Event statistics needed for open charm correlations NA61++ workshop

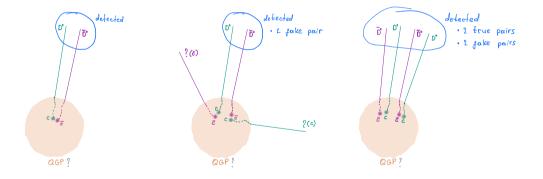
Ivan Pidhurskyi <ivan.pidhurskyi@cern.ch>

Jan Kochanowski University in Kielce

16 Dec 2022

- 2 $\langle c\bar{c} \rangle$ yield in central Pb+Pb @ 158A GeV/c
- 8 Rough estimate of required statistics

Requirement from the measurement $0 \bullet 00$


 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

Summary 0000

Requirement from the measurement

• Measuring correlations of *c* and *c* quarks from the same pair forces one to seek for events with only a single *cc*-pair.

 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

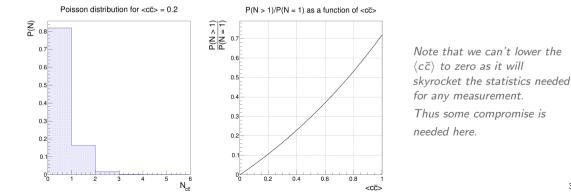
Summary 0000

Requirement from the measurement

- Measuring correlations of *c* and *c* quarks from the same pair forces one to seek for events with only a single *cc*-pair.
- We need to ensure that this scenario is the dominant one. Thus the requirement:

$$rac{P(N_{car{c}}>1)}{P(N_{car{c}}=1)}\ll 1$$

 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

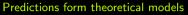

Rough estimate of required statistics

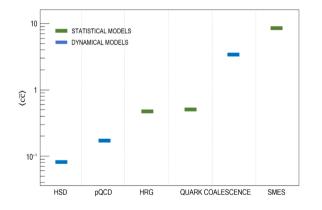
Summary 0000

3/14

Requirement from the measurement

- Measuring correlations of c and \bar{c} quarks from the same pair forces one to seek for events with only a single $c\bar{c}$ -pair.
- We need to ensure that this scenario is the dominant one.
- Assuming that $c\bar{c}$ multiplicity distribution follows Poisson statistics, we have:


$\langle c \bar{c} angle$ yield in central Pb+Pb @ 158A GeV/c


 $\langle c\bar{c} \rangle$ yield in central Pb+Pb @ 158A GeV/c 0000

Rough estimate of required statistics

Summary 0000

$\langle c ar{c} angle$ yield in central Pb+Pb @ 158A GeV/c

- Predictions from theoretical models vary by two orders of magnitude.
- Considering only the most trusted ones (HSD, pQCD, HRG, Coalescence) the yield is expected to be from about 0.1 to about 0.5.

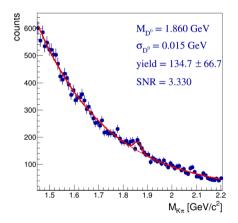
 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

Summary 0000

$\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c Estimate from data

NA61/SHINE Pb+Pb @ 158A GeV/c (A. Merzlaya, et.al)


• Mean multiplicity of $D^0 + \overline{D}^0$ mesons:

$$\langle D^0+ar{D}^0
angle_{ ext{Pb+Pb}}=0.39\pm0.21.$$

• 95% CL limit:

$$\langle D^0 + ar{D}^0
angle_{ ext{Pb}, ext{ 95\% CL}} = 0.82.$$

central collisions, acceptance corrections included

Invariant mass distribution of unlike-charge sign π , K decay track candidates for Pb+Pb 5/

 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

Summary 0000

$\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c Estimate from data

NA61/SHINE Pb+Pb @ 158A GeV/c (A. Merzlaya, et.al)

• Mean multiplicity of $D^0 + \bar{D}^0$ mesons:

$$\langle D^0+ar{D}^0
angle_{ ext{Pb+Pb}}=0.39\pm0.21.$$

• 95% CL limit:

$$\langle D^0 + \bar{D}^0
angle_{
m Pb+Pb, 95\% \ CL} = 0.82.$$

central collisions, acceptance corrections included

$$egin{aligned} &\langle car{c}
angle_{ ext{exp}} pprox rac{\langle D^0 + ar{D}^0
angle_{ ext{exp}}}{P(c o D^0)_{ ext{PHSD}} + P(ar{c} o ar{D}^0)_{ ext{PHSD}}} \ &= 0.63 \pm 0.34 \ &\langle car{c}
angle_{ ext{exp}} pprox \langle car{c}
angle_{ ext{PHSD}} \cdot rac{\langle D^0 + ar{D}^0
angle_{ ext{exp}}}{\langle D^0 + ar{D}^0
angle_{ ext{PHSD}}} \ &= 0.74 \pm 0.4 \ &\langle car{c}
angle_{ ext{exp, avg}} = 0.68 \ &\langle car{c}
angle_{ ext{exp, syg}} c_{ ext{L}} pprox 1.4 \end{aligned}$$

 $\langle c\bar{c} \rangle$ yield in central Pb+Pb @ 158A GeV/c 0000ullet

Rough estimate of required statistics

Summary 0000

$\langle c\bar{c} \rangle$ yield in central Pb+Pb @ 158A GeV/c

Summary on $\langle c\bar{c} \rangle$ yield:

- $\bullet\,$ Theory doesnt provide us with a conclusive prediction on the $\langle c\bar{c}\rangle$ yield.
- Neither do we have a conclusive results from the experiment side at the moment.
- All we can conclude is that expected yield can be from about 0.1 up to about 1.
- Fortunately the newly collected data by NA61/SHINE during November this year should provide a better insight into the problem.

Rough estimate of required statistics

 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

Summary 0000

Rough estimate of required statistics

- For now lets consider only D^0 and \overline{D}^0 mesons.
- Measuring any correlation between them implies that both D^0 and \overline{D}^0 mesons have to be reconstructed within an event.

Average number of reconstructed $D^0 \overline{D}^0$ -pairs

$$\langle D^0 \bar{D}^0
angle_{\it rec} pprox \langle c ar{c}
angle \cdot \left(P(c
ightarrow D^0) \cdot {\sf BR}(D^0
ightarrow {\cal K} \pi) \cdot P({\sf acc.}) \cdot P({\sf bkg. \ cuts}) \cdot P({\sf rec.})
ight)^2$$

assuming that processes considered inside brackets are uncorrelated between D^0 and $ar{D}^0$

 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

Summary 0000

Rough estimate of required statistics

Average number of reconstructed $D^0 \overline{D}^0$ -pairs

$$\langle D^0 \bar{D}^0 \rangle_{rec} \approx \langle c \bar{c} \rangle \cdot \left(P(c \to D^0) \cdot \mathsf{BR}(D^0 \to K\pi) \cdot P(\mathsf{acc.}) \cdot P(\mathsf{bkg.\ cuts}) \cdot P(\mathsf{rec.}) \right)^2$$

assuming that processes considered inside brackets are uncorrelated between D^0 and $ar{D}^0$

Estimates for the terms:

- $P(c \rightarrow D^0)$ probability for *c*-quark to hadronise into D^0 -mesons: 31% (PHSD).
- BR $(D^0 \rightarrow K\pi)$ probability of the measurable decay: 3.89%.
- P(acc.) probability for D^0 to be in the acceptance region: 50%.
- $P(bkg. cuts) probability for D^0 to pass background suppression cuts: 20%.$
- P(rec.) probability for D^0 to be reconstructed: $\approx (95\%)^2 = 90\%$.

 $c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

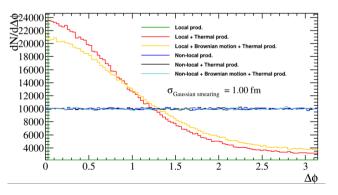
Summary 0000

Rough estimate of required statistics

Substituting number from the previous slide we get:

Average number of reconstructed
$$D^0 \overline{D}^0$$
-pairs
 $\langle D^0 \overline{D}^0 \rangle_{rec} \approx \langle c \overline{c} \rangle \cdot \left(P(c \to D^0) \cdot BR(D^0 \to K\pi) \cdot P(acc.) \cdot P(bkg. cuts) \cdot P(rec.) \right)^2$
 $\approx \langle c \overline{c} \rangle \cdot (0.31 \cdot 0.0389 \cdot 0.5 \cdot 0.2 \cdot 0.9)^2$
 $= \langle c \overline{c} \rangle \cdot 1.2 \cdot 10^{-6}$

assuming that processes considered inside brackets are uncorrelated between D^0 and \bar{D}^0


 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics 000000

Summary 0000

Rough estimate of required statistics Example of a measurement

Azimuthal correlations

- ullet correlation maximum at zero $\Delta\phi$
- no correlation flat distribution
- \Rightarrow 1000 $D^0 \bar{D}^0$ pairs should be sufficient

 $\langle c\bar{c}\rangle$ yield in central Pb+Pb @ 158A GeV/c 00000

Rough estimate of required statistics

Summary 0000

Rough estimate of required statistics

Statistics needed for 1000 $D^0 \overline{D}^0$ pairs

- $\langle D^0 \bar{D}^0
 angle_{\rm rec} pprox \langle c \bar{c}
 angle \cdot 1.2 \cdot 10^{-6}$
- Event selection cuts usually accept about 35% of events;
- Thus one would need about $1000/(0.35 \cdot \langle D^0 \bar{D}^0 \rangle_{\rm rec}) = 2.4 \cdot 10^9/\langle c\bar{c} \rangle$ events.

$$\langle c ar{c}
angle = 1 \Rightarrow 2.4 \cdot 10^9, \; \langle c ar{c}
angle = 0.1 \Rightarrow 2.4 \cdot 10^{10}$$

And, finally, we can estimate the time needed to accumulate this statistics (taking into account duty-cycles, i.e. data-taking takes 30% of an actual run-time):

	$ig \langle car{c} angle = 0.1$	$\langle car{c} angle = 0.2$	$\langle car{c} angle = 0.5$	$ig \langle car{c} angle = 1$
1 kHz	~ 1000 days	$\sim 500~{ m days}$	\sim 200 days	~ 100 days
10 kHz	~ 100 days	\sim 50 days	\sim 20 days	~ 10 days
100 kHz	~ 10 days	\sim 5 days	\sim 2 days	~ 1 day

Summary

Rough estimate of required statistics

Summary

Recall the requirement for a dominance of a single $c\bar{c}$ -pair production: $\frac{P(N_{c\bar{c}}>1)}{P(N_{c\bar{c}}=1)} \ll 1$

	$\langle c ar c angle = 0.1$	$\langle c ar{c} angle = 0.2$	$\langle car{c} angle = 0.5$	$\langle c ar c angle = 1$
$P(N_{c\bar{c}}>1)/P(N_{c\bar{c}}=1)$	0.05	0.1	0.3	0.7
$N_{ m true\ pairs}/N_{ m all\ pairs}$	91%	83%	66%	50%

	$\langle car{c} angle = 0.1$	$\langle car{c} angle = 0.2$	$\langle car{c} angle = 0.5$	$\langle c ar c angle = 1$
1 kHz	~ 1000 days	\sim 500 days	$\sim 200~{ m days}$	~ 100 days
10 kHz	~ 100 days	\sim 50 days	\sim 20 days	~ 10 days
100 kHz	~ 10 days	\sim 5 days	\sim 2 days	~ 1 day

Summary

- Q Can one dream of measuring $c\bar{c}$ -correlations?
- A Yes, but:
 - Detector must be capable to handle at least 10 times higher event-rate in comparison to what we have now.
 - Reaching 100 kHz would be ideal, but, in fact, may be unnecessary.
 - Information on $c\bar{c}$ production is too vague at the moment. And it may be an issue:
 - $\rightarrow~$ If it happens to be ≈ 0.1 or below, we have to push the event-rate to up to 100 kHz.
 - $\rightarrow\,$ If it is within the range of (0.2 0.5), 10 kHz should be sufficient. Moreover 10 kHz is very realistic.
 - $\rightarrow\,$ If it is closer to 1 or higher, one may need to consider a measurement at a lower energy or with a smaller system.

Fortunately, there is a hope that the data we collected just recently can help to shed some light on this problem. Which is, by the way, the subject of my PhD.

END