Resistive technologies for Time Projection Chambers

NA61++/SHINE: Physics opportunities from ions to pions

Guillaume Eurin for the CEA/IRFU neutrino group

CEA-Saclay/DRF-IRFU-DPhP

2022/12/16

Commissariat à l'énergie atomique et aux énergies alternatives French Alternative Energies and Atomic Energy Commission

The CEA is a public research organization

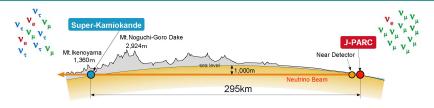
20000 employees

Key figures

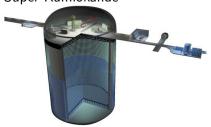
> 5000

Digital Transition

Remediation and dismantling

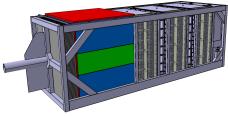


Headquarter - Perts 2 Codarache (13) 3 Costa (33) 4 DAM-Be-de-France (91) 7 Marcoule (30) 8 Paris Sastay (91) 10 Yes duc I21 CEA Tech Regional hubs


Institut de recherche sur les lois fondamentales de l'Univers

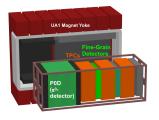
GANIL	DPhP	DPhN	DAp-AIM	DEDIP	DIS	DACM
Département GANIL unité de gestion des personnels CEA affectés au GIE Grand accélérateur national d'ions lourds	Département de physique des particules	Département de physique nucléaire	Département d'astrophysique UMR - AIM	Département d'électronique, détecteurs et informatique pour la physique	Département d'Ingénierie des systèmes	Département des accélérateurs, de cryogénie et de magnétisme

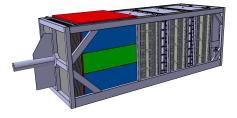
Tokai-to-Kamioka: T2K long-baseline experiment



Far detector: Water-Cherenkov Super-Kamiokande

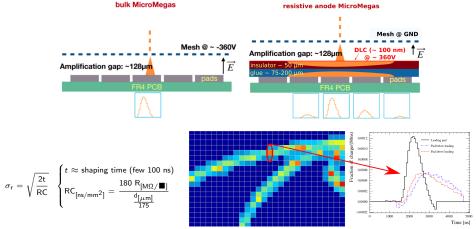
Upgrade planned to T2HK SK to be replaced by HK


Several near detectors: INGRID and ND280



Upgrade of ND280 ongoing $P0D \Rightarrow sFGD + HA-TPCs$

TPCs for the near detector of T2K-ND280



- ▶ 1998: TPC studies conducted for ILC with Micromegas R&D
- ▶ 2009: 3 vertical TPCs with 72 bulk Micromegas ($\sim 9 \text{ m}^2$)
- ▶ 2017: Encapsulated Resistive Anode bulk Micromegas (ERAM) proposed for T2K ND280-Upgrade ($\sim 5 \text{ m}^2$)
- ▶ 2023: Installation of ERAMs in ND-280
- ► Future: Growing community around resistive Micromegas technology, promising and innovative technology for future experiments

Encapsulated Resistive Anode bulk Micromegas (ERAM)

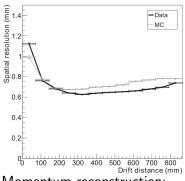
- ► Bulk Micromegas, mature and mastered technology
- ► New resistive Diamond-Like Carbon provides spark protection
- Charge spreading over multiple pads (ILC-TPC R&D) improves spatial resolution with cost-effective pad size

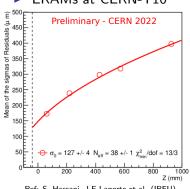
ERAMs prototyping and development steps

CERN/T9 test beam DESY test beam doi:10.1016/i.nima.2019.166109 doi:10.1016/j.nima.2019.163286

ERAM-01 @ DESY 2021 1/2 TPC mockup @ CERN/T10 sept. 202

	2018 MM0-DLC#	2019 MM1-DLC1 & 2	2020 ERAM-P1 & P2	Production ERAM-xx (ERAM-01-28)	
Readout PCB	Original T2K-TPC	HA-TPC V1 +ARC FEE	HA-TPC V2 +final FEE V1	HA-TPC V2 +final FEE V2	
Size	34 × 36 cm ²	34 × 42 cm²			
Pad size	6,85 ×9,65 mm ²	10,09 × 11,18 mm²			
Number of pads	1728 (48 × 36)	1152 (32×36)			
DLC resistivity (MΩ/■)	~2,5 (original foil)	0,32-0,44 (foils) 0,2-0,27 (on detector)	0,28-0,40 (foils) 0,15-0,22 (on detector)	~1 (foils) / ~0.28-0,4 (det.) Top TPC: 1-1.5 (foils) After baking: 0,4-0,55	
RC _{design} [ns/mm²] RC _{data} [ns/mm²]	~260	50 <rc<70 X-ray scan to process</rc<70 	15 <rc<23< td=""><td>35<rc<50 102<rc<145 (this="" talk)<="" td=""></rc<145></rc<50 </td></rc<23<>	35 <rc<50 102<rc<145 (this="" talk)<="" td=""></rc<145></rc<50 	
Insulation layer 50 μm APICAL +	200 μm glue	75 μm glue	200 μm glue 150 μm glue		
Spatial resolution (µm) Beam (Horizontal tracks) Cosmics	300 (OT)	MM1-DLC1 200 (0 or 0.2T) 700 (MM1-DLC2, @370V)	300-350 (ERAM-Px @370V)	@ DESY 07/21 380-300 (ERAM-01)	

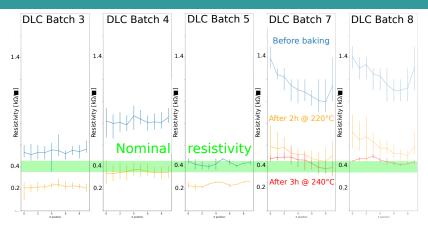

- RC_{design} from measured R and calculated C
- Main parameters changing during prototyping: DLC resistivity and insulation layer thickness
- ► Target performances reached with all designs



ND280-Upgrade TPCs performance requirements

Current ND280 TPCs

ERAMs at CERN-T10



Momentum reconstruction:

- Ref: S. Hassani, J-F Laporte et al. (IRFU)
- Relatively lose requirements for ND280-Upgrade: 10% @ 1GeV
- Factor of 3+ improvement with RC and granularity tuning \Rightarrow flexibility
- ► Particle identification through dE/dx
 - Energy resolution: $\sim 10 \%$ (PID: 45 % larger dE/dx for e⁻ than μ/π)
- Know-how in detector building and longevity over time demonstrated

DLC foil selection for ERAMs

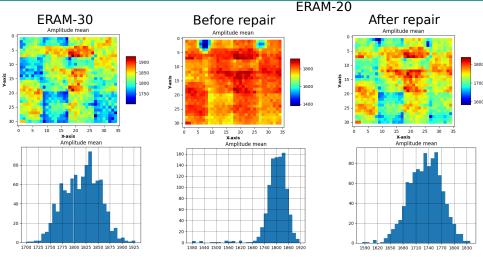
- Batch 4 with nominal resistivity \Rightarrow 9 final detectors
- Batch 3 and 5 with half nominal resistivity \Rightarrow Prototypes
- Bacthes 7 and 8 needed 2 bakings to provide nominal resistivity $\Rightarrow \sim 8$ final detectors
- ► 21/32 final detectors produced

CERN EP-DT-DD Micro-Pattern Technologies service

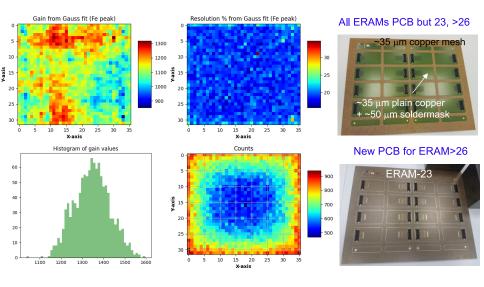
DLC collaboration Talk by Rui de Oliveira CERN at the MPGD 2022 conference Factors affect DLC in Detector fabrication Title of project: DLC based electrodes for future resistive MPGDs Contact person: name: Yi Zhou address: Jinzhai Road No.96, Hefei, Anhui, P.R.China, 23 telephone number: +86-551-63607940 e-mail: zhouvi@mail.ustc.edu.cn LICP USTC KOBE LNF-INF RD51 Institutes: 1. State Key Laboratory of Particle Detection and Electron University of Science and Technology of China, Small DLC + Cu Long-tern stability Theoretical calculat contact person: Yi Zhou Size DLC + Cu foils foils production and simulation and aging test e-mail: zhouvi@mail.ustc.edu.en 2. Kobe University. contact person: Atsuhiko Ochi e-mail: ochi@kobe-u.ac.jp 3. CERN contact person: Rui de Oliveira e-mail: Rui.de.Oliveira@cern.ch CERN 4. Laboratori Nazionali di Frascati dell'INFN Detector Production contact person: Giovanni Bencivenni with DLC foils e-mail: Giovanni.Bencivenni@lnf.infn.it Ext. Collaborators: 1. State Key Laboratory of Solid Lubrication. Lanzhou Institute of Chemical Physics, Chinese Academ contact person: Lunlin Shang e-mail: shangl@licp.cas.cn

- In general, key partnership with MPT workshop for ERAM production
- World renowned expertise on MPGD/PCBs, new sputtering equipment
- Promising sputtering results $\Rightarrow \sim 10 \%$ resistivity homogeneity achieved

ERAM characterisation test bench



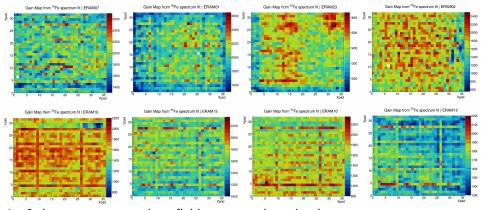
- ► All ERAMs individually characterised (1 week/ERAM)
- Signal pulsed on mesh without amplification
- ► Effective gain (ERAM * FE) and energy resolution @ 5.9 keV measurement on each pad with ERAM at nominal HV
- ► HV scan (330 360 V) in the center (gain tuning)
- Remote shifting organised with local hardware support

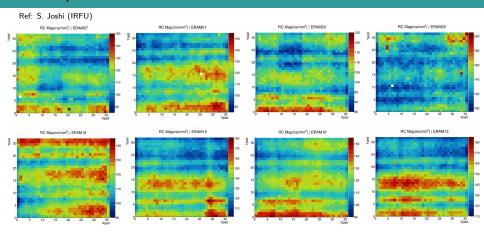

Pulsing of the ERAM mesh

- Quality control step to detect major defects before mechanics gluing
- Mesh pulsed with a 1 kHz, 300 mV square signal
- Response of the whole detector in one test

Gain scan of ERAM-30 with ⁵⁵Fe X-rays

New PCB design from ERAM-23 ⇒ No non-uniformities from mechanics

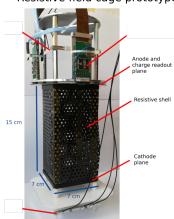

CERN test beam at PS/T10


- Field cage with different mechanical and electrical design, 1/2 HA-TPC field cage dimensions
- 8 final ERAM detectors tested on beam
- Enabled test and improvement of overall acquisition system
- 1 prototype field cage equipped with 1 ERAM at different resistivity for ERAM design validation
- ▶ Datasets with different drift distances, ERAM HV, particle types and momenta being analysed

Detector used at test beam at PS/T10

- 8 detectors mounted on field cage mock-up in clean room
- Various PCB designs visible due to mechanics ribs, not since ERAM-23
- Absolute gain of ERAM detectors changes with design ⇒ under investigation
- ► Effect of environmental conditions during gain scan under investigation

RC maps from data



- ▶ RC value extracted from X-ray scans of each ERAM
- ► Modelisation of the detector and electronics response implemented
- ▶ RC fitted using the leading and neighbouring pads

Resistive field cage technology


- Aim: performances improvement for TPC long-term operations
- Charge readout already exploiting resistive technology
- Need to be explored for field cages
- ► T2K field homogeneity requirement: $\Delta E/E < 10^{-4}$ at < 1 cm of cage walls
- Could be achieved with resistive field cage
- Voltage degrader requires high resistive foil homogeneity ⇒ CERN MPT lab

DUNE-ArgonCube: Resistive field cage prototype

Conclusions

- Resistive Micromegas inherit from long and successful bulk Micromegas developments
- Strong interest of CERN for resistive technology
- Resistive readout shows good performances and large flexibility
- Highly interesting and promising R&D for resistive field cages

Thank you for your attention!

CERN/T9 2018 MM0/ 1m drift HARP TPC

DESY 2019 MM1-DLC1/15 cm drift

DESY 2021 ERAM-01 / 1 m drift proto FC

CERN/T10 2022 1/2 full size TPC with 8 ERAMs

Impact of the PCB design on the gain

ERAM GAIN VS STIFFENER RIBS (ERAM-15) Gain from Gauss fit (Fe peak) Resolution % from Gauss fit (Fe peak) 2200 2000 50 10 10 1800 f-axis 40 1600 1400 30 20 20 1200 25 25 1000 30 30 10 20 30 10 30 X-axis X-axis PCB top layer black areas are ~20-35 um thick copper + ~50 µm soldermask (only copper from ERAM-17) These thicknesses depends on the PCB manufacturer stiffener + ERAM PCB

Charge diffusion

Charge diffusion function:

$$Q_{pad}(t) = \frac{Q_{norm}}{4} \left[erf \left(\frac{x_H - x_0}{\sigma(t) \sqrt{2}} \right) - erf \left(\frac{x_L - x_0}{\sigma(t) \sqrt{2}} \right) \right] \left[erf \left(\frac{y_H - y_0}{\sigma(t) \sqrt{2}} \right) - erf \left(\frac{y_L - y_0}{\sigma(t) \sqrt{2}} \right) \right]$$

$$\Rightarrow \text{ Obtained from Telegraph equation for charge diffusion.}$$

$$\Rightarrow \text{ Integrating charge density function over area of 1 readout pad.}$$

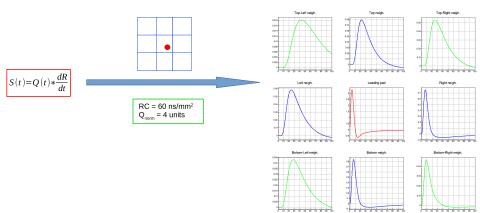
$$\Rightarrow \text{ Parameterized by 4 variables:}$$

$$\Rightarrow x_0 \text{ Initial charge}$$

$$\Rightarrow y_0 \text{ position}$$

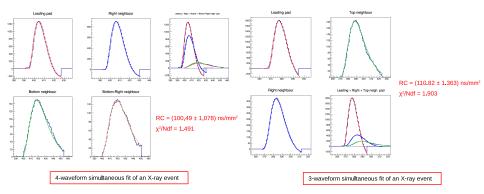
$$\Rightarrow \text{ RC : Describes charge spreading}$$

$$\Rightarrow Q_{rorm} : \text{ Total charge deposited in an event}$$


$$\Rightarrow Q_{rorm} : \text{ Total charge deposited in an event}$$

$$\Rightarrow Q_{rorm} : \text{ ADC } \text{ A$$

S. Joshi, talk at IRN Neutrino 2022


Signal Model

Convolution of charge diffusion function with derivative of electronics response function.

S. Joshi, talk at IRN Neutrino 2022

RC extraction

RC is obtained for a pad by simultaneous fit of waveforms in each event.

S. Joshi, talk at IRN Neutrino 2022

