he HADES experiment at GSI current status and future prospects

for the HADES Collaboration

a.rustamov@gsi.de

Phase structure of strongly interacting matter

A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, 321–330 (2018) H. T. Ding et al [HotQCD], arXiv:1903.04801, A. Bazavov et al [HotQCD], arXiv:1812.08235

The ultimate goal Ş

deciphering the phase structure of QCD matter

Promising observables (covered in this talk)

- fluctuations of conserved charges
- penetrating probes
- strangeness production phenomenology

experimentally neither crossover transition no critical point are discovered to date more efforts are needed

P. Braun-Munzinger, AR, J. Stachel, 2211.08819 [hep-ph]

The HADES apparatus

High Acceptance Di-Electron Spectrometer

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

Specifications

Acceptance

- nearly full azimuthal coverage
- polar angle between 18° 85°
 - \neq 0.5⁰-7⁰ with forward Wall

- primarily by correlating momentum with velocity
 - also by using dE/dx in ToF and drift chambers
- RICH for electron identification

Accepted trigger rates

- 16 kHz for Ag-Ag collisions
- 50 kHz for proton beams

Upgrades

- RICH photon detection plane (with CBM)
- Forward detector (with PANDA)
- ECal

Data Campaigns

HADES pion beam facility

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

Ion beam

Date	Reaction	$\sqrt{s_{NN}}$ [GeV]
Nov 2002	C+C	2.7
Aug 2004	C+C	2.32
Sep 2005	Ar+KCI (~Ca+Ca)	2.61
Apr 2012	Au+Au	2.42
Mar 2019	Ag+Ag	2.55, 2.42

Proton (deuteron) beam

Date	Reaction	$\sqrt{s_{NN}}$ [GeV]
Jan 2004	p+p	2.77
Apr 2006	p+p	2.42
Apr 2007	p+p	3.18
Apr 2007	d+p	2.42
Sep 2008	p+Nb	3.18
Feb 2022	p+p	3.46

Pion beam

Date	Reaction	p_{π} [GeV/c]
Jul-Sep 2014	π^- + C/PE	0.66, 0.69, 0.75, 0

Particle identification capabilities

Excellent particle identification by correlating measured momenta and velocities of different particle species

Upgraded RICH photo-detection plane (with CBM) significantly improved lepton identification excellent timing precision

E-by-E Fluctuations

E-by-E fluctuations

critical opalescence

caused by enhanced density fluctuations

A. Einstein, Annalen der Physik, Volume 338, Issue 16, 1910: $h \sim \frac{1}{\chi 4} \chi_T$

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

E-by-E fluctuations are direct probes of critical phenomena

predicted within Grand Canonical Ensemble

direct link to EoS

$$\frac{\kappa_n(N_B - N_{\bar{B}})}{VT^3} = \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \mu_B)}{\partial (\mu_B / T)^n} \equiv \hat{\chi}_n^B$$

 κ_n - cumulants (measurable in experiment) $\hat{\chi}_{n}^{B}$ - susceptibilities (e.g. from IQCD)

Energy excitation function of κ_4/κ_2 in central Au-Au collisions

HADES: Phys.Rev.C 102 (2020) 2, 024914 **STAR**: Phys.Rev.Lett. 126 (2021) 9, 092301

higher statistics is needed for unambiguous conclusions

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

a dip in the excitation function is generic

M. Stephanov, PRL102.032301(2009), PRL107.052301(2011) M.Cheng et al, PRD79.074505(2009)

STAR: Phys.Rev.Lett. 126 (2021) 9, 092301

non-monotonic behaviour with a significance of 3.1σ relative to Skellam expectation

CE Baseline: P. Braun-Munzinger, B. Friman, K. Redlich, AR, J. Stachel, NPA 1008 (2021) 122141 no statistically significant difference between the data and the canonical baseline (KS test: 1.2σ , χ^2 test: 1.5σ)

see also: V. Vovchenko, V. Koch, Ch. Shen, Phys.Rev.C 105 (2022) 1, 014904

Results from HADES, Au-Au $\sqrt{s_{NN}}$ =2.4 GeV

$$\kappa_2 = \kappa_1 + C_2$$

$$\rho_2(y_1, y_2) = \rho(y_1)\rho(y_2) + C_2(y_1, y_2)$$
$$\langle n^2 \rangle - \langle n \rangle^2 = \langle n \rangle + \int C_2(y_1y_2)dy_1dy_2$$

integrated correlation function: C_n

B. Ling, M. Stephanov, PRC 93 (2016) 034915

A. Bzdak, V. Koch, N. Strodthoff, PRC 95 (2017) 054906

V. Vovchenko, V. Koch, Phys.Lett.B 833 (2022) 137368

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

 $\Im \langle N_p \rangle$ - mean number of protons in selected $y_0 \pm \Delta y$ $\checkmark \Delta y = 0.1, 0.2, 0.3, 0.4, 0, 5$

large values for integrated correlation functions

- do data imply multi-cluster formation? Ģ
- Ş what is the mechanism behind?

Electromagnetic radiation

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

Electromagnetic radiation

Dilepton sources at E_{kin} = 1-3 A GeV

form factors in time-like domain are essential for all 3 stages

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

source: vector mesons embedded into matter \checkmark promising candidate: ρ (770) meson, $c\tau$ =1.3 fm/c

access via penetrating probes (dileptons)

$$m_{h \to e^{-}(p_1)e^{+}(p_2)} = \sqrt{(p_1 + p_2)^2} \qquad \frac{dN_{h \to e^{+}e^{-}}}{dm} \sim \rho(m) \frac{\Gamma_{h \to p_1}}{\Gamma_{tot}}$$

Vacuum properties of ρ spectral function

$$\int_{\pi} \int_{\pi} \int_{\pi$$

In-medium properties, additional self-energies

W. Peters et al. NPA 632 (1998) 109

Invariant mass of dielectorns

- Large statistics data Ş
- $\overset{\scale}{=}$ Clearly visible vector mesons (ω, ϕ)
- S. Spies, CPOD 2022

Solution \mathbb{I} and \mathbb{I} and Penetrating probes!

N. Schild, CPOD 2022

Emissivity of nuclear matter

$$\frac{d^8 N}{d^4 q d^4 x} = -\frac{\alpha^2 L(M)}{3\pi^3 M_{ee}^2} f^{BE}(q_0, T) Im \Pi_{em}(M_{ee}, q; T, \mu_B)$$

$$dN/dM_{ee} \sim M_{ee}^{3/2} exp(-M_{ee}/T)$$

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

the data suggests a strong ρ broadening, which may be induced by partial restoration of the chiral symmetry

Strangeness Production Phenomenology

Strangeness production phenomenology

Enhancement

Energy needed:

QGP: $2m_s \approx 200 \text{ MeV}$

Hadron gas: e.g., NN -> N Λ K \approx 670 MeV

J. Rafelski, B. Müller, PRL 48, 1066 (1982)

P. Koch, B. Müller, J. Refelski, Phys. Rep. 142, 167 (1986)

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

Suppression as apparent enhancement

Canonical suppression factor $F_s = I_s(x)/I_0(x)$

 $I_{\rm s}$ - modified Bessel function, $x \sim V$

<Mult>_{CE} = F_{s} <Mult>_{GCE}

Hierarchy follows the strangeness content Enhancement decreases with increasing energy

S. Hamieh, K. Redlich, A. Tounsi, PLB 486, 61 (2000)

Strangeness centrality dependence

Universal scaling with centrality

Mult ~ ~
$$\left\langle A_{part} \right\rangle^{\alpha}$$

$$\alpha_{Au-Au} = 1.45 \pm 0.06$$

$$\alpha_{Ag-Ag} = 1.47 \pm 0.04$$

HADES: PLB 793 (2019) 457-463

Hypernuclei measurements

 $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$

measured lifetime (262 \pm 22_{stat} \pm 28_{sys} ps) is comparable with that of free Λ (263 ps)

S. Spies, CPOD 2022

measured lifetime (222 \pm 7_{stat} \pm 12_{sys} ps) is 4.7 σ below compared to free Λ lifetime (263 ps)

Pion induced reactions

Transition form-factors for baryon resonances

Extracting ρ production amplitudes

HADES: Phys.Rev.C 102 (2020) 2,024001

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

Constraining ρ production amplitudes

$$\pi^-p \to n\pi^+\pi^-$$
 , $\, p_\pi = 0.685$ GeV/c

Bonn-Gatchina Partial Wave Analysis (PWA)

Future Prospects

February 2022: p+p @4.5 GeV (done)

baseline for FAIR experiments (and beyond)

Beam energy scan

- Au-Au collisions, with projectile kinetic energies: 0.8A, 0.6A, 0.4A, 0.2A GeV
 - (~ 10⁹ events for each energy)
 - systematic study of fluctuations and correlation

functions at the high values of μ_B

- probing the vicinity of nuclear liquid-gas phase transition
- studying contributions of stopped protons to multi-particle correlations

Summary

- Measured multi-particle correlation functions of protons demonstrate non-trivial multiplicity dependencies
 - **W** Further studies are needed to clarify this observation
- $ec{M}$ High statistics dielectron measurements indicate strong in-medium broadening of the ho meson

- **M** Universal scaling of strangeness production with centrality is observed in Au-Au and Ag-Ag collisions
- \mathcal{M} Measured lifetime of ${}^3_{\Lambda}H$ is consistent with that of free Λ

- **M** The HADES experiment at GSI/SIS provides unique opportunities to unravel the QCD phase structure

The HADES Collaboration

A. Rustamov, NA61++/SHINE: Physics opportunities from ions to pions, 15-17 Dec, 2022, CERN

