}C)$                          | 0.54                      | 0.56 | 0.59          | 8.2          |   |
| $\sigma^{(20}Ne + H \rightarrow {}^{11}C)$                      | 0.52                      | 0.54 | 0.56          | 7.2          | 1 |
| $\sigma$ <sup>(24</sup> Mg + H $\rightarrow$ <sup>11</sup> C)   | 0.51                      | 0.53 | 0.56          | [5.1, 5.9]   | - |
| $\sigma$ <sup>(20</sup> Ne + H $\rightarrow$ <sup>10</sup> B)   | 0.49                      | 0.51 | 0.52          | 6.4. 7.1     |   |
| $\sigma^{(28Si + H \rightarrow 11C)}$                           | 0.42                      | 0.44 | 0.46          | 4.3. 5.0     |   |
| $\sigma^{(15}N + H \rightarrow^{11}C)$                          | 0.40                      | 0.41 | 0.43          | 5.3          | 1 |
| $\sigma^{(28Si + H \rightarrow 10B)}$                           | 0.27                      | 0.39 | 0.52          | [2.8, 5.7]   | • |
| $\sigma^{(56}\text{Fe} + \text{H} \rightarrow {}^{11}\text{B})$ | 0.03                      | 0.35 | 0.67          | [0.4, 11.0]  |   |
| $\sigma^{(15}N + He \rightarrow^{11}B)$                         | 0.29                      | 0.29 | 0.30          | 34.1         |   |
| $\sigma$ <sup>(22</sup> Ne + H $\rightarrow$ <sup>11</sup> B)   | 0.27                      | 0.28 | 0.30          | [16.0, 18.0] | 1 |
| $\sigma^{(13}C + H \rightarrow {}^{10}Be)$                      | 0.24                      | 0.25 | 0.26          | 5.9          | 1 |
| $\sigma^{(12}C + He \rightarrow {}^{10}C)$                      | 0.24                      | 0.25 | 0.25          | 3.7          | • |
| $\sigma$ <sup>(56</sup> Fe + H $\rightarrow$ <sup>10</sup> B)   | 0.01                      | 0.24 | 0.47          | [0.2, 7.8]   |   |
| $\sigma^{(12}C + He \rightarrow {}^{10}Be)$                     | 0.22                      | 0.23 | 0.24          | 5.6          |   |
| o( o + ne -> be)                                                | 0.22                      | 0.20 | 0.24          | 0.0          |   |

### Desired measurements to reach 3% precision on GCRs



 $\rightarrow$  Done for LiBeB in this paper  $\rightarrow$  All nuclei up to Si (in progress) then Fe

1) GCR propagation in brief

2) Production XS in the AMS02 era

3) GCR perspective for NA61/SHINE

### 3) NA61: measurement of C fragmentation

Proposal for test study (M. Unger)

September 27, 2017

### Addendum to the NA61/SHINE Proposal SPSC-P-330 Measurement of Nuclear Fragmentation Cross Sections with NA61/SHINE at the CERN SPS

Unger & NA61 collaboration (arXiv:1909.07136) Amin & NA61 collaboration (arXiv:2107.12275)



### 3) NA61: measurement of C fragmentation

Proposal for test study (M. Unger)

September 27, 2017

### Addendum to the NA61/SHINE Proposal SPSC-P-330 Measurement of Nuclear Fragmentation Cross Sections with NA61/SHINE at the CERN SPS

Unger & NA61 collaboration (arXiv:1909.07136) Amin & NA61 collaboration (arXiv:2107.12275)





 $\rightarrow$  Also desired data for <sup>10</sup>B and <sup>11</sup>B (DM et al. 2022)

## 3) First (GCR) physics run at NA61 is going to be huge!





### What next?



#### **XS** ranking

(Génolini, DM, Moskalengo, Unger) → Up to Si, then up to Fe (Z=17-25 AMS data not yet published) → Provide progenitors/targets required and estimated beam time

**XS modelling** (DM, Génolini...)

- $\rightarrow$  Update our XS database (extracted from EXFOR)
- $\rightarrow$  Use machine learning to
  - predict unmeasured XS
  - ID key reactions (to measure) for models

**XS** measurement

→ (He) CNO, Ne, Mg, Si, and Fe main projectiles → (2H, 3He) LiBeB, F, and sub-Fe main fragments

Debate with F: primary source (Boschini et al. 2021), XS (Ferronato Bueno et al. 2022), spatial dependent diffusion (Zhao et al. 2022)

